| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the 'Padding' argument was the number of padding
bytes to add. However most callers that use 'Padding' know
how many overall bytes they need to write. With the previous
code this would mean encoding the LEB once to find out how
many bytes it would occupy and then using this to calulate
the 'Padding' value.
See: https://reviews.llvm.org/D36595
Differential Revision: https://reviews.llvm.org/D37494
llvm-svn: 313393
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: mcrosier
Reviewed By: mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37922
llvm-svn: 313388
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
for LEAs."
This caused PR34629: asserts firing when building Chromium. It also broke some
buildbots building test-suite as reported on the commit thread.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet
>
> Reviewed By: lsaba
>
> Subscribers: spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313376
|
|
|
|
|
|
|
|
|
|
|
|
| |
that can be done with a insertf128
The early out for AVX2 in lowerV2X128VectorShuffle is positioned in a weird spot below some shuffle mask equivalency checks.
But I think we want to allow VPERMQ for any unary shuffle.
Differential Revision: https://reviews.llvm.org/D37893
llvm-svn: 313373
|
|
|
|
| |
llvm-svn: 313367
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
constant build vectors
When handling a v64i1 build vector of constants on 32-bit targets we were creating an illegal i64 constant that we then bitcasted back to v64i1. We need to instead create two 32-bit constants, bitcast them to v32i1 and concat the result. We should also take care to handle the halves being all zeros/ones after the split.
This patch splits the build vector and then recursively lowers the two pieces. This allows us to handle the all ones and all zeros cases with minimal effort. Ideally we'd just do the split and concat, and let lowering get called again on the new nodes, but getNode has special handling for CONCAT_VECTORS that reassembles the pieces back into a single BUILD_VECTOR. Hopefully the two temporary BUILD_VECTORS we had to create to do this that don't get returned don't cause any issues.
Fixes PR34605.
Differential Revision: https://reviews.llvm.org/D37858
llvm-svn: 313366
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
inserting 0s into the upper portions of a vector register and the producing instruction as already produced the zeros.
Currently if we're inserting 0s into the upper elements of a vector register we insert an explicit move of the smaller register to implicitly zero the upper bits. But if we can prove that they are already zero we can skip that. This is based on a similar idea of what we do to avoid emitting explicit zero extends for GR32->GR64.
Unfortunately, this is harder for vector registers because there are several opcodes that don't have VEX equivalent instructions, but can write to XMM registers. Among these are SHA instructions and a MMX->XMM move. Bitcasts can also get in the way.
So for now I'm starting with explicitly allowing only VPMADDWD because we emit zeros in combineLoopMAddPattern. So that is placing extra instruction into the reduction loop.
I'd like to allow PSADBW as well after D37453, but that's currently blocked by a bitcast. We either need to peek through bitcasts or canonicalize insert_subvectors with zeros to remove bitcasts on the value being inserted.
Longer term we should probably have a cleanup pass that removes superfluous zeroing moves even when the producer is in another basic block which is something these isel tricks can't do. See PR32544.
Differential Revision: https://reviews.llvm.org/D37653
llvm-svn: 313365
|
|
|
|
|
|
|
| |
This removes the duplicate HVX instruction set for the 128-byte mode.
Single instruction set now works for both modes (64- and 128-byte).
llvm-svn: 313362
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for allowing v8f16 vector types, thus avoiding conversions
from/to single precision for these types. This is a follow up patch of
commits r311154 and r312104, which added support for scalars and v4f16
types, respectively.
Differential Revision: https://reviews.llvm.org/D37802
llvm-svn: 313351
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet
Reviewed By: lsaba
Subscribers: spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313343
|
|
|
|
|
|
| |
I think this may have existed to convert from SDUse to SDValue, but it doesn't look like its needed now.
llvm-svn: 313311
|
|
|
|
| |
llvm-svn: 313302
|
|
|
|
|
|
| |
You can't use madmk/madmk if it already uses an SGPR input.
llvm-svn: 313298
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D35089
llvm-svn: 313297
|
|
|
|
| |
llvm-svn: 313282
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because the stack growth direction and addressing is done
in the same direction, modifying SP at the beginning of the
call sequence was incorrect. If we had a stack passed argument,
we would end up skipping that number of bytes before pushing
arguments, leaving unused/inconsistent space.
The callee creates fixed stack objects in its frame, so
the space necessary for these is already logically allocated
in the callee, so we just let the callee increment SP if
it really requires it.
llvm-svn: 313279
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The other members of the dext family of instructions (dextm, dextu) are
traditionally handled by the assembler selecting the right variant of
'dext' depending on the values of the position and size operands.
