| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some ARM instructions encode 32-bit immediates as a 8-bit integer (0-255)
and a 4-bit rotation (0-30, even) in its least significant 12 bits. The
original fixup, FK_Data_4, patches the instruction by the value bit-to-bit,
regardless of the encoding. For example, assuming the label L1 and L2 are
0x0 and 0x104 respectively, the following instruction:
add r0, r0, #(L2 - L1) ; expects 0x104, i.e., 260
would be assembled to the following, which adds 1 to r0, instead of 260:
e2800104 add r0, r0, #4, 2 ; equivalently 1
The new fixup kind fixup_arm_mod_imm takes care of the encoding:
e2800f41 add r0, r0, #260
Patch by Ting-Yuan Huang!
llvm-svn: 265122
|
| |
|
|
|
|
|
|
|
| |
When a fixup that can be resolved by the assembler is out of range, we should
report an error in the source, rather than crashing.
Differential Revision: http://reviews.llvm.org/D18402
llvm-svn: 265120
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
tail call branch instruction might disappear
Bug Pattern:
# BB#0: # %entry
cmpldi 3, 0
beq- 0, .LBB0_2
# BB#1: # %exit
lwz 4, 0(3)
#TC_RETURNd8 LVComputationKind 0
.LBB0_2: # %cond.false
mflr 0
std 0, 16(1)
stdu 1, -96(1)
.Ltmp0:
.cfi_def_cfa_offset 96
.Ltmp1:
.cfi_offset lr, 16
bl __assert_fail
nop
The branch instruction for tail call return is not generated, because the
shrink-wrapping pass choosing a new Restore Point: %cond.false, so %exit
block is not sent to emitEpilogue, that's why the branch is not generated.
Thanks Kit's opinions!
Reviewers: nemanjai hfinkel tjablin kbarton
http://reviews.llvm.org/D17606
llvm-svn: 265112
|
| |
|
|
| |
llvm-svn: 265105
|
| |
|
|
| |
llvm-svn: 265098
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, we were running afoul of the assertion
EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && "LowerCall emitted a value with the wrong type!"
in SelectionDAGBuilder.cpp when running the NVPTX/i8-param.ll test.
This is because our backend (for some reason) treats small return values
as i32, but it wasn't ever truncating the i32 back down to the expected
width in the DAG.
Unclear to me whether this fixes any actual bugs -- in this test, at
least, the generated code is unchanged.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: http://reviews.llvm.org/D17872
llvm-svn: 265091
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously the NVVMReflect pass would read its configuration from
command-line flags or a static configuration given to the pass at
instantiation time.
This doesn't quite work for clang's use-case. It needs to pass a value
for __CUDA_FTZ down on a per-module basis. We use a module flag for
this, so the NVVMReflect pass needs to be updated to read said flag.
Reviewers: tra, rnk
Subscribers: cfe-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18672
llvm-svn: 265090
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Tablegen tries to infer this from the selection DAG patterns defined for
the instructions, but it can't always.
An instructive example is CLZr64. CLZr32 is correctly inferred to have
no side-effects, but the selection DAG pattern for CLZr64 is slightly
more complicated, and in particular the ctlz DAG node is not at the root
of the pattern. Thus tablegen can't infer that CLZr64 has no
side-effects.
Reviewers: jholewinski
Subscribers: jholewinski, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17472
llvm-svn: 265089
|
| |
|
|
| |
llvm-svn: 265076
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change will allow loads with imp-def to be clustered in machine-scheduler pass.
areMemAccessesTriviallyDisjoint() can also handle loads with imp-def.
Reviewers: mcrosier, jmolloy, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18665
llvm-svn: 265051
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Chapter 3 of the QPX manual states that, "Scalar floating-point load
instructions, defined in the Power ISA, cause a replication of the source data
across all elements of the target register." Thus, if we have a load followed
by a QPX splat (from the first lane), the splat is redundant. This adds a late
MI-level pass to remove the redundant splats in some of these cases
(specifically when both occur in the same basic block).
