| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
| |
"Divergence driven ISel. Assign register class for cross block values
according to the divergence."
that discovered the design flaw leading to several issues that
required to be solved before.
This change reverts AMDGPU specific changes and keeps common part
unaffected.
llvm-svn: 362749
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This primarily affects add/fadd/mul/fmul/and/or/xor/pmuludq/pmuldq/max/min/fmaxc/fminc/pmaddwd/pavg.
We already commuted the unmasked and zero masked versions.
I've added 512-bit stack folding tests for most of the instructions
affected. I've tested needing commuting and not commuting across
unmasked, merged masked, and zero masked. The 128/256 bit instructions
should behave similarly.
llvm-svn: 362746
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
llvm-svn: 362735
|
| |
|
|
| |
llvm-svn: 362718
|
| |
|
|
|
|
|
|
| |
load folding purposes.
Same as what is supported for the unmasked form.
llvm-svn: 362717
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements SDAG call lowering on AIX for functions
which only have parameters that could fit into GPRs.
Reviewers: hubert.reinterpretcast, syzaara
Differential Revision: https://reviews.llvm.org/D62823
llvm-svn: 362708
|
| |
|
|
|
|
|
|
|
|
|
| |
This patch is a follow up for D62018 to add lrint/llrint
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62863
llvm-svn: 362700
|
| |
|
|
|
|
|
|
|
|
|
| |
This patch is a follow up for D61391 to add lround/llround
support for float16.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D62861
llvm-svn: 362698
|
| |
|
|
| |
llvm-svn: 362696
|
| |
|
|
|
|
|
|
| |
Select G_FSQRT for MIPS32.
Differential Revision: https://reviews.llvm.org/D62905
llvm-svn: 362692
|
| |
|
|
|
|
|
|
| |
Select G_FABS for MIPS32.
Differential Revision: https://reviews.llvm.org/D62903
llvm-svn: 362690
|
| |
|
|
|
|
|
|
| |
Select G_FPEXT and G_FPTRUNC for MIPS32.
Differential Revision: https://reviews.llvm.org/D62902
llvm-svn: 362689
|
| |
|
|
|
|
|
|
| |
Select G_FFLOOR and G_FCEIL for MIPS32.
Differential Revision: https://reviews.llvm.org/D62901
llvm-svn: 362688
|
| |
|
|
|
|
|
|
|
|
|
| |
We already get support for G_ZEXTLOAD to s32 from the importer, but it can't
deal with the SUBREG_TO_REG in the pattern. Tweaking the existing manual
selection code for G_LOAD to handle an additional SUBREG_TO_REG when dealing
with G_ZEXTLOAD isn't much work.
Also add tests to check the imported pattern selections to s32 work.
llvm-svn: 362681
|
| |
|
|
|
|
|
|
| |
to go into r362666.
The changes weren't staged so ended up just re-commiting the unmodified reverted change.
llvm-svn: 362677
|
| |
|
|
|
|
|
|
|
|
| |
when passthru value is all zeroes.
This is intended to enable the use of an immediate blend or
more optimal instruction. But if the passthru is zero we don't
need any additional instructions.
llvm-svn: 362675
|
| |
|
|
|
|
|
|
|
|
|
|
| |
G_SELECT is fp""
When looking through copies, make sure to not try to find the vreg def of a physreg.
Normally getVRegDef will return nullptr in this case, but if there happens to be
multiple defs then it will assert.
This fixes PR42129.
llvm-svn: 362666
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This forced the caller to be aware of this, which is an ugly ABI
feature.
Partially reverts r295877. The original reasons for doing this are
mostly fixed. Alloca is now in a non-0 address space, so it should be
OK to have 0 as a valid pointer. Since we treat the absolute address
as the pointer value, this part only really needed to apply to
kernels.
Since r357093, we avoid the need to increment/decrement the offset
register in more cases, and since r354816 the scavenger can fail
without spilling, so it's less critical that we try to avoid an offset
that fits in the MUBUF offset.
Restrict to callable functions for now to split this into 2 steps to
limit thte number of test updates and in case anything breaks.
llvm-svn: 362665
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ISD::STRICT_ nodes used to implement the constrained floating-point
intrinsics are currently never passed to the target back-end, which makes
it impossible to handle them correctly (e.g. mark instructions are depending
on a floating-point status and control register, or mark instructions as
possibly trapping).
This patch allows the target to use setOperationAction to switch the action
on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code
will stop converting the STRICT nodes to regular floating-point nodes, but
instead pass the STRICT nodes to the target using normal SelectionDAG
matching rules.
