| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
| |
-only-needed -- link in only symbols needed by destination module
-internalize -- internalize linked symbols
Differential Revision: http://reviews.llvm.org/D12459
llvm-svn: 246561
|
| |
|
|
|
|
|
|
|
|
| |
This matches the ARM behavior. In both cases, the register is part
of the optional Performance Monitors extension, so, add the feature,
and enable it for the A-class processors we support.
Differential Revision: http://reviews.llvm.org/D12425
llvm-svn: 246555
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are occasions where it is useful to consider the entirety of the
contents of a section. For example, compressed debug info needs the
entire section available before it can compress it and write it out.
The compressed debug info scenario was previously implemented by
mirroring the implementation of writeSectionData in the ELFObjectWriter.
Instead, allow the output stream to be swapped on demand. This lets
callers redirect the output stream to a more convenient location before
it hits the object file.
No functionality change is intended.
Differential Revision: http://reviews.llvm.org/D12509
llvm-svn: 246554
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D12526
llvm-svn: 246551
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change turns on by default interleaved access vectorization
for AArch64.
We also clean up some tests which were spedifically enabling this
behaviour.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12149
llvm-svn: 246542
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change turns on by default interleaved access vectorization on ARM,
as it has shown to be beneficial on ARM.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12146
llvm-svn: 246541
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Interleaved access lowering removes a memory operation and a
sequence of vector shuffles and replaces it with a series of
memory operations. This should be always beneficial.
This pass in only enabled on ARM/AArch64.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12145
llvm-svn: 246540
|
| |
|
|
| |
llvm-svn: 246538
|
| |
|
|
|
|
|
| |
These are already added during the MachineInstr construction,
so this was adding the implicit registers twice.
llvm-svn: 246525
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
generated in lowering switch.
Currently, when edge weights are assigned to edges that are created when lowering switch statement, the weight on the edge to default statement (let's call it "default weight" here) is not considered. We need to distribute this weight properly. However, without value profiling, we have no idea how to distribute it. In this patch, I applied the heuristic that this weight is evenly distributed to successors.
For example, given a switch statement with cases 1,2,3,5,10,11,20, and every edge from switch to each successor has weight 10. If there is a binary search tree built to test if n < 10, then its two out-edges will have weight 4x10+10/2 = 45 and 3x10 + 10/2 = 35 respectively (currently they are 40 and 30 without considering the default weight). Each distribution (which is 5 here) will be stored in each SwitchWorkListItem for further distribution.
There are some exceptions:
For a jump table header which doesn't have any edge to default statement, we don't distribute the default weight to it.
For a bit test header which covers a contiguous range and hence has no edges to default statement, we don't distribute the default weight to it.
When the branch checks a single value or a contiguous range with no edge to default statement, we don't distribute the default weight to it.
In other cases, the default weight is evenly distributed to successors.
Differential Revision: http://reviews.llvm.org/D12418
llvm-svn: 246522
|
| |
|
|
|
|
|
|
| |
Follow LLVM style for the parameter names (`CamelCase` not `camelCase`),
and surface the header docs in doxygen. No functionality change
intended.
llvm-svn: 246509
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SETCC is one of those special node types for which operation actions (legality,
etc.) is keyed off of an operand type, not the node's value type. This makes
sense because the value type of a legal SETCC node is determined by its
operands' value type (via the TLI function getSetCCResultType). When the
SDAGBuilder creates SETCC nodes, it either creates them with an MVT::i1 value
type, or directly with the value type provided by TLI.getSetCCResultType.
The first problem being fixed here is that DAGCombine had several places
querying TLI.isOperationLegal on SETCC, but providing the return of
getSetCCResultType, instead of the operand type directly. This does not mean
what the author thought, and "luckily", most in-tree targets have SETCC with
Custom lowering, instead of marking them Legal, so these checks return false
anyway.
The second problem being fixed here is that two of the DAGCombines could create
SETCC nodes with arbitrary (integer) value types; specifically, those that
would simplify:
(setcc a, b, op1) and|or (setcc a, b, op2) -> setcc a, b, op3
(which is possible for some combinations of (op1, op2))
If the operands of the and|or node are actual setcc nodes, then this is not an
issue (because the and|or must share the same type), but, the relevant code in
DAGCombiner::visitANDLike and DAGCombiner::visitORLike actually calls
DAGCombiner::isSetCCEquivalent on each operand, and that function will
recognise setcc-like select_cc nodes with other return types. And, thus, when
creating new SETCC nodes, we need to be careful to respect the value-type
constraint. This is even true before type legalization, because it is quite
possible for the SELECT_CC node to have a legal type that does not happen to
match the corresponding TLI.getSetCCResultType type.