This optimization is scheduled just prior to post-RA scheduling. It can't happen
before anything that might replace the load with some already-computed quantity
(i.e. store-to-load forwarding).
llvm-svn: 265047
|
| |
|
|
|
|
|
|
|
|
| |
eliminateCallFramePseudoInstr (PR27140)"
I think it might have caused these build breakages:
http://lab.llvm.org:8011/builders/clang-x86-win2008-selfhost/builds/7234/steps/build%20stage%202/logs/stdio
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/19566/steps/run%20tests/logs/stdio
llvm-svn: 265046
|
| |
|
|
|
|
|
| |
The default is legal, which results in 'Cannot select' errors. This is
triggered during selfhost due to a recent cost model change.
llvm-svn: 265040
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR27140)
For code such as:
void f(int, int);
void g() {
f(1, 2);
}
compiled for 32-bit X86 Linux, Clang would previously generate:
subl $12, %esp
subl $8, %esp
pushl $2
pushl $1
calll f
addl $16, %esp
addl $12, %esp
retl
This patch fixes that by merging adjacent stack adjustments in
eliminateCallFramePseudoInstr().
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265039
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This will become necessary in a subsequent change to make this method
merge adjacent stack adjustments, i.e. it might erase the previous
and/or next instruction.
It also greatly simplifies the calls to this function from Prolog-
EpilogInserter. Previously, that had a bunch of logic to resume iteration
after the call; now it just continues with the returned iterator.
Note that this changes the behaviour of PEI a little. Previously,
it attempted to re-visit the new instruction created by
eliminateCallFramePseudoInstr(). That code was added in r36625,
but I can't see any reason for it: the new instructions will obviously
not be pseudo instructions, they will not have FrameIndex operands,
and we have already accounted for the stack adjustment.
Differential Revision: http://reviews.llvm.org/D18627
llvm-svn: 265036
|
| |
|
|
|
|
|
|
| |
isBrImm should accept any non-constant immediate. Previously it was only accepting LanaiMCExpr ones which was wrong.
Differential Revision: http://reviews.llvm.org/D18571
llvm-svn: 265032
|
| |
|
|
|
|
|
|
| |
http://reviews.llvm.org/D18097
Initial support does not include any patterns to generate this instructions
llvm-svn: 265031
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the memset check down to the CPU-with-slow-SSE-unaligned-memops case: this allows fast
targets to take advantage of SSE/AVX instructions and prevents slow targets from stepping
into a codegen sinkhole while trying to splat a byte into an XMM reg.
Follow-on bugs exposed by the current codegen are:
https://llvm.org/bugs/show_bug.cgi?id=27141
https://llvm.org/bugs/show_bug.cgi?id=27143
Differential Revision: http://reviews.llvm.org/D18566
llvm-svn: 265029
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PPCSimplifyAddress contains this code:
IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
: Type::getInt64Ty(*Context));
to determine the type to be used for an index register, if one needs
to be created. However, the "VT" here is the type of the data being
loaded or stored, *not* the type of an address. This means that if
a data element of type i32 is accessed using an index that does not
not fit into 32 bits, a wrong address is computed here.
Note that PPCFastISel is only ever used on 64-bit currently, so the type
of an address is actually *always* MVT::i64. Other parts of the code,
even in this same PPCSimplifyAddress routine, already rely on that fact.
Thus, this patch changes the code to simply unconditionally use
Type::getInt64Ty(*Context) as OffsetTy.
llvm-svn: 265023
|
| |
|
|
|
|
|
|
|
|
| |
This patch corresponds to review:
http://reviews.llvm.org/D18032
This patch provides asm implementation for the following instructions:
lwat, ldat, stwat, stdat, ldmx, mcrxrx
llvm-svn: 265022
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change will handle missing store pair opportunity where the first store
instruction stores zero followed by the non-zero store. For example, this change
will convert :
str wzr, [x8]
str w1, [x8, #4]
into:
stp wzr, w1, [x8]
Reviewers: jmolloy, t.p.northover, mcrosier
Subscribers: flyingforyou, aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18570
llvm-svn: 265021
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fast isel pass currently emits a COPY_TO_REGCLASS node to convert
from a F4RC to a F8RC register class during conversion of a
floating-point number to integer. There is actually no support in the
common code instruction printers to emit COPY_TO_REGCLASS nodes, so the
PowerPC back-end has special code there to simply ignore
COPY_TO_REGCLASS.
This is correct *if and only if* the source and destination registers of
COPY_TO_REGCLASS are the same (except for the different register class).
