| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
Use getAPIntValue() directly - this is mainly a best practice style issue to help prevent fuzz tests blowing up when a i12345 (or whatever) is generated.
Use getConstantOperandVal/getConstantOperandAPInt wrappers where possible.
llvm-svn: 371315
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix for https://bugs.llvm.org/show_bug.cgi?id=43230.
When creating PSHUFLW from a repeated shuffle mask, we have to apply
the checks to the repeated mask, not the original one. For the test
case from PR43230 the inspected part of the original mask is all undef.
Differential Revision: https://reviews.llvm.org/D67314
llvm-svn: 371307
|
|
|
|
| |
llvm-svn: 371302
|
|
|
|
|
|
|
|
|
| |
TargetLowering::setMinFunctionAlignment"
on AVR to avoid a breakage.
See r371200 / https://reviews.llvm.org/D67229
llvm-svn: 371293
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Despite the fact that the localizer's original motivation was to fix horrendous
constant spilling at -O0, shortening live ranges still has net benefits even
with optimizations enabled.
On an -Os build of CTMark, doing this improves code size by 0.5% geomean.
There are a few regressions, bullet increasing in size by 0.5%. One example from
bullet where code size increased slightly was due to GlobalISel actually now
generating the same code as SelectionDAG. So we actually have an opportunity
in future to implement better heuristics for localization and therefore be
*better* than SDAG in some cases. In relation to other optimizations though that
one is relatively minor.
Differential Revision: https://reviews.llvm.org/D67303
llvm-svn: 371266
|
|
|
|
| |
llvm-svn: 371253
|
|
|
|
|
|
|
| |
The shared COFF asm parser code handles this directive, since it is
shared with AArch64. Spotted by Alexandre Ganea in review.
llvm-svn: 371251
|
|
|
|
| |
llvm-svn: 371249
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can use a MOVSX16 here then rely on FixupBWInst to change to
MOVSX32 if the upper bits are dead. With a special case to
not promote if it could be turned into CBW.
Then we can rely on X86MCInstLower to turn the MOVSX into CBW
very late if register allocation worked out.
Using MOVSX gives an opportunity to use the MOVSX as a both a
copy and a sign extend since the input and output register aren't
tied together.
Differential Revision: https://reviews.llvm.org/D67192
llvm-svn: 371243
|
|
|
|
|
|
|
|
| |
We can rely on X86FixupBWInsts to turn these into MOVZX32. This
simplifies a follow up commit to use MOVSX for i8 sdivrem with
a late optimization to use CBW when register allocation works out.
llvm-svn: 371242
|
|
|
|
|
|
| |
into their 32-bit dest equivalents when the upper part of the register is dead.
llvm-svn: 371240
|
|
|
|
|
|
|
| |
Added patterns for VSUB to support q and r registers, which reduces
pressure on q registers.
llvm-svn: 371231
|
|
|
|
|
|
|
| |
Added support for VADD to use q and r registers, which reduces pressure
on q registers.
llvm-svn: 371230
|
|
|
|
|
|
|
| |
Added support for VMUL to use an r register, this reduces pressure on
the q registers.
llvm-svn: 371229
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-tailcallopt requires that we perform different stack adjustments than with
sibling calls. For example, the `@caller_to0_from8` function in
test/CodeGen/AArch64/tail-call.ll requires that we adjust SP. Without
-tailcallopt, this adjustment does not happen. With it, however, it is expected.
So, to ensure that adding sibling call support doesn't break -tailcallopt,
make CallLowering always fall back on possible tail calls when -tailcallopt
is passed in.
Update test/CodeGen/AArch64/tail-call.ll with a GlobalISel line to make sure
that we don't differ from the SDAG implementation at any point.
Differential Revision: https://reviews.llvm.org/D67245
llvm-svn: 371227
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch sinks add/mul(shufflevector(insertelement())) into the basic block in which they are used so that they can then be selected together.
