| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.
FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.
The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
call1(); // line 1
++global; // line 2
++global; // line 3
call2(&global, &local); // line 4
Today we end up with assembly and line tables like this:
.loc 1 1
callq call1
leaq global(%rip), %rdi
leaq local(%rsp), %rsi
.loc 1 2
addq $1, global(%rip)
.loc 1 3
addq $1, global(%rip)
.loc 1 4
callq call2
The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.
This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.
This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.
There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code
Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.
Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.
Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.
Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo
Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43093
llvm-svn: 327581
|
|
|
|
|
|
|
|
|
|
| |
Get rid of the "; mem:" suffix and use the one we use in MIR: ":: (load 2)".
rdar://38163529
Differential Revision: https://reviews.llvm.org/D42377
llvm-svn: 327580
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we have an invariant.start with no corresponding invariant.end, then the memory location becomes invariant indefinitely after the invariant.start. As a result, anything dominated by the start is guaranteed to see the value the memory location had when the invariant.start executed.
This patch adds an AvailableInvariants table which tracks the generation a particular memory location became invariant and then uses that information to allow value forwarding that would otherwise be disallowed by potentially aliasing stores. (Reminder: In EarlyCSE everything clobbers everything by default.)
This should be compatible with the MemorySSA variant, but design is generational. We can and should add first class support for invariant.start within MemorySSA at a later time. I took a quick look at doing so, but probably need some input from a MemorySSA expert.
Differential Revision: https://reviews.llvm.org/D43716
llvm-svn: 327577
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit r327566, it breaks
test/ExecutionEngine/OrcMCJIT/test-global-ctors.ll.
The test doesn't crash with a stack trace, unfortunately. It merely
returns 1 as the exit code.
ASan didn't produce a report, and I reproduced this on my Linux machine
and Windows box.
llvm-svn: 327576
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As shown in:
https://bugs.llvm.org/show_bug.cgi?id=27151
...the existing fold could miscompile when X is NaN.
The fold was also dependent on 'ninf' but that's not necessary.
From IEEE-754 (with default rounding which we can assume for these opcodes):
"When the sum of two operands with opposite signs (or the difference of two
operands with like signs) is exactly zero, the sign of that sum (or difference)
shall be +0...However, x + x = x − (−x) retains the same sign as x even when
x is zero."
llvm-svn: 327575
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Optionally allow the order of restoring the callee-saved registers in the
epilogue to be reversed.
The flag -reverse-csr-restore-seq generates the following code:
```
stp x26, x25, [sp, #-64]!
stp x24, x23, [sp, #16]
stp x22, x21, [sp, #32]
stp x20, x19, [sp, #48]
; [..]
ldp x24, x23, [sp, #16]
ldp x22, x21, [sp, #32]
ldp x20, x19, [sp, #48]
ldp x26, x25, [sp], #64
ret
```
Note how the CSRs are restored in the same order as they are saved.
One exception to this rule is the last `ldp`, which allows us to merge
the stack adjustment and the ldp into a post-index ldp. This is done by
first generating:
ldp x26, x27, [sp]
add sp, sp, #64
which gets merged by the arm64 load store optimizer into
ldp x26, x25, [sp], #64
The flag is disabled by default.
llvm-svn: 327569
|
|
|
|
|
|
|
| |
Layer implementations typically mutate module state, and this is better
reflected by having layers own the Module they are operating on.
llvm-svn: 327566
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We already emit relocations in this case when the "incremental linker
compatible" flag is set, but it turns out these relocations are also
required for /guard:cf. Now that we have two use cases for this
behavior, let's make it unconditional to try to keep things simple.
We never hit this problem in Clang because it always sets the
"incremental linker compatible" flag when targeting MSVC. However, LLD
LTO doesn't set this flag, so we'd get CFG failures at runtime when
using ThinLTO and /guard:cf. We probably don't want LLD LTO to set the
"incremental linker compatible" assembler flag, since this has nothing
to do with incremental linking, and we don't need to timestamp LTO
temporary objects.
Fixes PR36624.