When these instructions are disassembled, rather than reporting the
actual instruction, an equivalent aliased form of 'dext' is generated
and is reported. This is to mimic the behaviour of binutils.
Reviewers: slthakur, nitesh.jain, atanasyan
Differential Revision: https://reviews.llvm.org/D34887
llvm-svn: 313276
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Using SplitCSR for the frame register was very broken. Often
the copies in the prolog and epilog were optimized out, in addition
to them being inserted after the true prolog where the FP
was clobbered.
I have a hacky solution which works that continues to use
split CSR, but for now this is simpler and will get to working
programs.
llvm-svn: 313274
|
|
|
|
|
|
|
|
|
|
|
|
| |
Traditionally GAS has provided automatic selection between dins, dinsm and
dinsu. Binutils also disassembles all instructions in that family as 'dins'
rather than the actual instruction.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D34877
llvm-svn: 313267
|
|
|
|
| |
llvm-svn: 313262
|
|
|
|
|
|
|
|
| |
It used to return the actual field value from the instruction descriptor.
There is no reason for that, that value is not interesting in any way and
the specifics of its encoding in the descriptor should not be exposed.
llvm-svn: 313257
|
|
|
|
|
|
|
|
|
|
| |
point, bitcast to integer first.
Fix issue described in PR34577.
Differential Revision: https://reviews.llvm.org/D37803
llvm-svn: 313256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
verification
This patch complements D16810 "[mips] Make isel select the correct DEXT variant
up front.". Now ISel picks the right variant of DINS, so now there is no need
to replace DINS with the appropriate variant during
MipsMCCodeEmitter::encodeInstruction().
This patch also enables target specific instruction verification for ins, dins,
dinsm, dinsu, ext, dext, dextm, dextu. These instructions have constraints that
are checked when generating MipsISD::Ins and MipsISD::Ext nodes, but these
constraints are not checked during instruction selection. Adding machine
verification should catch outstanding cases.
Finally, correct a bug that instruction verification uncovered, where the
position operand of a DINSU generated during lowering was being silently
and accidently corrected to the correct value.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D34809
llvm-svn: 313254
|
|
|
|
| |
llvm-svn: 313217
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MachineScheduler when clustering loads or stores checks if base
pointers point to the same memory. This check is done through
comparison of base registers of two memory instructions. This
works fine when instructions have separate offset operand. If
they require a full calculated pointer such instructions can
never be clustered according to such logic.
Changed shouldClusterMemOps to accept base registers as well and
let it decide what to do about it.
Differential Revision: https://reviews.llvm.org/D37698
llvm-svn: 313208
|
|
|
|
|
|
| |
Missed in r312936
llvm-svn: 313205
|
|
|
|
| |
llvm-svn: 313166
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch corrects the definition of the DINSM instruction.
Specification for DINSM instruction for Mips64 says that size operand should
be 2 <= size <= 64, but it is defined as uimm5_inssize_plus1 which gives
range of 1 .. 32.
Patch by Aleksandar Beserminji.
Differential Revision: https://reviews.llvm.org/D37683
llvm-svn: 313149
|
|
|
|
|
|
|
|
| |
Added the following P9 instructions: extswsli, extswsli., popcntb
Differential Revision: https://reviews.llvm.org/D37342
llvm-svn: 313147
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Support G_FPEXT operation. Selection done via TableGen'erated code.
Reviewers: zvi, guyblank, aymanmus, m_zuckerman
Reviewed By: zvi
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D34816
llvm-svn: 313135
|
|
|
|
|
|
|
|
| |
This patch, together with a matching clang patch (https://reviews.llvm.org/D37694), implements the lowering of X86 ABS intrinsics to IR.
differential revision: https://reviews.llvm.org/D37693.
llvm-svn: 313134
|
|
|
|
|
|
|
|
|
| |
Adding x86 Processor families to initialize several uArch properties (based on the family)
This patch shows how gather cost can be initialized based on the proc. family
Differential Revision: https://reviews.llvm.org/D35348
llvm-svn: 313132
|
|
|
|
|
|
|
|
| |
BEXTR64rr instruction from a shift/and pair.
Fixes PR34589.
llvm-svn: 313126
|
|
|
|
|
|
| |
Load with zero-extend and sign-extend from v2i8 to v2i32 is "Legal" since SSE4.1 and may be performed using PMOVZXBD , PMOVSXBD instructions.
llvm-svn: 313121
|
|
|
|
| |
llvm-svn: 313112
|
|
|
|
|
|
|
|
|
|
|
| |
Fuchsia's lowest API layer has been renamed from Magenta to Zircon.