This is useful for various MVE instructions, such as vmla and others that take R registers.
Loop tests have been added to the vmla test file to make sure vmlas are generated in loops.
Differential revision: https://reviews.llvm.org/D66295
llvm-svn: 371218
|
|
|
|
|
|
| |
Differential revision: https://reviews.llvm.org/D66958
llvm-svn: 371214
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: nemanjai, javed.absar, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, s.egerton, pzheng, ychen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67267
llvm-svn: 371212
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: nemanjai, hiraditya, kbarton, MaskRay, jsji, ychen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67278
llvm-svn: 371210
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This was discovered while introducing the llvm::Align type.
The original setMinFunctionAlignment used to take alignment as log2, looking at the comment it seems like instructions are to be 2-bytes aligned and not 4-bytes aligned.
Reviewers: uweigand
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67271
llvm-svn: 371204
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67229
llvm-svn: 371200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch allows the DFAPacketizer to be queried after a packet is formed to work out which
resources were allocated to the packetized instructions.
This is particularly important for targets that do their own bundle packing - it's not
sufficient to know simply that instructions can share a packet; which slots are used is
also required for encoding.
This extends the emitter to emit a side-table containing resource usage diffs for each
state transition. The packetizer maintains a set of all possible resource states in its
current state. After packetization is complete, all remaining resource states are
possible packetization strategies.
The sidetable is only ~500K for Hexagon, but the extra tracking is disabled by default
(most uses of the packetizer like MachinePipeliner don't care and don't need the extra
maintained state).
Differential Revision: https://reviews.llvm.org/D66936
llvm-svn: 371198
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This fixes poor scheduling in a function containing a barrier and a few
load instructions.
Without this fix, ScheduleDAGInstrs::buildSchedGraph adds an artificial
edge in the dependency graph from the barrier instruction to the exit
node representing live-out latency, with a latency of about 500 cycles.
Because of this it thinks the critical path through the graph also has
a latency of about 500 cycles. And because of that it does not think
that any of the load instructions are on the critical path, so it
schedules them with no regard for their (80 cycle) latency, which gives
poor results.
Reviewers: arsenm, dstuttard, tpr, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67218
llvm-svn: 371192
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The MVE and LOB extensions of Armv8.1m can be combined to enable
'tail predication' which removes the need for a scalar remainder
loop after vectorization. Lane predication is performed implicitly
via a system register. The effects of predication is described in
Section B5.6.3 of the Armv8.1-m Arch Reference Manual, the key points
being:
- For vector operations that perform reduction across the vector and
produce a scalar result, whether the value is accumulated or not.
- For non-load instructions, the predicate flags determine if the
destination register byte is updated with the new value or if the
previous value is preserved.
- For vector store instructions, whether the store occurs or not.
- For vector load instructions, whether the value that is loaded or
whether zeros are written to that element of the destination
register.
This patch implements a pass that takes a hardware loop, containing
masked vector instructions, and converts it something that resembles
an MVE tail predicated loop. Currently, if we had code generation,
we'd generate a loop in which the VCTP would generate the predicate
and VPST would then setup the value of VPR.PO. The loads and stores
would be placed in VPT blocks so this is not tail predication, but
normal VPT predication with the predicate based upon a element
counting induction variable. Further work needs to be done to finally
produce a true tail predicated loop.
Because only the loads and stores are predicated, in both the LLVM IR
and MIR level, we will restrict support to only lane-wise operations
(no horizontal reductions). We will perform a final check on MIR
during loop finalisation too.
Another restriction, specific to MVE, is that all the vector
instructions need operate on the same number of elements. This is
because predication is performed at the byte level and this is set
on entry to the loop, or by the VCTP instead.
