| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: qcolombet, aditya_nandakumar, dsanders, ab, t.p.northover, javed.absar
Reviewed By: qcolombet
Subscribers: dberris, rovka, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30761
llvm-svn: 297495
|
| |
|
|
|
|
| |
it to be called
llvm-svn: 297494
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This reverts r293386, r294027, r294029 and r296411.
Turns out the SLP tree isn't actually a "tree" and we don't handle
accessing the same packet of loads in several different orders well,
causing miscompiles.
Revert until we can fix this properly.
llvm-svn: 297493
|
| |
|
|
| |
llvm-svn: 297492
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We don’t actually use LegalizerInfo in Legalizer pass, it’s just passed
as an argument.
In order to check if an instruction is legal or not, we need to get LegalizerInfo
by calling `MI.getParent()->getParent()->getSubtarget().getLegalizerInfo()`.
Instead, make LegalizerInfo accessible in LegalizerHelper.
Reviewers: qcolombet, aditya_nandakumar, dsanders, ab, t.p.northover, kristof.beyls
Reviewed By: qcolombet
Subscribers: dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D30838
llvm-svn: 297491
|
| |
|
|
|
|
|
|
|
|
|
| |
In openFileForRead, we would not previously return an error
if real_path resolution failed. After a recent patch, we
started propagating this error up. This caused a failure
in clang when trying to call openFileForRead("nul"). This
patch restores the previous behavior of not propagating this
error up.
llvm-svn: 297488
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM already has real_path like functionality, but it is
cumbersome to use and involves clean up after (e.g. you have
to call openFileForRead, then close the resulting FD).
Furthermore, on Windows it doesn't work for directories since
opening a directory and opening a file require slightly
different flags.
So I add a simple function `real_path` which works for all
paths on all platforms and has a simple to use interface.
In doing so, I add the ability to opt in to resolving tilde
expressions (e.g. ~/foo), which are normally handled by
the shell.
Differential Revision: https://reviews.llvm.org/D30668
llvm-svn: 297483
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and SUBC.
Summary:
Depends on D30379
This improves the state of things for the sub class of operation.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30436
llvm-svn: 297482
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: As per title. This is extracted from D29872 and I threw SADDO in.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30379
llvm-svn: 297479
|
| |
|
|
|
|
|
|
|
|
|
|
| |
We currently have to insert bits via a temporary variable of the same size as the target with various shift/mask stages, resulting in further temporary variables, all of which require the allocation of memory for large APInts (MaskSizeInBits > 64).
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::insertBits() helper method which avoids the temporary memory allocation and masks/inserts the raw bits directly into the target.
Differential Revision: https://reviews.llvm.org/D30780
llvm-svn: 297458
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patches teaches the MIPS backend to accept more values for constant
splats. Previously, only 10 bit signed immediates or values that could be
loaded using an ldi.[bhwd] instruction would be acceptted. This patch relaxes
that constraint so that any constant value that be splatted is accepted.
As a result, the constant pool is used less for vector operations, and the
suite of bit manipulation instructions b(clr|set|neg)i can now be used with
the full range of their immediate operand.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30640
llvm-svn: 297457
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
(defined in ARMInstrInfo.td)
Reviewers: grosbach, rengolin, jmolloy
Reviewed By: jmolloy
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D30782
llvm-svn: 297456
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is a continuation of D28861. Add an SMLoc to MCUnaryExpr such that
a better diagnostic can be given in case of an error in later stages of
assembling.
Reviewers: rengolin, grosbach, javed.absar, olista01
Reviewed By: olista01
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30581
llvm-svn: 297454
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARMISD::ADD[CE] nodes, instead of the generic ISD::ADD[CE].
Summary:
This allows for some simplification because the combines
are no longer limited to just one go at the node before
it gets legalized into an ARM target-specific one.
Reviewers: jmolloy, rogfer01
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30401
llvm-svn: 297453
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It was introduced in:
r296945
WholeProgramDevirt: Implement exporting for single-impl devirtualization.
---------------------
r296939
WholeProgramDevirt: Add any unsuccessful llvm.type.checked.load devirtualizations to the list of llvm.type.test users.
---------------------
Microsoft Visual Studio Community 2015
Version 14.0.23107.0 D14REL
Does not compile that code without additional brackets, showing multiple error like below:
WholeProgramDevirt.cpp(1216): error C2958: the left bracket '[' found at 'c:\access_softek\llvm\lib\transforms\ipo\wholeprogramdevirt.cpp(1216)' was not matched correctly
WholeProgramDevirt.cpp(1216): error C2143: syntax error: missing ']' before '}'
WholeProgramDevirt.cpp(1216): error C2143: syntax error: missing ';' before '}'
WholeProgramDevirt.cpp(1216): error C2059: syntax error: ']'
llvm-svn: 297451
|
| |
|
|
|
|
|
|
|
|
|
|
| |
All MIPS .debug_* sections should be marked with ELF type SHT_MIPS_DWARF
accordingly the specification [1]. Also the same section type is assigned
to these sections by GNU tools.