Reviewers: inglorion, espindola, majnemer
Subscribers: mehdi_amini, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44485
llvm-svn: 327557
|
|
|
|
|
|
|
|
| |
Patch by Ben Clayton
Differential Revision: https://reviews.llvm.org/D44086
llvm-svn: 327551
|
|
|
|
|
|
|
|
|
|
| |
I removed this in r316797 because the coverage report showed no coverage and I thought it should have been handled by the auto generated table. I now see that there is code that bypasses the table if the shift amount is out of bounds.
This adds back the code. We'll codegen out of bounds i8 shifts to effectively (amount & 0x1f). The 0x1f is a strange quirk of x86 that shift amounts are always masked to 5-bits(except 64-bits). So if the masked value is still out bounds the result will be 0.
Fixes PR36731.
llvm-svn: 327540
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Merging:
* $x26, $x25 = frame-setup LDPXi $sp, 0
* $sp = frame-destroy ADDXri $sp, 64, 0
into an LDPXpost should preserve the flags from both instructions as
following:
* frame-setup frame-destroy LDPXpost
Differential Revision: https://reviews.llvm.org/D44446
llvm-svn: 327533
|
|
|
|
|
|
|
|
|
|
|
|
| |
non-demanded bits if it helps created an and mask that can be matched as a zero extend.
I had to modify the bswap recognition to allow unshrunk masks to make this work.
Fixes PR36689.
Differential Revision: https://reviews.llvm.org/D44442
llvm-svn: 327530
|
|
|
|
|
|
|
|
| |
They shouldn't be treated as pure loads.
Found while investigating D44428
llvm-svn: 327524
|
|
|
|
|
|
|
|
| |
This will enable an optimisation in LLD.
Differential Revision: https://reviews.llvm.org/D44343
llvm-svn: 327522
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
swifterror llvm values model the swifterror register as memory at the
LLVM IR level. ISel will perform adhoc mem-to-reg on them. swifterror
values are constraint in how they can be used. Spilling them to memory
is not allowed.
SjLjEHPrepare tried to lower swifterror values to memory which is
unecessary since the back-end will spill and reload the register as
neccessary (as long as clobbering calls are marked as such which is the
case here) and further leads to invalid IR because swifterror values
can't be stored to memory.
rdar://38164004
llvm-svn: 327521
|
|
|
|
|
|
|
|
| |
Reviewed By: igorb
Differential Revision: https://reviews.llvm.org/D44430
llvm-svn: 327520
|
|
|
|
|
|
|
|
|
|
| |
I don't know how to expose this in a test. There are ARM / AArch64
sched classes that include zero latency instructions, but I'm not
seeing sched info printed for those targets. X86 will almost
certainly have these soon (see PR36671), but no model has
'let Latency = 0' currently.
llvm-svn: 327518
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This includes
Instructions: crc32b, crc32h, crc32w, crc32d,
crc32cb, crc32ch, crc32cw, crc32cd
Assembler directives: .set crc, .set nocrc, .module crc, .module nocrc
Attribute: crc
.MIPS.abiflags: CRC (0x8000)
Patch by Vladimir Stefanovic.
Differential Revision: https://reviews.llvm.org/D44176
llvm-svn: 327511
|
|
|
|
|
|
| |
Account for ymm double pumping and add proper pshufb/permutevar support
llvm-svn: 327510
|
|
|
|
|
|
|
|
|
|
| |
instructions
They shouldn't be treated as pure loads.
Found while investigating D44428
llvm-svn: 327505
|
|
|
|
|
|
|
|
|
| |
Support for this relocation is missing in both LLD and GNU binutils
at the moment.
This reverts the ELF parts of SVN r327316.
llvm-svn: 327503
|
|
|
|
| |
llvm-svn: 327502
|
|
|
|
|
|
|
| |
msvc reports an "illegal indirection" error here. Attempt to appease it
with a different initialization syntax.
llvm-svn: 327500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Support G_LSHR/G_ASHR/G_SHL. We have 3 variance for
shift instructions : shift gpr, shift imm, shift 1.
Currently GlobalIsel TableGen generate patterns for
shift imm and shift 1, but with shiftCount i8.
In G_LSHR/G_ASHR/G_SHL like LLVM-IR both arguments
has the same type, so for now only shift i8 can use
auto generated TableGen patterns.