Differential Revision: https://reviews.llvm.org/D65884
llvm-svn: 371179
|
|
|
|
| |
llvm-svn: 371167
|
|
|
|
| |
llvm-svn: 371156
|
|
|
|
|
|
| |
There should probably be a size only matcher.
llvm-svn: 371155
|
|
|
|
|
|
|
| |
Report soffset as a base register if the scratch resource can be
ignored.
llvm-svn: 371149
|
|
|
|
|
|
|
|
|
|
| |
The same stack is loaded for each workitem ID, and each use. Nothing
prevents you from creating multiple fixed stack objects with the same
offsets, so this was creating a load for each unique frame index,
despite them being the same offset. Re-use the same frame index so the
loads are CSEable.
llvm-svn: 371148
|
|
|
|
| |
llvm-svn: 371141
|
|
|
|
|
|
|
|
|
|
|
|
| |
Approximately 30% of the time was spent in the std::vector
constructor. In one testcase this pushes the scheduler to being the
second slowest pass.
I'm not sure I understand why these vector are necessary. The default
scheduler initCandidate seems to use some pre-existing vectors for the
pressure.
llvm-svn: 371136
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sibling calls"
Recommit basic sibling call lowering (https://reviews.llvm.org/D67189)
The issue was that if you have a return type other than void, call lowering
will emit COPYs to get the return value after the call.
Disallow sibling calls other than ones that return void for now. Also
proactively disable swifterror tail calls for now, since there's a similar issue
with COPYs there.
Update call-translator-tail-call.ll to include test cases for each of these
things.
llvm-svn: 371114
|
|
|
|
|
|
|
| |
We're able to use a 32-bit ADD and CMOV here and should work
well with our other i16->i32 promotion optimizations.
llvm-svn: 371107
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As noted in PR43197, we can use test+add+cmov+sra to implement
signed division by a power of 2.
This is based off the similar version in AArch64, but I've
adjusted it to use target independent nodes where AArch64 uses
target specific CMP and CSEL nodes. I've also blocked INT_MIN
as the transform isn't valid for that.
I've limited this to i32 and i64 on 64-bit targets for now and only
when CMOV is supported. i8 and i16 need further investigation to be
sure they get promoted to i32 well.
I adjusted a few tests to enable cmov to demonstrate the new
codegen. I also changed twoaddr-coalesce-3.ll to 32-bit mode
without cmov to avoid perturbing the scenario that is being
set up there.
Differential Revision: https://reviews.llvm.org/D67087
llvm-svn: 371104
|
|
|
|
|
|
|
|
| |
(PR43225)
https://bugs.llvm.org/show_bug.cgi?id=43225
llvm-svn: 371095
|
|
|
|
|
|
|
|
|
| |
A register. NFC
The instructions copy the sign bit of the A register to every bit
of the D register. But they don't write to the A register.
llvm-svn: 371094
|
|
|
|
|
|
|
| |
We aren't checking for a concat here. We're just always splitting
256-bit stores.
llvm-svn: 371092
|
|
|
|
| |
llvm-svn: 371083
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A number of inline assembly constraints are currently supported by LLVM, but rejected as invalid by Clang:
Target independent constraints:
s: An integer constant, but allowing only relocatable values
ARM specific constraints:
j: An immediate integer between 0 and 65535 (valid for MOVW)
x: A 32, 64, or 128-bit floating-point/SIMD register: s0-s15, d0-d7, or q0-q3
N: An immediate integer between 0 and 31 (Thumb1 only)
O: An immediate integer which is a multiple of 4 between -508 and 508. (Thumb1 only)
This patch adds support to Clang for the missing constraints along with some checks to ensure that the constraints are used with the correct target and Thumb mode, and that immediates are within valid ranges (at least where possible). The constraints are already implemented in LLVM, but just a couple of minor corrections to checks (V8M Baseline includes MOVW so should work with 'j', 'N' and 'O' shouldn't be valid in Thumb2) so that Clang and LLVM are in line with each other and the documentation.