[1] ftp.software.ibm.com/software/os390/czos/dwarf/mips_extensions.pdf
Differential Revision: https://reviews.llvm.org/D29789
llvm-svn: 297447
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GAS supports specification of section header's type using a numeric
value [1]. This patch brings the same functionality to LLVM. That allows
to setup some target-specific section types belong to the SHT_LOPROC -
SHT_HIPROC range. If we attempt to print unknown section type, MCSectionELF
class shows an error message. It's better than print sole '@' sign
without any section type name.
In case of MIPS, example of such section's type is SHT_MIPS_DWARF.
Without the patch we will have to implement some workarounds
in probably not-MIPS-specific part of code base to convert SHT_MIPS_DWARF
to the @progbits while printing assembly and to assign SHT_MIPS_DWARF for
@progbits sections named .debug_* if we encounter such section in
an input assembly.
[1] https://sourceware.org/binutils/docs/as/Section.html
Differential Revision: https://reviews.llvm.org/D29719
llvm-svn: 297446
|
| |
|
|
|
|
|
|
|
|
|
|
| |
same as already done for ARM and Thumb2.
Reviewers: jmolloy, rogfer01, efriedma
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30400
llvm-svn: 297443
|
| |
|
|
| |
llvm-svn: 297442
|
| |
|
|
|
|
|
| |
The insertion point may be later than the next instruction,
so it is necessary to set it when replacing the call.
llvm-svn: 297439
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shared between GVN and NewGVN.
Summary:
These are the functions used to determine when values of loads can be
extracted from stores, etc, and to perform the necessary insertions to
do this. There are no changes to the functions themselves except
reformatting, and one case where memdep was informed of a removed load
(which was pushed into the caller).
Reviewers: davide
Subscribers: mgorny, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30478
llvm-svn: 297438
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: We should not use that to check basic block hotness as optimization may mess it up.
Reviewers: eraman
Reviewed By: eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30800
llvm-svn: 297437
|
| |
|
|
| |
llvm-svn: 297428
|
| |
|
|
| |
llvm-svn: 297427
|
| |
|
|
|
|
| |
ImmutableCallSite abstracts away CallInst and InvokeInst. Use it!
llvm-svn: 297426
|
| |
|
|
|
|
|
|
| |
We unintentionally stopped falling back in r293670.
While there, change an unusual construct.
llvm-svn: 297425
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Similar to SmallPtrSet, this makes find and count work with both const
referneces and const pointers.
Reviewers: dblaikie
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D30713
llvm-svn: 297424
|
| |
|
|
|
|
| |
They're used for nefarious purposes by ObjC.
llvm-svn: 297422
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D30598
llvm-svn: 297421
|
| |
|
|
| |
llvm-svn: 297420
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: This essentially does the same transform as for ADC.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30417
llvm-svn: 297416
|
| |
|
|
|
|
|
|
| |
- Fix the insertion point, which occasionally could have been incorrect.
- Avoid creating multiple bitsplits with the same operands, if an old one
could be reused.
llvm-svn: 297414
|
| |
|
|
|
|
|
| |
Amongst other things (I expect) this is necessary to ensure decent backtraces
when an "unreachable" is involved.
llvm-svn: 297413
|
| |
|
|
| |
llvm-svn: 297411
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The good reason to do this is that static allocas are pretty simple to handle
(especially at -O0) and avoiding tracking DBG_VALUEs throughout the pipeline
should give some kind of performance benefit.
The bad reason is that the debug pipeline is an unholy mess of implicit
contracts, where determining whether "DBG_VALUE %reg, imm" actually implies a
load or not involves the services of at least 3 soothsayers and the sacrifice
of at least one chicken. And it still gets it wrong if the variable is at SP
directly.
llvm-svn: 297410
|
| |
|
|
|
|
|
|
| |
Follow-up for:
https://reviews.llvm.org/D30665
https://reviews.llvm.org/rL297390
llvm-svn: 297409
|
| |
|
|
| |
llvm-svn: 297408
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: This essentially does the same transform as for SUBC.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30437
llvm-svn: 297404
|
| |
|
|
|
|
| |
Extract individual transformations into their own functions.
llvm-svn: 297401
|
| |
|
|
| |
llvm-svn: 297400
|
| |
|
|
| |
llvm-svn: 297393
|
| |
|
|
|
|
|
| |
(op ... (zext i1 c) ...) -> (select c (op ... 1 ...),
(op ... 0 ...))
llvm-svn: 297391
|
| |
|
|
|
|
|
|
|
|
|
| |
This was suggested as a DAG simplification in the review for rL297026 :
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20170306/435253.html
...but let's start with IR since we have actual docs for IR (LangRef).
Differential Revision:
https://reviews.llvm.org/D30665
llvm-svn: 297390
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in the review thread for rL297026, this is actually 2 changes that
would independently fix all of the test cases in the patch:
1. Return undef in FoldConstantArithmetic for div/rem by 0.
2. Move basic undef simplifications for div/rem (simplifyDivRem()) before
foldBinopIntoSelect() as a matter of efficiency.