But nothing guarantees this to be the case, and if the register
allocator does end up allocating source and destination to different
registers after all, the back-end simply generates incorrect code. I've
included a test case that shows such incorrect code generation.
However, it seems that COPY_TO_REGCLASS is actually not intended to be
used at the MI layer at all. It is used during SelectionDAG, but always
lowered to a plain COPY before emitting MI. Other back-end's fast isel
passes never emit COPY_TO_REGCLASS at all. I suspect it is simply wrong
for the PowerPC back-end to emit it here.
This patch changes the PowerPC back-end to directly emit COPY instead of
COPY_TO_REGCLASS and removes the special handling in the instruction
printers.
Differential Revision: http://reviews.llvm.org/D18605
llvm-svn: 265020
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
There are too many instructions to exhaustively test so addiu and lwc2 are
used as representative examples.
It should be noted that many memory instructions that should have simm16
range checking do not because it is also necessary to support the macro
of the same name which accepts simm32. The range checks for these occur in
the macro expansion.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18437
llvm-svn: 265019
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
ldc2/sdc2 now emit slightly worse diagnostics for MIPS-I. The problem
is that they don't trigger the custom parser because all the candidates
are disabled by feature bits. On all other subtargets, the diagnostics are
accurate but are subject to the usual issues of needing to report multiple
ways to correct the code (e.g. smaller offset, enable a CPU feature) but
only being able to report one error.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18436
llvm-svn: 265018
|
| |
|
|
|
| |
Review: http://reviews.llvm.org/D18642
llvm-svn: 265015
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Also, made test_mi10.s formatting consistent with the majority of the
MC tests.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18435
llvm-svn: 265014
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Change isConsecutiveLoads to check that loads are non-volatile as this
is a requirement for any load merges. Propagate change to two callers.
Reviewers: RKSimon
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18546
llvm-svn: 265013
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The bug was that microMIPS's [ls]w[lr]e instructions claimed to support a
12-bit offset when it is only 9-bit.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D18434
llvm-svn: 265010
|
| |
|
|
|
|
| |
Differential Revision: http://reviews.llvm.org/D17334
llvm-svn: 265002
|
| |
|
|
| |
llvm-svn: 265000
|
| |
|
|
| |
llvm-svn: 264992
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When dealing with complex<float>, and similar structures with two
single-precision floating-point numbers, especially when such things are being
passed around by value, we'll sometimes end up loading both float values by
extracting them from one 64-bit integer load. It looks like this:
t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
t16: i64 = srl t13, Constant:i32<32>
t17: i32 = truncate t16
t18: f32 = bitcast t17
t19: i32 = truncate t13
t20: f32 = bitcast t19
The problem, especially before the P8 where those bitcasts aren't legal (and
get expanded via the stack), is that it would have been better to use two
floating-point loads directly. Here we add a target-specific DAGCombine to do
just that. In short, we turn:
ld 3, 0(5)
stw 3, -8(1)
rldicl 3, 3, 32, 32
stw 3, -4(1)
lfs 3, -4(1)
lfs 0, -8(1)
into:
lfs 3, 4(5)
lfs 0, 0(5)
llvm-svn: 264988
|
| |
|
|
|
|
|
|
|
|
| |
(PR26325)
The size savings are significant, and from what I can tell, both ICC and GCC do this.
Differential Revision: http://reviews.llvm.org/D18573
llvm-svn: 264966
|
| |
|
|
| |
llvm-svn: 264959
|
| |
|
|
| |
llvm-svn: 264944
|
| |
|
|
|
|
| |
"C4334 '<<': result of 32-bit shift implicitly converted to 64 bits (was 64-bit shift intended?)". NFC.
llvm-svn: 264929
|
| |
|
|
|
|
|
|
| |
consecutive loads/zeros
Fix for issue introduced D17297, where we were breaking early from the loop detecting consecutive loads which could leave us thinking a consecutive load with zeros was possible.
llvm-svn: 264922
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently it's a module pass. Make it a function pass so that we can
move it to PassManagerBuilder's EP_EarlyAsPossible extension point,
which only accepts function passes.
Reviewers: rnk
Subscribers: tra, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18615
llvm-svn: 264919
|
| |
|
|
| |
llvm-svn: 264882
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch contains a few improvements to the model, including:
- Using a single resource with a defined buffers size for each memory unit.