Differential Revision: https://reviews.llvm.org/D65863
Change-Id: I18076619e319bac35fbb60f590c069145c9d9a0a
llvm-svn: 371079
|
|
|
|
|
|
|
|
|
|
| |
(PR43227)
As discussed on D64551 and PR43227, we don't correctly handle cases where the base load has a non-zero byte offset.
Until we can properly handle this, we must bail from EltsFromConsecutiveLoads.
llvm-svn: 371078
|
|
|
|
|
|
|
|
|
|
| |
This attempts to just fix the creation of VPT blocks, fixing up the iterating,
which instructions are considered in the bundle, and making sure that we do not
overrun the end of the block.
Differential Revision: https://reviews.llvm.org/D67219
llvm-svn: 371064
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67223
llvm-svn: 371063
|
|
|
|
|
|
|
|
|
|
|
|
| |
G_FENCE comes form fence instruction. For MIPS fence is generated in
AtomicExpandPass when atomic instruction gets surrounded with fence
instruction when needed.
G_FENCE arguments don't have LLT, because of that there is no job for
legalizer and regbankselect. Instruction select G_FENCE for MIPS32.
Differential Revision: https://reviews.llvm.org/D67181
llvm-svn: 371056
|
|
|
|
|
|
|
|
|
| |
Select G_INTRINSIC_W_SIDE_EFFECTS for Intrinsic::trap for MIPS32
via legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D67180
llvm-svn: 371055
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of returning structure by value clang usually adds pointer
to that structure as an argument. Pointers don't require special
handling no matter the SRet flag. Remove unsuccessful exit from
lowerCall for arguments with SRet flag if they are pointers.
Differential Revision: https://reviews.llvm.org/D67179
llvm-svn: 371054
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AArch64CallLowering to handle basic sibling calls
This adds support for basic sibling call lowering in AArch64. The intent here is
to only handle tail calls which do not change the ABI (hence, sibling calls.)
At this point, it is very restricted. It does not handle
- Vararg calls.
- Calls with outgoing arguments.
- Calls whose calling conventions differ from the caller's calling convention.
- Tail/sibling calls with BTI enabled.
This patch adds
- `AArch64CallLowering::isEligibleForTailCallOptimization`, which is equivalent
to the same function in AArch64ISelLowering.cpp (albeit with the restrictions
above.)
- `mayTailCallThisCC` and `canGuaranteeTCO`, which are identical to those in
AArch64ISelLowering.cpp.
- `getCallOpcode`, which is exactly what it sounds like.
Tail/sibling calls are lowered by checking if they pass target-independent tail
call positioning checks, and checking if they satisfy
`isEligibleForTailCallOptimization`. If they do, then a tail call instruction is
emitted instead of a normal call. If we have a sibling call (which is always the
case in this patch), then we do not emit any stack adjustment operations. When
we go to lower a return, we check if we've already emitted a tail call. If so,
then we skip the return lowering.
For testing, this patch
- Adds call-translator-tail-call.ll to test which tail calls we currently lower,
which ones we don't, and which ones we shouldn't.
- Updates branch-target-enforcement-indirect-calls.ll to show that we fall back
as expected.
Differential Revision: https://reviews.llvm.org/D67189
........
This fails on EXPENSIVE_CHECKS builds due to a -verify-machineinstrs test failure in CodeGen/AArch64/dllimport.ll
llvm-svn: 371051
|
|
|
|
|
|
|
|
| |
warning.
Fixes clang static-analyzer warning.
llvm-svn: 371050
|
|
|
|
|
|
|
|
|
|
| |
Handle the remaining cases also by handling asm goto in
SystemZInstrInfo::getBranchInfo().
Review: Ulrich Weigand
https://reviews.llvm.org/D67151
llvm-svn: 371048
|
|
|
|
|
|
|
|
| |
Fixes clang static-analyzer warning.
Technically the MachineInstr *Sub might still be null if we're comparing zero (IsCmpZero == true), although this probably won't happen as SrcReg2 is probably == 0.
llvm-svn: 371047
|