I will handle the case of vectors with any zero element as a follow-up. That change
is the DAG sibling for D30665 + adding a check of vector elements to FoldConstantVectorArithmetic().
I'm deleting the test for PR30693 because it does not test for the actual bug any more
(dangers of using bugpoint).
Differential Revision:
https://reviews.llvm.org/D30741
llvm-svn: 297384
|
| |
|
|
|
|
|
|
| |
(PR32037).
If the constants are already the correct size, we can copy them directly into the shuffle mask.
llvm-svn: 297381
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fix introduces segfaults and clobbers the value to be stored when
the atomic sequence loops.
Revert "[Target/MIPS] Kill dead code, no functional change intended."
This reverts commit r296153.
Revert "Recommit "[mips] Fix atomic compare and swap at O0.""
This reverts commit r296134.
llvm-svn: 297380
|
| |
|
|
| |
llvm-svn: 297379
|
| |
|
|
| |
llvm-svn: 297378
|
| |
|
|
|
|
|
|
|
| |
Minor cleanup in ARMInstrVFP.td: removed some FIXMEs and added a MC test for
vcmp that was actually missing.
Differential Revision: https://reviews.llvm.org/D30745
llvm-svn: 297376
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
entire SCC before iterating on newly-introduced call edges resulting
from any inlined function bodies.
This more closely matches the behavior of the old PM's inliner. While it
wasn't really clear to me initially, this behavior is actually essential
to the inliner behaving reasonably in its current design.
Because the inliner is fundamentally a bottom-up inliner and all of its
cost modeling is designed around that it often runs into trouble within
an SCC where we don't have any meaningful bottom-up ordering to use. In
addition to potentially cyclic, infinite inlining that we block with the
inline history mechanism, it can also take seemingly simple call graph
patterns within an SCC and turn them into *insanely* large functions by
accidentally working top-down across the SCC without any of the
threshold limitations that traditional top-down inliners use.
Consider this diabolical monster.cpp file that Richard Smith came up
with to help demonstrate this issue:
```
template <int N> extern const char *str;
void g(const char *);
template <bool K, int N> void f(bool *B, bool *E) {
if (K)
g(str<N>);
if (B == E)
return;
if (*B)
f<true, N + 1>(B + 1, E);
else
f<false, N + 1>(B + 1, E);
}
template <> void f<false, MAX>(bool *B, bool *E) { return f<false, 0>(B, E); }
template <> void f<true, MAX>(bool *B, bool *E) { return f<true, 0>(B, E); }
extern bool *arr, *end;
void test() { f<false, 0>(arr, end); }
```
When compiled with '-DMAX=N' for various values of N, this will create an SCC
with a reasonably large number of functions. Previously, the inliner would try
to exhaust the inlining candidates in a single function before moving on. This,
unfortunately, turns it into a top-down inliner within the SCC. Because our
thresholds were never built for that, we will incrementally decide that it is
always worth inlining and proceed to flatten the entire SCC into that one
function.
What's worse, we'll then proceed to the next function, and do the exact same
thing except we'll skip the first function, and so on. And at each step, we'll
also make some of the constant factors larger, which is awesome.
The fix in this patch is the obvious one which makes the new PM's inliner use
the same technique used by the old PM: consider all the call edges across the
entire SCC before beginning to process call edges introduced by inlining. The
result of this is essentially to distribute the inlining across the SCC so that
every function incrementally grows toward the inline thresholds rather than
allowing the inliner to grow one of the functions vastly beyond the threshold.
The code for this is a bit awkward, but it works out OK.
We could consider in the future doing something more powerful here such as
prioritized order (via lowest cost and/or profile info) and/or a code-growth
budget per SCC. However, both of those would require really substantial work
both to design the system in a way that wouldn't break really useful
abstraction decomposition properties of the current inliner and to be tuned
across a reasonably diverse set of code and workloads. It also seems really
risky in many ways. I have only found a single real-world file that triggers
the bad behavior here and it is generated code that has a pretty pathological
pattern. I'm not worried about the inliner not doing an *awesome* job here as
long as it does *ok*. On the other hand, the cases that will be tricky to get
right in a prioritized scheme with a budget will be more common and idiomatic
for at least some frontends (C++ and Rust at least). So while these approaches
are still really interesting, I'm not in a huge rush to go after them. Staying
even closer to the existing PM's behavior, especially when this easy to do,
seems like the right short to medium term approach.
I don't really have a test case that makes sense yet... I'll try to find a
variant of the IR produced by the monster template metaprogram that is both
small enough to be sane and large enough to clearly show when we get this wrong
in the future. But I'm not confident this exists. And the behavior change here
*should* be unobservable without snooping on debug logging. So there isn't
really much to test.
The test case updates come from two incidental changes:
1) We now visit functions in an SCC in the opposite order. I don't think there
really is a "right" order here, so I just update the test cases.
2) We no longer compute some analyses when an SCC has no call instructions that
we consider for inlining.
llvm-svn: 297374
|