In LLVM proper, this is only mentioned in comments.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D37763
llvm-svn: 313105
|
|
|
|
|
|
|
|
|
|
| |
Select them from ISD::SIGN_EXTEND_INREG
Differential Revision: https://reviews.llvm.org/D37603
remove spurious change
llvm-svn: 313101
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The masked store instruction only cares about the sign-bit of each mask element,
so the compare s<0 isn't needed.
As noted in PR11210:
https://bugs.llvm.org/show_bug.cgi?id=11210
...fixing this should allow us to eliminate x86-specific masked store intrinsics in IR.
(Although more testing will be needed to confirm that.)
I filed a bug to track improvements for AVX512:
https://bugs.llvm.org/show_bug.cgi?id=34584
Differential Revision: https://reviews.llvm.org/D37446
llvm-svn: 313089
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, UImm16_AltRelaxed match type is not handled in
MatchAndEmitInstruction() function, which may result in
llvm_unreachable() behavior.
This patch adds necessary case for this match type.
Patch by Aleksandar Beserminji.
Differential Revision: https://reviews.llvm.org/D37682
llvm-svn: 313077
|
|
|
|
|
|
|
| |
Tablegen already can select these: mark them as legal, remove the
c++ code, and add tests for all types.
llvm-svn: 313074
|
|
|
|
|
|
|
|
|
|
| |
We already support these in tablegen, but we're matching the wrong
operator (libm ftrunc). Fix that.
While there, drop the c++ code, support COPYs of FPR16, and add tests
for the other types.
llvm-svn: 313073
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementing this pass as a PowerPC specific pass. Branch coalescing utilizes
the analyzeBranch method which currently does not include any implicit operands.
This is not an issue on PPC but must be handled on other targets.
Pass is currently off by default. Enabled via -enable-ppc-branch-coalesce.
Differential Revision : https: // reviews.llvm.org/D32776
llvm-svn: 313061
|
|
|
|
|
|
| |
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 313055
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instruction to custom isel
Recognizing this pattern during DAG combine hides information about the 'and' and the shift from other combines. I think it should be recognized at isel so its as late as possible. But it can't be done with table based isel because you need to be able to look at both immediates. This patch moves it to custom isel in X86ISelDAGToDAG.cpp.
This does break a couple tests in tbm_patterns because we are now emitting an and_flag node or (cmp and, 0) that we dont' recognize yet. We already had this problem for several other TBM patterns so I think this fine and we can address of them together.
I've also fixed a bug where the combine to BEXTR was preventing us from using a trick of zero extending AH to handle extracts of bits 15:8. We might still want to use BEXTR if it enables load folding. But honestly I hope we narrowed the load instead before got to isel.
I think we should probably also support matching BEXTR from (srl/srl (and mask << C), C). But that should be a different patch.
Differential Revision: https://reviews.llvm.org/D37592
llvm-svn: 313054
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was causing PR34045 to fire again.
> This is a preparatory step for D34515 and also is being recommitted as its
> first version caused PR34045.
>
> This change:
> - makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
> - lowering is done by first converting the boolean value into the carry flag
> using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
> using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
> operations does the actual addition.
> - for subtraction, given that ISD::SUBCARRY second result is actually a
> borrow, we need to invert the value of the second operand and result before
> and after using ARMISD::SUBE. We need to invert the carry result of
> ARMISD::SUBE to preserve the semantics.
> - given that the generic combiner may lower ISD::ADDCARRY and
> ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
> as well otherwise i64 operations now would require branches. This implies
> updating the corresponding test for unsigned.
> - add new combiner to remove the redundant conversions from/to carry flags
> to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
> - fixes PR34045
>
> Differential Revision: https://reviews.llvm.org/D35192
Also revert follow-up r313010:
> [ARM] Fix typo when creating ISD::SUB nodes
>
> In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
> giving them two values instead of one.
>
> This fails when the merge_values combiner finds one of these nodes.
>
> This change fixes PR34564.
>
> Differential Revision: https://reviews.llvm.org/D37690
llvm-svn: 313044
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This bit is needed in order for the CalleeSavedRegs list to automatically
include the super registers if all of their subregs are present.
Thanks to Wei Mi for initially indicating this deficiency in the SystemZ
backend.
Review: Ulrich Weigand.
https://bugs.llvm.org/show_bug.cgi?id=34550
llvm-svn: 313023
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D37676
llvm-svn: 313017
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D37560
llvm-svn: 313013
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
giving them two values instead of one.
This fails when the merge_values combiner finds one of these nodes.
This change fixes PR34564.
Differential Revision: https://reviews.llvm.org/D37690
llvm-svn: 313010
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a preparatory step for D34515 and also is being recommitted as its
first version caused PR34045.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 313009
|