The support of G_SHL/G_ASHR enables tryCombineSExt
from LegalizationArtifactCombiner.h to hit, which
results in different legalization for the following tests:
LLVM :: CodeGen/X86/GlobalISel/ext-x86-64.ll
LLVM :: CodeGen/X86/GlobalISel/gep.ll
LLVM :: CodeGen/X86/GlobalISel/legalize-ext-x86-64.mir
-; X64-NEXT: movsbl %dil, %eax
+; X64-NEXT: movl $24, %ecx
+; X64-NEXT: # kill: def $cl killed $ecx
+; X64-NEXT: shll %cl, %edi
+; X64-NEXT: movl $24, %ecx
+; X64-NEXT: # kill: def $cl killed $ecx
+; X64-NEXT: sarl %cl, %edi
+; X64-NEXT: movl %edi, %eax
..which is not optimal and should be addressed later.
Rework of the patch by igorb
Reviewed By: igorb
Differential Revision: https://reviews.llvm.org/D44395
llvm-svn: 327499
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This could end up inititialized if someone called the function with a
null AsmPrinter. Right now this only happens in DIEHash unit tests,
presumably because it was hard to create an AsmPrinter in the context of
unit tests. This only worked before r327486 because those tests did not
use any dwarf forms whose size actually depended on the dwarf version
(otherwise, they would have crashed due to null dereference).
I fix the uninitialized error, by explicitly initializing FormParams to
an invalid value, which will cause getFixedFormByteSize to return None
if called with a form with version-dependent size. A more principled
solution might be to fix the DIEHash tests to always pass in a valid
AsmPrinter.
llvm-svn: 327498
|
|
|
|
|
|
|
|
|
|
|
| |
These previously all failed one way or another, but now we produce a more
helpful error message.
Change-Id: I8ffd2e87c8e35a5134c3be289e0a1fecaa2bb8ca
Differential revision: https://reviews.llvm.org/D44115
llvm-svn: 327497
|
|
|
|
|
|
|
|
| |
Change-Id: I8e2ece677268972d578a787467f7ef52a1f33a71
Differential revision: https://reviews.llvm.org/D44114
llvm-svn: 327496
|
|
|
|
|
|
|
|
| |
Change-Id: I51bb80fd5c48c8ac441ab11e43d43c1b91b4b590
Differential revision: https://reviews.llvm.org/D44113
llvm-svn: 327495
|
|
|
|
|
|
|
|
|
|
|
| |
Additionally, allow more than two operands to !con, !add, !and, !or
in the same way as is already allowed for !listconcat and !strconcat.
Change-Id: I9659411f554201b90cd8ed7c7e004d381a66fa93
Differential revision: https://reviews.llvm.org/D44112
llvm-svn: 327494
|
|
|
|
|
|
|
|
|
|
| |
This makes using !dag more convenient in some cases.
Change-Id: I0a8c35e15ccd1ecec778fd1c8d64eee38d74517c
Differential revision: https://reviews.llvm.org/D44111
llvm-svn: 327493
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows constructing DAG nodes with programmatically determined
names, and can simplify constructing DAG nodes in other cases as
well.
Also, add documentation and some very simple tests for the already
existing !con.
Change-Id: Ida61cd82e99752548d7109ce8da34d29da56a5f7
Differential revision: https://reviews.llvm.org/D44110
llvm-svn: 327492
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch replaces the two switches which are deducing the size of
various forms with a single implementation. I have put the new
implementation into BinaryFormat, to avoid introducing dependencies
between the two independent libraries (DebugInfo and CodeGen) that need
this functionality.
Reviewers: aprantl, JDevlieghere, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44418
llvm-svn: 327486
|
|
|
|
|
|
|
|
| |
Reviewed By: igorb
Differential Revision: https://reviews.llvm.org/D44378
llvm-svn: 327482
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The old bindings should have used an enum instead of a boolean. This
deprecates LLVMHasUnnamedAddr and LLVMSetUnnamedAddr , replacing them
with LLVMGetUnnamedAddress and LLVMSetUnnamedAddress respectively that do.
Though it is unlikely LLVM will gain more supported global value linker
hints, the new API can scale to accommodate this.