To avoid having the back-end duplicate all the floating-point instruction
patterns to handle both strict and non-strict variants, we make the MI
codegen explicitly aware of the floating-point exceptions by introducing
two new concepts:
- A new MCID flag "mayRaiseFPException" that the target should set on any
instruction that possibly can raise FP exception according to the
architecture definition.
- A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI
instruction resulting from expansion of any constrained FP intrinsic.
Any MI instruction that is *both* marked as mayRaiseFPException *and*
FPExcept then needs to be considered as raising exceptions by MI-level
codegen (e.g. scheduling).
Setting those two new flags is straightforward. The mayRaiseFPException
flag is simply set via TableGen by marking all relevant instruction
patterns in the .td files.
The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes
in the SelectionDAG, and gets inherited in the MachineSDNode nodes created
from it during instruction selection. The flag is then transfered to an
MIFlag when creating the MI from the MachineSDNode. This is handled just
like fast-math flags like no-nans are handled today.
This patch includes both common code changes required to implement the
new features, and the SystemZ implementation.
Reviewed By: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D55506
llvm-svn: 362663
|
| |
|
|
|
|
|
|
| |
is fp"
This reverts commit r362435 as this triggers ICE, see PR42129 for details.
llvm-svn: 362662
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the beginning, the offset of a frame index has been consistently
interpreted backwards. It was treating it as an offset from the
scratch wave offset register as a frame register. The correct
interpretation is the offset from the SP on entry to the function,
before the prolog. Frame index elimination then should select either
SP or another register as an FP.
Treat the scratch wave offset on kernel entry as the pre-incremented
SP. Rely more heavily on the standard hasFP and frame pointer
elimination logic, and clean up the private reservation code. This
saves a copy in most callee functions.
The kernel prolog emission code is still kind of a mess relying on
checking the uses of physical registers, which I would prefer to
eliminate.
Currently selection directly emits MUBUF instructions, which require
using a reference to some register. Use the register chosen for SP,
and then ignore this later. This should probably be cleaned up to use
pseudos that don't refer to any specific base register until frame
index elimination.
Add a workaround for shaders using large numbers of SGPRs. I'm not
sure these cases were ever working correctly, since as far as I can
tell the logic for figuring out which SGPR is the scratch wave offset
doesn't match up with the shader input initialization in the shader
programming guide.
llvm-svn: 362661
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
VADDSSrrb_Int/VADDSDrrb_Int/VMULSSrrb_Int/VMULSDrrb_Int as commutable.
One of the sources controls the pass through value for the upper bits
of the result so we can't really commute it.
In practice this problem isn't a functional issue because we would
only try to commute this instruction in order to fold a load. But
we can't do embedded rounding and fold a load at the same time. So
the load fold would never succeed so I don't think we would ever
commute or at least keep the version after commuting.
llvm-svn: 362647
|
| |
|
|
|
|
|
| |
This has been deprecated for a long time, and mesa recently switched
to amdgpu-flat-work-group-size.
llvm-svn: 362641
|
| |
|
|
|
|
|
| |
These enums are really for the same namespace of flags set on
arbitrary MachineOperands, so merge them to avoid value collisions.
llvm-svn: 362640
|
| |
|
|
|
|
|
|
|
|
|
| |
The current PIC support currently only works with Emscripten, so
disable it for other targets.
This is the PIC portion of https://reviews.llvm.org/D62542.
Reviewed By: dschuff, sbc100
llvm-svn: 362638
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
isAssociativeAndCommutative.
As far as I know these should be freely reassociatable just like
the floating point MAXC/MINC instructions.
The *reduce* test changes are largely regressions and caused by
the "generic" CPU we default to not having a scheduler model.
The machine-combiner-int-vec.ll test shows the positive benefits
of this change.
Differential Revision: https://reviews.llvm.org/D62787
llvm-svn: 362629
|
| |
|
|
|
|
|
|
| |
As suggested in D62498 - collectConcatOps() matches both
concat_vectors and insert_subvector patterns, and we see
more test improvements by using the more general match.
llvm-svn: 362620
|
| |
|
|
|
|
| |
Enables us to use this to split 512-bit vectors in future patches.
llvm-svn: 362617
|
| |
|
|
|
|
|
|
| |
Select floating point compare for MIPS32.
