| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
| |
llvm-svn: 352123
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PDBs contain several serialized hash tables. In the microsoft-pdb
repo published to support LLVM implementing PDB support, the
provided initializes the bucket count for the TPI and IPI streams
to the maximum size. This occurs in tpi.cpp L33 and tpi.cpp L398.
In the LLVM code for generating PDBs, these streams are created with
minimum number of buckets. This difference makes LLVM generated
PDBs slower for when used for debugging.
Patch by C.J. Hebert
Differential Revision: https://reviews.llvm.org/D56942
llvm-svn: 352117
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for vector @llvm.ceil intrinsics when full 16 bit
floating point support isn't available.
To do this, this patch...
- Implements basic isel for G_UNMERGE_VALUES
- Teaches the legalizer about 16 bit floats
- Teaches AArch64RegisterBankInfo to respect floating point registers on
G_BUILD_VECTOR and G_UNMERGE_VALUES
- Teaches selectCopy about 16-bit floating point vectors
It also adds
- A legalizer test for the 16-bit vector ceil which verifies that we create a
G_UNMERGE_VALUES and G_BUILD_VECTOR when full fp16 isn't supported
- An instruction selection test which makes sure we lower to G_FCEIL when
full fp16 is supported
- A test for selecting G_UNMERGE_VALUES
And also updates arm64-vfloatintrinsics.ll to show that the new ceiling types
work as expected.
https://reviews.llvm.org/D56682
llvm-svn: 352113
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Using COFF's .def directive in module assembly used to crash ThinLTO
with "this directive only supported on COFF targets" when getting
symbol information in ModuleSymbolTable. This change allows
ModuleSymbolTable to process such code and adds a test to verify that
the .def directive has the desired effect on the native object file,
with and without ThinLTO.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36789
Reviewers: rnk, pcc, vlad.tsyrklevich
Subscribers: mehdi_amini, eraman, hiraditya, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D57073
llvm-svn: 352112
|
|
|
|
|
|
|
|
|
| |
A volatile operation cannot be used to prove an address points to normal
memory. (LangRef was recently updated to state it explicitly.)
Differential Revision: https://reviews.llvm.org/D57040
llvm-svn: 352109
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
guessLibraryShortName() separates a full Mach-O dylib install name path
into a short name and a dyld image suffix. The short name is the name
of the dylib without its path or extension. The dyld image suffix is a
string used by dyld to load variants of dylibs if available at runtime;
for example, "when binding this process, load 'debug' variants of all
required dylibs." dyld knows exactly what the image suffix is, but
by convention diagnostic tools such as llvm-nm attempt to guess suffix
names by looking at the install name path.
These dyld image suffixes are separated from the short name by a '_'
character. Because the '_' character is commonly used to separate words
in filenames guessLibraryShortName() cannot reliably separate a dylib's
short name from an arbitrary image suffix; imagine if both the short
name and the suffix contains an '_' character! To better deal with this
ambiguity, guessLibraryShortName() will recognize only "_debug" and
"_profile" as valid Suffix values. Calling code needs to be tolerant of
guessLibraryShortName() guessing incorrectly.
The previous implementation of guessLibraryShortName() did not allow
'_' characters to appear in short names. When present, the short name
would be truncated, e.g., "libcompiler_rt" => "libcompiler". This
change allows "libcompiler_rt" and "libcompiler_rt_debug" to both be
recognized as "libcompiler_rt".
rdar://47412244
Reviewers: kledzik, lhames, pete
Reviewed By: pete
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56978
llvm-svn: 352104
|
|
|
|
| |
llvm-svn: 352098
|
|
|
|
| |
llvm-svn: 352093
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
MemorySSA needs updating each time an instruction is moved.
LICM and control flow hoisting re-hoists instructions, thus needing another update when re-moving those instructions.
Pending cleanup: the MSSA update is duplicated, should be moved inside moveInstructionBefore.
Reviewers: jnspaulsson
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D57176
llvm-svn: 352092
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Performing splitting early has several advantages:
- Inhibiting inlining of cold code early improves code size. Compared
to scheduling splitting at the end of the pipeline, this cuts code
size growth in half within the iOS shared cache (0.69% to 0.34%).
- Inhibiting inlining of cold code improves compile time. There's no
need to inline split cold functions, or to inline as much *within*
those split functions as they are marked `minsize`.
- During LTO, extra work is only done in the pre-link step. Less code
must be inlined during cross-module inlining.
An additional motivation here is that the most common cold regions
identified by the static/conservative splitting heuristic can (a) be
found before inlining and (b) do not grow after inlining. E.g.