- Setting the IssueWidth correctly.
- Fixing latency values for memory instructions.
shader-db stats:
16429 shaders in 3231 tests
Totals:
SGPRS: 318232 -> 312328 (-1.86 %)
VGPRS: 208996 -> 209346 (0.17 %)
Code Size: 7147044 -> 7166440 (0.27 %) bytes
LDS: 83 -> 83 (0.00 %) blocks
Scratch: 1862656 -> 1459200 (-21.66 %) bytes per wave
Max Waves: 49182 -> 49243 (0.12 %)
Wait states: 0 -> 0 (0.00 %)A
Differential Revision: http://reviews.llvm.org/D18453
llvm-svn: 264877
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This results in higher register usage, but should make it easier for
the compiler to hide latency.
This pass is a prerequisite for some more scheduler improvements, and I
think the increase register usage with this patch is acceptable, because
when combined with the scheduler improvements, the total register usage
will decrease.
shader-db stats:
2382 shaders in 478 tests
Totals:
SGPRS: 48672 -> 49088 (0.85 %)
VGPRS: 34148 -> 34847 (2.05 %)
Code Size: 1285816 -> 1289128 (0.26 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 492544 -> 573440 (16.42 %) bytes per wave
Max Waves: 6856 -> 6846 (-0.15 %)
Wait states: 0 -> 0 (0.00 %)
Depends on D18451
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18452
llvm-svn: 264876
|
| |
|
|
|
|
|
|
|
|
| |
For compatability with GAS, nop and nopr are recognized as alises for
bc and bcr, respectively. A mask of 0 turns these instructions
effectively into no-operations.
Reviewed by Ulrich Weigand.
llvm-svn: 264875
|
| |
|
|
|
|
|
|
|
|
|
|
| |
These checks are redundant and can be removed
Reviewers: hans
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D18564
llvm-svn: 264872
|
| |
|
|
|
|
| |
XOP's VPPERM has some great 'permute operations' that it can do as well as part of shuffling the bytes of a 128-bit vector - in this case we use it to perform BITREVERSE in a single instruction.
llvm-svn: 264870
|
| |
|
|
|
|
|
|
| |
the cpp file.
No functionality change intended.
llvm-svn: 264861
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
operations.
Specifically, we had code that tried to badly approximate reconstructing
all of the possible variations on addressing modes in two x86
instructions based on those in one pseudo instruction. This is not the
first bug uncovered with doing this, so stop doing it altogether.
Instead generically and pedantically copy every operand from the address
over to both new instructions, and strip kill flags from any register
operands.
This fixes a subtle bug seen in the wild where we would mysteriously
drop parts of the addressing mode, causing for example the index
argument in the added test case to just be completely ignored.
Hypothetically, this was an extremely bad miscompile because it actually
caused a predictable and leveragable write of a 64bit quantity to an
unintended offset (the first element of the array intead of whatever
other element was intended). As a consequence, in theory this could even
have introduced security vulnerabilities.
However, this was only something that could happen with an atomic
floating point add. No other operation could trigger this bug, so it
seems extremely unlikely to have occured widely in the wild.
But it did in fact occur, and frequently in scientific applications
which were using relaxed atomic updates of a floating point value after
adding a delta. Those would end up being quite badly miscompiled by
LLVM, which is how we found this. Of course, this often looks like
a race condition in the code, but it was actually a miscompile.
I suspect that this whole RELEASE_FADD thing was a complete mistake.
There is no such operation, and I worry that anything other than add
will get remarkably worse codegeneration. But that's not for this
change....
llvm-svn: 264845
|
| |
|
|
|
|
|
|
|
| |
an x86 MachineInstr's operands. This will be super useful to fix some
bad atomics code in my next commit.
No functionality changed.
llvm-svn: 264819
|
| |
|
|
| |
llvm-svn: 264811
|
| |
|
|
|
|
|
| |
After the previous change, this can now be overridden centrally in the
pass.
llvm-svn: 264807
|
| |
|
|
|
|
|
|
|
| |
This is effectively NFC, minus the renaming of the options
(-cyclone-prefetch-distance -> -prefetch-distance).
The change was requested by Tim in D17943.
llvm-svn: 264806
|