Reviewers: deadalnix, whitequark
Reviewed By: whitequark
Subscribers: llvm-commits, harlanhaskins
Differential Revision: https://reviews.llvm.org/D43448
llvm-svn: 327479
|
|
|
|
|
|
|
| |
This should fix the error at
http://lab.llvm.org:8011/builders/lld-x86_64-darwin13/builds/19008
llvm-svn: 327478
|
|
|
|
|
|
|
|
|
|
|
| |
The Error locals need to be protected by a mutex. (This could be fixed by
having the promises / futures contain Expected and Error values, but
MSVC's future implementation does not support this yet).
Hopefully this will fix some of the errors seen on the builders due to
r327474.
llvm-svn: 327477
|
|
|
|
|
|
|
|
|
|
| |
This can be used to extract the symbol table from a RuntimeDyld instance prior
to disposing of it.
This patch also updates RTDyldObjectLinkingLayer to use the new method, rather
than requesting symbols one at a time via getSymbol.
llvm-svn: 327476
|
|
|
|
|
|
|
| |
This should fix the builder error at
http://lab.llvm.org:8011/builders/lld-x86_64-darwin13/builds/19006
llvm-svn: 327475
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The lookup function takes a list of VSOs, a set of symbol names (or just one
symbol name) and a materialization function object. It returns an
Expected<SymbolMap> (if given a set of names) or an Expected<JITEvaluatedSymbol>
(if given just one name). The lookup method constructs an
AsynchronousSymbolQuery for the given names, applies that query to each VSO in
the list in turn, and then blocks waiting for the query to complete. If
threading is enabled then the materialization function object can be used to
execute the materialization on different threads. If threading is disabled the
MaterializeOnCurrentThread utility must be used.
llvm-svn: 327474
|
|
|
|
| |
llvm-svn: 327467
|
|
|
|
|
|
|
|
| |
path for insert_subvector handling.
We now only create recursive concats if we have more than two non-zero values. This keeps our subvector broadcast DAG combine functioning.
llvm-svn: 327457
|
|
|
|
|
|
|
|
|
|
| |
This better able to detect undef and zeros pieces in the concat. Or cases when only one subvector is non-zero. This allows us to avoid silly things like double inserts into progressively larger undefs.
This still builds 512 bit concats of 128 bits by building up through 256 bits first. But I don't know if that's best.
We probably want to merge this with the vXi1 concat code since they are very similar.
llvm-svn: 327454
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
For example,
((X & 255) != 0) && ((X & 15) == 8) -> ((X & 15) == 8).
((X & 7) != 0) && ((X & 15) == 8) -> false.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43835
llvm-svn: 327450
|
|
|
|
|
|
|
|
| |
between LegalizeVectorOps and LegalizeDAG.
BUILD_VECTORs aren't themselves legalized until LegalizeDAG so we should still be able to create an "illegal" one before that. This helps combine with BUILD_VECTORS that are introduced during LegalizeVectorOps due to unrolling.
llvm-svn: 327446
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nothing prevents us from having both frame-setup and frame-destroy on
the same instruction.
When merging:
* frame-setup OPCODE1
* frame-destroy OPCODE2
into
* frame-setup frame-destroy OPCODE3
we want to be able to print and parse both flags.
llvm-svn: 327442
|
|
|
|
| |
llvm-svn: 327436
|
|
|
|
| |
llvm-svn: 327433
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It is possible for LVI to encounter instructions that are not in valid
SSA form and reference themselves. One example is the following:
%tmp4 = and i1 %tmp4, undef
Before this patch LVI would recurse until running out of stack memory
and crashed. This patch marks these self-referential instructions as
Overdefined and aborts analysis on the instruction.
Fixes https://bugs.llvm.org/show_bug.cgi?id=33357
Reviewers: craig.topper, anna, efriedma, dberlin, sebpop, kuhar
Reviewed by: dberlin
Subscribers: uabelho, spatel, a.elovikov, fhahn, eli.friedman, mzolotukhin, spop, evandro, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34135
llvm-svn: 327432
|
|
|
|
|
|
|
|
| |
Make sure that DWARF line information generated by Windows can be properly read by Posix OS and vice versa.
Differential Revision: https://reviews.llvm.org/D44290
llvm-svn: 327430
|
|
|
|
| |
llvm-svn: 327429
|