__assert_fail, os_log_error.
The disadvantages are:
- Some opportunities for splitting out cold code may be missed. This
gap can potentially be narrowed by adding a worklist algorithm to the
splitting pass.
- Some opportunities to reduce code size may be lost (e.g. store
sinking, when one side of the CFG diamond is split). This does not
outweigh the code size benefits of splitting earlier.
On net, splitting early in the pipeline has substantial code size
benefits, and no major effects on memory locality or performance. We
measured memory locality using ktrace data, and consistently found that
10% fewer pages were needed to capture 95% of text page faults in key
iOS benchmarks. We measured performance on frequency-stabilized iOS
devices using LNT+externals.
This reverses course on the decision made to schedule splitting late in
r344869 (D53437).
Differential Revision: https://reviews.llvm.org/D57082
llvm-svn: 352080
|
|
|
|
|
|
|
| |
This wasn't consistent within the file, so made it harder to search.
Standardize on the shorter name to save some typing.
llvm-svn: 352077
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It should be emitted when any floating-point operations (including
calls) are present in the object, not just when calls to printf/scanf
with floating point args are made.
The difference caused by this is very subtle: in static (/MT) builds,
on x86-32, in a program that uses floating point but doesn't print it,
the default x87 rounding mode may not be set properly upon
initialization.
This commit also removes the walk of the types pointed to by pointer
arguments in calls. (To assist in opaque pointer types migration --
eventually the pointee type won't be available.)
That latter implies that it will no longer consider a call like
`scanf("%f", &floatvar)` as sufficient to emit _fltused on its
own. And without _fltused, `scanf("%f")` will abort with error R6002. This
new behavior is unlikely to bite anyone in practice (you'd have to
read a float, and do nothing with it!), and also, is consistent with
MSVC.
Differential Revision: https://reviews.llvm.org/D56548
llvm-svn: 352076
|
|
|
|
|
|
|
|
| |
presence of `noreturn` calls"
This reverts commit cea84ab93aeb079a358ab1c8aeba6d9140ef8b47.
llvm-svn: 352069
|
|
|
|
| |
llvm-svn: 352067
|
|
|
|
| |
llvm-svn: 352066
|
|
|
|
|
|
|
|
| |
This is the most common usage for isUndefInRange,
so make the code slightly less duplicated and more
readable.
llvm-svn: 352063
|
|
|
|
|
|
|
|
| |
After submitting https://reviews.llvm.org/D57138, I realized it was slightly more conservative than needed. The scalar indices don't appear to be a problem on a vector gep, we even had a test for that.
Differential Revision: https://reviews.llvm.org/D57161
llvm-svn: 352061
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is an alternative to https://reviews.llvm.org/D57103. After discussion, we dedicided to check this in as a temporary workaround, and pursue a true fix under the original thread.
The issue at hand is that the base rewriting algorithm doesn't consider the fact that GEPs can turn a scalar input into a vector of outputs. We had handling for scalar GEPs and fully vector GEPs (i.e. all vector operands), but not the scalar-base + vector-index forms. A true fix here requires treating GEP analogously to extractelement or shufflevector.
This patch is merely a workaround. It simply hides the crash at the cost of some ugly code gen for this presumable very rare pattern.
Differential Revision: https://reviews.llvm.org/D57138
llvm-svn: 352059
|
|
|
|
|
|
|
|
| |
expandFixedPointMul. NFCI.
Match the (much shorter) name used in various legalization methods.
llvm-svn: 352056
|
|
|
|
| |
llvm-svn: 352053
|
|
|
|
| |
llvm-svn: 352051
|
|
|
|
|
|
| |
Added x86 scalar sadd_with_overflow/ssub_with_overflow costs.
llvm-svn: 352045
|
|
|
|
|
|
|
|
| |
Added x86 scalar uadd_with_overflow/usub_with_overflow costs.
Differential Revision: https://reviews.llvm.org/D56907
llvm-svn: 352043
|
|
|
|
|
|
|
|
|
| |
This reverts commit a6982414edf315c39ae93f3c3322476217119e99 (llvm-svn: 352036),
because it causes a memory leak in the pass manager. Failing bot
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/10351/steps/check-llvm%20asan/logs/stdio
llvm-svn: 352041
|
|
|
|
|
|
|
|
|
| |
Select zero extending and sign extending load for MIPS32.
Use size from MachineMemOperand to determine number of bytes to load.
Differential Revision: https://reviews.llvm.org/D57099
llvm-svn: 352038
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use CombinerHelper to combine extending load instructions.
