summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Transforms/ObjCARC/ObjCARC.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* Remove redundant includes from lib/Transforms.Michael Zolotukhin2017-12-131-1/+0
| | | | llvm-svn: 320628
* [NFC] Header cleanupMehdi Amini2016-04-181-1/+0
| | | | | | | | | | | | | | Removed some unused headers, replaced some headers with forward class declarations. Found using simple scripts like this one: clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap' Patch by Eugene Kosov <claprix@yandex.ru> Differential Revision: http://reviews.llvm.org/D19219 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 266595
* [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatibleChandler Carruth2015-09-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
* [ARC] Pull the ObjC ARC components that really serve the role ofChandler Carruth2015-08-201-8/+0
| | | | | | | | | | | | | | analyses into LLVM's Analysis library rather than having them in a Transforms library. This is motivated by the need to have the core AliasAnalysis infrastructure be aware of the ObjCARCAliasAnalysis. However, it also seems like a nice and clean separation. Everything was very easy to move and this doesn't create much clutter in the analysis library IMO. Differential Revision: http://reviews.llvm.org/D12133 llvm-svn: 245541
* Add back r222061 with a fix.Rafael Espindola2014-11-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | This adds back r222061, but now calls initializePAEvalPass from the correct library to avoid link problems. Original message: Don't make assumptions about the name of private global variables. Private variables are can be renamed, so it is not reliable to make decisions on the name. The name is also dropped by the assembler before getting to the linker, so using the name causes a disconnect between how llvm makes a decision (var name) and how the linker makes a decision (section it is in). This patch changes one case where we were looking at the variable name to use the section instead. Test tuning by Michael Gottesman. llvm-svn: 222117
* This patch breaks up Wrap.h so that it does not have to include all of Filip Pizlo2013-05-011-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | the things, and renames it to CBindingWrapping.h. I also moved CBindingWrapping.h into Support/. This new file just contains the macros for defining different wrap/unwrap methods. The calls to those macros, as well as any custom wrap/unwrap definitions (like for array of Values for example), are put into corresponding C++ headers. Doing this required some #include surgery, since some .cpp files relied on the fact that including Wrap.h implicitly caused the inclusion of a bunch of other things. This also now means that the C++ headers will include their corresponding C API headers; for example Value.h must include llvm-c/Core.h. I think this is harmless, since the C API headers contain just external function declarations and some C types, so I don't believe there should be any nasty dependency issues here. llvm-svn: 180881
* Move C++ code out of the C headers and into either C++ headersEric Christopher2013-04-221-0/+1
| | | | | | | or the C++ files themselves. This enables people to use just a C compiler to interoperate with LLVM. llvm-svn: 180063
* [objc-arc] Added descriptions for EnableARCAnnotations, ↵Michael Gottesman2013-04-171-0/+1
| | | | | | EnableCheckForCFGHazards, EnableARCOptimizations. llvm-svn: 179718
* Make helpers static. Add missing include so LLVMInitializeObjCARCOpts gets C ↵Benjamin Kramer2013-02-151-0/+1
| | | | | | linkage. llvm-svn: 175264
* Fixed some whitespace/80+ violations. Also added a space after a namespace ↵Michael Gottesman2013-01-291-1/+1
| | | | | | declaration. llvm-svn: 173772
* Cleaned up includes in various ObjCARC files and removed some whitespace ↵Michael Gottesman2013-01-281-6/+5
| | | | | | violations. llvm-svn: 173663
* Fixed case insensitive issue.Michael Gottesman2013-01-281-1/+1
| | | | llvm-svn: 173653
* Extracted pass ObjCARCExpand from ObjCARC.cpp => ObjCARCExpand.cpp.Michael Gottesman2013-01-281-1/+11
| | | | | | | I also added the local header ObjCARC.h for common functions used by the various passes. llvm-svn: 173651
* Extracted ObjCARC.cpp into its own library libLLVMObjCARCOpts in preparation ↵Michael Gottesman2013-01-281-0/+38
for refactoring the ARC Optimizer. llvm-svn: 173647
OpenPOWER on IntegriCloud