To be explicit, there is nothing that later fixes the value types of SETCC
nodes (if the type is legal, but does not happen to match
TLI.getSetCCResultType). Creating SETCCs with an MVT::i1 value type seems to
work only because, either MVT::i1 is not legal, or it is what
TLI.getSetCCResultType returns if it is legal. Fixing that is a larger change,
however. For the time being, restrict the relevant transformations to produce
only SETCC nodes with a value type matching TLI.getSetCCResultType (or MVT::i1
prior to type legalization).
Fixes PR24636.
llvm-svn: 246507
|
| |
|
|
|
|
| |
Added benefit: the 'if' logic now matches the text of the comment that describes it.
llvm-svn: 246506
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hopefully this will end the GEPs saga!
This commit reverts r245394, i.e., it reapplies r221876 while incorporating the
fixes from D11847.
r221876 was not reapplied alone because it was not safe and D11847 was not
applied alone because it needs r221876 to produce correct results.
This should fix PR24596.
Original commit message for r221876:
Let's try this again...
This reverts r219432, plus a bug fix.
Description of the bug in r219432 (by Nick):
The bug was using AllPositive to break out of the loop; if the loop break
condition i != e is changed to i != e && AllPositive then the
test_modulo_analysis_with_global test I've added will fail as the Modulo will
be calculated incorrectly (as the last loop iteration is skipped, so Modulo
isn't updated with its Scale).
Nick also adds this comment:
ComputeSignBit is safe to use in loops as it takes into account phi nodes, and
the == EK_ZeroEx check is safe in loops as, no matter how the variable changes
between iterations, zero-extensions will always guarantee a zero sign bit. The
isValueEqualInPotentialCycles check is therefore definitely not needed as all
the variable analysis holds no matter how the variables change between loop
iterations.
And this patch also adds another enhancement to GetLinearExpression - basically
to convert ConstantInts to Offsets (see test_const_eval and
test_const_eval_scaled for the situations this improves).
Original commit message:
This reverts r218944, which reverted r218714, plus a bug fix.
Description of the bug in r218714 (by Nick):
The original patch forgot to check if the Scale in VariableGEPIndex flipped the
sign of the variable. The BasicAA pass iterates over the instructions in the
order they appear in the function, and so BasicAliasAnalysis::aliasGEP is
called with the variable it first comes across as parameter GEP1. Adding a
%reorder label puts the definition of %a after %b so aliasGEP is called with %b
as the first parameter and %a as the second. aliasGEP later calculates that %a
== %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first
parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) -
ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly
conclude that %a > %b.
Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug.
Slightly modified by me to add an early exit from the loop and avoid
unnecessary, but expensive, function calls.
Original commit message:
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
Message from D11847:
Un-revert of r241981 and fix for PR23626. The 'Or' case of GetLinearExpression
delegates to 'Add' if possible, and if not it returns an Opaque value.
Unfortunately the Scale and Offsets weren't being set (and so defaulted to 0) -
and a scale of zero effectively removes the variable from the GEP instruction.
This meant that BasicAA would return MustAliases when it should have been
returning PartialAliases (and PR23626 was an example of the GVN pass using an
incorrect MustAlias to merge loads from what should have been different
pointers).
Differential Revision: http://reviews.llvm.org/D11847
Patch by Nick White <n.j.white@gmail.com>!
llvm-svn: 246502
|
| |
|
|
|
|
|
|
|
| |
Summary: This handles all load/store operations that WebAssembly defines, and handles those necessary for C++ such as i1. I left a FIXME for outstanding features which aren't required for now.
Reviewers: sunfish
Subscribers: jfb, llvm-commits, dschuff
llvm-svn: 246500
|
| |
|
|
|
|
|
|
|
|
| |
(NFCI)
This was part of D7208 (r227242), but that commit was reverted because it exposed
a bug in AArch64 lowering. I should have that fixed and the rest of the commit
reinstated soon.
llvm-svn: 246493
|
| |
|
|
| |
llvm-svn: 246489
|
| |
|
|
| |
llvm-svn: 246486
|
| |
|
|
|
|
|
|
|
|
|
| |
This would have suppressed bug 24578, about use-after-
destroy on User and MDNode. Rolled back suppression for
the sake of code cleanliness, in preferance for bug
tracking to keep track of this issue.