G_LOAD combined with G_ZEXT, G_SEXT or G_ANYEXT gives G_ZEXTLOAD,
G_SEXTLOAD or G_LOAD with same type as def of extending instruction
respectively.
Similarly G_ZEXTLOAD combined with G_ZEXT gives G_ZEXTLOAD and
G_SEXTLOAD combined with G_SEXT gives G_SEXTLOAD with same type
as def of extending instruction.
Differential Revision: https://reviews.llvm.org/D56914
llvm-svn: 352037
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of manually computing DT and PDT, we can get the from the pass
manager, which ideally has them already cached. With the new pass
manager, we could even preserve DT/PDT on a per function basis in a
module pass.
I think this also addresses the TODO about re-using the computed DTs for
BFI. IIUC, GetBFI will fetch the DT from the pass manager and when we
will fetch the cached version later.
Reviewers: vsk, hiraditya, tejohnson, thegameg, sebpop
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D57092
llvm-svn: 352036
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reapplies commit r351987 with a failed test fix. Now the test
accepts both DW_OP_GNU_push_tls_address and DW_OP_form_tls_address
opcode.
Original commit message:
```
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
```
llvm-svn: 352034
|
|
|
|
|
|
|
|
| |
After creating new PHI instructions during isel pseudo expansion, the NoPHIs
property of MF should be reset in case it was previously set.
Review: Ulrich Weigand
llvm-svn: 352030
|
|
|
|
|
|
| |
flag for masked loads. Add truncating and compressing for masked stores.
llvm-svn: 352029
|
|
|
|
|
|
| |
into a truncating masked store.
llvm-svn: 352027
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we choose whether or not we should mark block as dead, we have an
inconsistent logic in markup of live blocks.
- We take candidate IF its terminator branches on constant AND it is immediately
in current loop;
- We mark successor live IF its terminator doesn't branch by constant OR it branches
by constant and the successor is its always taken block.
What we are missing here is that when the terminator branches on a constant but is
not taken as a candidate because is it not immediately in the current loop, we will
mark only one (always taken) successor as live. Therefore, we do NOT do the actual
folding but may NOT mark one of the successors as live. So the result of markup is
wrong in this case, and we may then hit various asserts.
Thanks Jordan Rupprech for reporting this!
Differential Revision: https://reviews.llvm.org/D57095
Reviewed By: rupprecht
llvm-svn: 352024
|
|
|
|
|
|
|
|
|
| |
reading/editing
Recommits 350048, 350050 That broke buildbots because of some typos in
the test case.
llvm-svn: 352019
|
|
|
|
|
|
|
|
| |
This reverts commit ccfb060ecb5d7e18ea729455660484d576bde2cc.
Some tests need to to fixed before reapplying this commit.
llvm-svn: 352014
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Affected instructions:
PseudoLI simplest form (ADDI with X0)
ALU operations with immediate (they do not set status flag - ADDI, ORI, XORI)
Reviewers: asb
Reviewed By: asb
Subscribers: shiva0217, rkruppe, kito-cheng, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei
Differential Revision: https://reviews.llvm.org/D56526
llvm-svn: 352010
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: asb
Reviewed By: asb
Subscribers: asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei
Differential Revision: https://reviews.llvm.org/D57069
llvm-svn: 352008
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`noreturn` calls
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Profile sample files include the number of times each entry or inlined
call site is sampled. This is translated into the entry count metadta
on functions.
When sample data is being read, if a call site that was inlined
in the sample program is considered cold and not inlined, then
the entry count of the out-of-line functions does not reflect
the current compilation.
In this patch, we note call sites where the function was not inlined
and as a last action of the sample profile loading, we update the
called function's entry count to reflect the calls from these
call sites which are not included in the profile file.
Reviewers: danielcdh, wmi, Kader, modocache
Reviewed By: wmi
Subscribers: davidxl, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D52845
llvm-svn: 352001
|
|
|
|
|
|
| |
This reverts commit r351987 as it broke some bots.
llvm-svn: 351998
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Renamed setBaseDiscriminator to cloneWithBaseDiscriminator, to match
similar APIs. Also changed its behavior to copy over the other
discriminator components, instead of eliding them.
Renamed cloneWithDuplicationFactor to
cloneByMultiplyingDuplicationFactor, which more closely matches what
this API does.
Reviewers: dblaikie, wmi
Reviewed By: dblaikie
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D56220
llvm-svn: 351996
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously no client of ilist traits has needed to know about transfers
of nodes within the same list, so as an optimization, ilist doesn't call
transferNodesFromList in that case. However, now there are clients that
want to use ilist traits to cache instruction ordering information to
optimize dominance queries of instructions in the same basic block.