Differential Revision: https://reviews.llvm.org/D62721
llvm-svn: 362603
|
| |
|
|
|
|
|
|
|
|
| |
shuffle(extractsubvector(x),extractsubvector(y))
We already handle the case where we combine shuffle(extractsubvector(x),extractsubvector(x)), this relaxes the requirement to permit different sources as long as they have the same value type.
This causes a couple of cases where the VPERMV3 binary shuffles occur at a wider width than before, which I intend to improve in future commits - but as only the subvector's mask indices are defined, these will broadcast so we don't see any increase in constant size.
llvm-svn: 362599
|
| |
|
|
| |
llvm-svn: 362590
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Generally speaking, we lower to an optimal rotate sequence for nodes visible in
the SDAG. However, there are instances where the two rotates are not visible at
ISEL time - most notably those in a very common sequence when lowering switch
statements to jump tables.
A common situation is a switch on a 32-bit integer. This value has to have the
upper 32 bits cleared and because jump table offsets are word offsets, the value
needs to be shifted left by 2 bits. We currently emit the clear and the left
shift as two separate instructions, but this is not needed as we can lower it to
a single RLDIC.
This patch just cleans that up.
Differential revision: https://reviews.llvm.org/D60402
llvm-svn: 362576
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
-Use early returns to reduce indentation
-Replace multipe ifs with a switch.
-Replace an assert with an llvm_unreachable default in the switch.
-Check that the FP type we're going to use for the
X86ISD::FAND/FOR/FXOR is legal rather than checking that the
integer type matches the width of a legal scalar fp type. This all
runs after legalization so it shouldn't really matter, but making
sure we're using a valid type in the X86ISD node is really
whats important.
llvm-svn: 362565
|
| |
|
|
|
|
|
|
| |
Although we had the support in the prelegalizer combiner to generate the
G_SEXTLOAD or G_ZEXTLOAD ops, the legalizer definitions for arm64 had them as
lowering back to separate ops.
llvm-svn: 362553
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Adjusts the index and adds a bitcast around the vector operand of
EXTRACT_VECTOR_ELT so that its lane type matches the source type of
its parent sext_inreg. Without this bitcast the ISel patterns do not
match and ISel fails.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62646
llvm-svn: 362547
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
during PreProcessIselDAG to cut down on pattern permutations
We already need to have patterns for X86ISD::RNDSCALE to support software intrinsics. But we currently have 5 sets of patterns for the 5 rounding operations. For of these 6 patterns we have to support 3 vectors widths, 2 element sizes, sse/vex/evex encodings, load folding, and broadcast load folding. This results in a fair amount of bytes in the isel table.
This patch adds code to PreProcessIselDAG to morph the fceil/ffloor/ftrunc/fnearbyint/frint to X86ISD::RNDSCALE. This way we can remove everything, but the intrinsic pattern while still allowing the operations to be considered Legal for DAGCombine and Legalization. This shrinks the DAGISel by somewhere between 9K and 10K.
There is one complication to this, the STRICT versions of these nodes are currently mutated to their none strict equivalents at isel time when the node is visited. This won't be true in the future since that loses the chain ordering information. For now I've also added support for the non-STRICT nodes to Select so we can change the STRICT versions there after they've been mutated to their non-STRICT versions. We'll probably need a STRICT version of RNDSCALE or something to handle this in the future. Which will take us back to needing 2 sets of patterns for strict and non-strict, but that's still better than the 11 or 12 sets of patterns we'd need.
We can probably do something similar for scalar, but I haven't looked at it yet.
Differential Revision: https://reviews.llvm.org/D62757
llvm-svn: 362535
|
| |
|
|
|
|
| |
Avoids an unused variable warning in Release builds.
llvm-svn: 362534
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This shows up as a side issue to the main problem for the AVX target example from PR37428:
https://bugs.llvm.org/show_bug.cgi?id=37428 - https://godbolt.org/z/7tpRa3
But as we can see in the pile of existing test diffs, it's actually a widespread problem
that affects any AVX or later target. Apart from a couple of oddballs, I think these are
all improvements for the reasons stated in the code comment: we do not want to enable YMM
unnecessarily (avoid vzeroupper and frequency throttling) and some cores split 256-bit
stores anyway.
We could say that MergeConsecutiveStores() is going overboard on some of these examples,
but that won't solve the problem completely. But that is a reason I'm proposing this as
a lowering rather than a combine: we will infinite loop fighting the merge code if we try
this earlier.