This reverts commit 6ff2baabc4625d5b0a8dccf76aa0f72d930ea6c0.
llvm-svn: 246484
|
| |
|
|
|
|
|
| |
DAGCombine has a utility wrapper around TLI's getSetCCResultType; use it in the
one place in DAGCombine still directly calling the TLI function. NFC.
llvm-svn: 246482
|
| |
|
|
| |
llvm-svn: 246481
|
| |
|
|
|
|
|
|
|
| |
Also delete and simplify a lot of MachineModuleInfo code that used to be
needed to handle personalities on landingpads. Now that the personality
is on the LLVM Function, we no longer need to track it this way on MMI.
Certainly it should not live on LandingPadInfo.
llvm-svn: 246478
|
| |
|
|
|
|
|
|
| |
Teach FunctionAttr to infer the nonnull attribute on return values of functions which never return a potentially null value. This is done both via a conservative local analysis for the function itself and a optimistic per-SCC analysis. If no function in the SCC returns anything which could be null (other than values from other functions in the SCC), we can conclude no function returned a null pointer. Even if some function within the SCC returns a null pointer, we may be able to locally conclude that some don't.
Differential Revision: http://reviews.llvm.org/D9688
llvm-svn: 246476
|
| |
|
|
|
|
|
|
| |
exposing it.
rdar://problem/22491525
llvm-svn: 246472
|
| |
|
|
|
|
|
|
| |
Modify msan macros for applying attribute""
This reverts commit 020e70a79878c96457e6882bcdfaf6628baf32b7.
llvm-svn: 246470
|
| |
|
|
|
|
|
|
|
|
| |
This code was dead when it was committed in r23665 (Oct 7, 2005), and before it
reaches its 10th anniversary, it really should go. We can always bring it back
if we'd like, but it forms more SETCC nodes, and the way we do legality
checking on SETCC nodes is wrong in a number of places, and removing this means
fewer places to fix. NFC.
llvm-svn: 246466
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If asked to prove a predicate about a value produced by a PHI node, LazyValueInfo was unable to do so even if the predicate was known to be true for each input to the PHI. This prevented JumpThreading from eliminating a provably redundant branch.
The problematic test case looks something like this:
ListNode *p = ...;
while (p != null) {
if (!p) return;
x = g->x; // unrelated
p = p->next
}
The null check at the top of the loop is redundant since the value of 'p' is null checked on entry to the loop and before executing the backedge. This resulted in us a) executing an extra null check per iteration and b) not being able to LICM unrelated loads after the check since we couldn't prove they would execute or that their dereferenceability wasn't effected by the null check on the first iteration.
Differential Revision: http://reviews.llvm.org/D12383
llvm-svn: 246465
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on comments from Hal
(http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20150810/292978.html),
I've changed the interface to add a callback mechanism to the
TargetFrameLowering class to query whether the specific target
supports shrink wrapping. By default, shrink wrapping is disabled by
default. Each target can override the default behaviour using the
TargetFrameLowering::targetSupportsShrinkWrapping() method. Shrink
wrapping can still be explicitly enabled or disabled from the command
line, using the existing -enable-shrink-wrap=<true|false> option.
Phabricator: http://reviews.llvm.org/D12293
llvm-svn: 246463
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
The ISelLowering code turned insertion turned the element for the
lowest lane of a BUILD_VECTOR into an INSERT_SUBREG, this prohibited
the patterns for SCALAR_TO_VECTOR(Load) to match later. Restrict this
to cases without a load argument.
Reported in rdar://22223823
Differential Revision: http://reviews.llvm.org/D12467
llvm-svn: 246462
|
| |
|
|
|
|
|
|
|
| |
X86FastISel has been using the wrong register class for VBLENDVPS which
produces a VR128 and needs an extra copy to the target register. The
problem was already hit by the existing test cases when using
> llvm-lit -Dllc="llc -verify-machineinstr"
llvm-svn: 246461
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Constant vectors weren't allowed to have an i1 condition in the
BitcodeReader. Make sure we have the same restrictions that are
documented, not more.
Reviewers: nlewycky, rafael, kschimpf
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12440
llvm-svn: 246459
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Avoid marking some MCSymbols as used in MC/AsmParser.cpp when no uses
exist. This fixes a bug in parseAssignmentExpression() which
inadvertently sets IsUsed, thereby triggering:
"invalid re-assignment of non-absolute variable"
on otherwise valid code. No other functionality change intended.
The original version of this patch touched many calls to MCSymbol
accessors. On rafael's advice, I have stripped this patch down a bit.
As a follow-up, I intend to find the call sites which intentionally set
IsUsed and force them to do so explicitly.
Differential Revision: http://reviews.llvm.org/D12347
llvm-svn: 246457
|
| |
|
|
| |
llvm-svn: 246451
|
| |
|
|
|
|
|
|
| |
attribute"
This reverts commit 5e3bfbb38eb3fb6f568b107f6b239e0aa4c5f334.
llvm-svn: 246450
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to repress sanitization. Move attribute for repressing sanitization to
operator delete for User, MDNode.