This change updates the existing ilist traits users to detect in-list
transfers and do nothing in that case.
After this change, we can start caching instruction ordering information
in LLVM IR data structures. There are two main ways to do that:
- by putting an order integer into the Instruction class
- by maintaining order integers in a hash table on BasicBlock
I plan to implement and measure both, but I wanted to commit this change
first to enable other out of tree ilist clients to implement this
optimization as well.
Reviewers: lattner, hfinkel, chandlerc
Subscribers: hiraditya, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D57120
llvm-svn: 351992
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
VPlan-native path
Context: Patch Series #2 for outer loop vectorization support in LV
using VPlan. (RFC:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html).
Patch series #2 checks that inner loops are still trivially lock-step
among all vector elements. Non-loop branches are blindly assumed as
divergent.
Changes here implement VPlan based predication algorithm to compute
predicates for blocks that need predication. Predicates are computed
for the VPLoop region in reverse post order. A block's predicate is
computed as OR of the masks of all incoming edges. The mask for an
incoming edge is computed as AND of predecessor block's predicate and
either predecessor's Condition bit or NOT(Condition bit) depending on
whether the edge from predecessor block to the current block is true
or false edge.
Reviewers: fhahn, rengolin, hsaito, dcaballe
Reviewed By: fhahn
Patch by Satish Guggilla, thanks!
Differential Revision: https://reviews.llvm.org/D53349
llvm-svn: 351990
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This saves a cbz+cold call in the interceptor ABI, as well as a realign
in both ABIs, trading off a dcache entry against some branch predictor
entries and some code size.
Unfortunately the functionality is hidden behind a flag because ifunc is
known to be broken on static binaries on Android.
Differential Revision: https://reviews.llvm.org/D57084
llvm-svn: 351989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
llvm-svn: 351987
|
|
|
|
|
|
|
| |
This change caused fatal backend errors when compiling a file in libvpx
for Android.
llvm-svn: 351979
|
|
|
|
|
|
|
|
| |
Enable full support for the debug info.
Differential revision: https://reviews.llvm.org/D46189
llvm-svn: 351974
|
|
|
|
|
|
|
| |
This reverts commit r351972. Some pieces of the patch was not applied
correctly.
llvm-svn: 351973
|
|
|
|
|
|
|
|
|
| |
Enable full support for the debug info. Recommit to fix the emission of
the not required closing brace.
Differential revision: https://reviews.llvm.org/D46189
llvm-svn: 351972
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r351846.
This patch may generate illegal assembly code, see
```
$ ./bin/clang -cc1 -triple nvptx64-nvidia-cuda -aux-triple x86_64-grtev4-linux-gnu -S -disable-free -disable-llvm-verifier -discard-value-names -main-file-name new.cc -mrelocation-model pic -pic-level 2 -mthread-model posix -fmerge-all-constants -mdisable-fp-elim -relaxed-aliasing -no-integrated-as -mpie-copy-relocations -munwind-tables -fcuda-is-device -target-feature +ptx60 -target-cpu sm_35 -dwarf-column-info -debug-info-kind=line-directives-only -dwarf-version=2 -debugger-tuning=gdb -o empty.s -x cuda empty.cc
$ cat empty.s
//
// Generated by LLVM NVPTX Back-End
//
.version 6.0
.target sm_35
.address_size 64
}
```
llvm-svn: 351966
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
delays from the integer to the floating point unit.
This patch adds a new ReadAdvance definition named ReadInt2Fpu.
ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by
data transfers from the integer unit to the floating point unit.
ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all
x86 models excluding BtVer2. That means, this patch is only a functional change
for the Jaguar cpu model only.
Tablegen definitions for instructions (V)PINSR* have been updated to account for
the new ReadInt2Fpu. That read is mapped to the the GPR input operand.
On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch,
that extra delay was added to the opcode latency. In practice, the insert opcode
only executes for 1cy. Most of the actual latency is actually contributed by the
so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR*
latency is defined by expression f+1, where f is defined as a forwarding delay
from the integer unit to the fpu.
When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC
(only when flag -print-schedule is speified), we now need to account for any
extra forwarding delays. We do this by checking if scheduling classes declare
any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td:
"A negative advance effectively increases latency, which may be used for
cross-domain stalls". When computing the instruction latency for the purpose of
our scheduling tests, we now add any extra delay to the formula. This avoids
regressing existing codegen and mca schedule tests. It comes with the cost of an
extra (but very simple) hook in MCSchedModel.
Differential Revision: https://reviews.llvm.org/D57056
llvm-svn: 351965
|