Differential Revision: https://reviews.llvm.org/D62498
llvm-svn: 362524
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Arm Architecture v8.5a introduces Branch Target Identification (BTI). When
enabled all indirect branches must target a bti instruction of the
appropriate form. As PLT sequences may sometimes be the target of an
indirect branch and PLT[0] always is, a static linker may need to generate
PLT sequences that contain "bti c" as the first instruction. In effect:
bti c
adrp x16, page offset to .got.plt
...
Instead of:
adrp x16, page offset to .got.plt
...
At present the PLT decoding assumes the adrp will always be the first
instruction. This patch adds support for a single "bti c" to prefix it. A
test binary has been uploaded with such a PLT sequence. A forthcoming LLD
patch will make heavy use of the PLT decoding code.
Differential Revision: https://reviews.llvm.org/D62598
llvm-svn: 362523
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is to address some of the problems in existing P9 resource modeling,
especially about the dispatching rules.
Instead of using a hypothetical DISPATCHER , we try to use the number of
actual dispatch slots, and define SchedWriteRes to model dispatch rules,
then update instruction classes according to dispatch rules.
All the dispatch rules and instruction classes update are made according
to POWER9 User Manual.
Differential Revision: https://reviews.llvm.org/D61873
llvm-svn: 362509
|
| |
|
|
|
|
|
|
|
|
|
| |
The proposal in D62498 showed that x86 would benefit from vector
store splitting, but that may conflict with the generic DAG
combiner's store merging transforms.
Add memory type to the existing TLI hook that enables the merging
transforms, so we can limit those changes to scalars only for x86.
llvm-svn: 362507
|
| |
|
|
|
|
|
|
| |
match code. NFCI.
As discussed on D62777 - we should be able to use this in more SSE41+ cases as well but that requires us to separate it from the OR(AND(),ANDN()) matcher.
llvm-svn: 362504
|
| |
|
|
|
|
|
|
|
|
|
|
| |
and countTrailingOnes() return unsigned
This matches APInt's versions of these functions, and there is no need for these to be size_t.
(as well as __builtin_clzll())
Differential Revision: https://reviews.llvm.org/D60823
llvm-svn: 362503
|
| |
|
|
| |
llvm-svn: 362495
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change adds two FP16 extraction and two insertion patterns
(one per possible vector length).
Extractions are handled by copying a Q/D register into one of VFP2
class registers, where single FP32 sub-registers can be accessed. Then
the extraction of even lanes are simple sub-register extractions
(because we don't care about the top parts of registers for FP16
operations). Odd lanes need an additional VMOVX instruction.
Unfortunately, insertions cannot be handled in the same way, because:
* There is no instruction to insert FP16 into an even lane (VINS only
works with odd lanes)
* The patterns for odd lanes will have a form of a DAG (not a tree),
and will not be implementable in pure tablegen
Because of this insertions are handled in the same way as 16-bit
integer insertions (with conversions between FP registers and GPRs
using VMOVHR instructions).
Without these patterns the ARM backend would sometimes fail during
instruction selection.
This patch also adds patterns which combine:
* an FP16 element extraction and a store into a single VST1
instruction
* an FP16 load and insertion into a single VLD1 instruction
Differential Revision: https://reviews.llvm.org/D62651
llvm-svn: 362482
|
| |
|
|
| |
llvm-svn: 362477
|
| |
|
|
| |
llvm-svn: 362476
|
| |
|
|
| |
llvm-svn: 362475
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The family of 32-bit Thumb instruction encodings that include t2ORR,
t2AND and t2EOR are all listed in the ArmARM as having (0) in bit 15.
The Tablegen descriptions of those instructions listed them as ?. This
change tightens that up by making them into 0 + Unpredictable.
In the specific case of t2ORR, we tighten it up still further by
making the zero bit mandatory. This change comes from Arm v8.1-M, in
which encodings with that bit equal to 1 will now be used for
different instructions.
Reviewers: dmgreen, samparker, SjoerdMeijer, efriedma
Reviewed By: dmgreen, efriedma
Subscribers: efriedma, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60705
llvm-svn: 362470
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is something of a workaround, and the state of stack realignment
controls is kind of a mess. Ideally, we would be able to specify the
stack is infinitely aligned on entry to a kernel.
TargetFrameLowering provides multiple controls which apply at
different points. The StackRealignable field is used during
SelectionDAG, and for some reason distinct from this
hook. StackAlignment is a single field not dependent on the
function. It would probably be better to make that dependent on the
calling convention, and the maximum value for kernels.
Currently this doesn't really change anything, since the frame
lowering mostly does its own thing. This helps avoid regressions in a
future change which will rely more heavily on hasFP.
llvm-svn: 362447
|