Summary: In response to bug 24578, reported against failing LLVM test.
Reviewers: chandlerc, rsmith, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12335
llvm-svn: 246449
|
| |
|
|
| |
llvm-svn: 246440
|
| |
|
|
|
|
|
|
| |
Added tests for encoding.
Differential Revision: http://reviews.llvm.org/D11979
llvm-svn: 246439
|
| |
|
|
|
|
|
|
| |
Added tests for intrinsics and encoding.
Differential Revision: http://reviews.llvm.org/D12491
llvm-svn: 246436
|
| |
|
|
|
|
|
|
| |
Added tests for encoding.
Differential Revision: http://reviews.llvm.org/D11973
llvm-svn: 246432
|
| |
|
|
|
|
|
|
| |
Added tests for intrinsics and encoding.
Differential Revision: http://reviews.llvm.org/D12270
llvm-svn: 246428
|
| |
|
|
|
|
|
|
|
| |
AggressiveAntiDepBreaker was doing some EarlyClobber checking, but was not
checking that the register being potentially renamed was defined by an
early-clobber def where there was also a use, in that instruction, of the
register being considered as the target of the rename. Fixes PR24014.
llvm-svn: 246423
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
JumpThreading shouldn't duplicate a convergent call, because that would move a convergent call into a control-inequivalent location. For example,
if (cond) {
...
} else {
...
}
convergent_call();
if (cond) {
...
} else {
...
}
should not be optimized to
if (cond) {
...
convergent_call();
...
} else {
...
convergent_call();
...
}
Test Plan: test/Transforms/JumpThreading/basic.ll
Patch by Xuetian Weng.
Reviewers: resistor, arsenm, jingyue
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12484
llvm-svn: 246415
|
| |
|
|
|
|
|
|
| |
Specifically, the header now provides llvm::thread, which is either a
typedef of std::thread or a replacement that calls the function synchronously
depending on the value of LLVM_ENABLE_THREADS.
llvm-svn: 246402
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were really two problems here. The first was that we had the truth tables
for signed i1 comparisons backward. I imagine these are not very common, but if
you have:
setcc i1 x, y, LT
this has the '0 1' and the '1 0' results flipped compared to:
setcc i1 x, y, ULT
because, in the signed case, '1 0' is really '-1 0', and the answer is not the
same as in the unsigned case.
The second problem was that we did not have patterns (at all) for the unsigned
comparisons select_cc nodes for i1 comparison operands. This was the specific
cause of PR24552. These had to be added (and a missing Altivec promotion added
as well) to make sure these function for all types. I've added a bunch more
test cases for these patterns, and there are a few FIXMEs in the test case
regarding code-quality.
Fixes PR24552.
llvm-svn: 246400
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D12478
llvm-svn: 246381
|
| |
|
|
|
|
|
|
|
| |
*getSplatValue(Value *Val);""
This reverts commit r246379. It seems that the commit was not the culprit,
and the bot will be investigated for instability.
llvm-svn: 246380
|
| |
|
|
|
|
|
|
|
|
| |
*getSplatValue(Value *Val);"
This reverts commit r246371, as it cause a rather obscure bug in AArch64
test-suite paq8p (time outs, seg-faults). I'll investigate it before
reapplying.
llvm-svn: 246379
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
architecture string is something quite weird. Similarly delay calling
the BPF parsing code, although that is more reasonable.
To understand why I was motivated to make this change, it cuts the time
for running the ADT TripleTest unittests by a factor of two in
non-optimized builds (the developer default) and reduces my 'check-llvm'
time by a full 15 seconds. The implementation of parseARMArch is *that*
slow. I tried to fix it in the prior series of commits, but frankly,
I have no idea how to finish fixing it. The entire premise of the
function (to allow 'v7a-unknown-linux' or some such to parse as an
'arm-unknown-linux' triple) seems completely insane to me, but I'll let
the ARM folks sort that out. At least it is now out of the critical path
of every developer working on LLVM. It also will likely make some other
folks' code significantly faster as I've heard reports of 2% of time
spent in triple parsing even in optimized builds!
I'm not done making this code faster, but I am done trying to improve
the ARM target parsing code.
llvm-svn: 246378
|
| |
|
|
|
|
| |
expanding the .def file within a StringSwitch.
llvm-svn: 246377
|
| |
|
|
|
|
|
|
|
| |
getSerializable*MachineOperandTargetFlags
Make the arrays 'static const' instead of just 'static'. Post-commit review
comment from Roman Divacky on IRC. NFC.
llvm-svn: 246376
|