| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
|
|
| |
See bug 39292: https://bugs.llvm.org/show_bug.cgi?id=39292
Reviewers: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D62660
llvm-svn: 362400
|
| |
|
|
| |
llvm-svn: 362395
|
| |
|
|
|
|
|
|
|
|
| |
LanaiMCCodeEmitter.cpp was not using any APIs from Lanai.h, and was only
including it for transitive dependencies. Doing so is problematic from
include-what-you-use perspective, but it is also a layering issue (it
creates a dependency cycle between the primary Lanai target library and
the MCTargetDesc library).
llvm-svn: 362394
|
| |
|
|
| |
llvm-svn: 362392
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Change-Id: If6ee98e4a723b643bc37254fc6ef8b3812db16da
Reviewers: rampitec
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62720
Change-Id: Id547ef152b2f92b24dc1c0efbf7e4467c4fb4b6e
llvm-svn: 362390
|
| |
|
|
|
|
|
|
|
| |
HexagonInstPrinter.cpp was not using any APIs from HexagonAsmPrinter.h.
Doing so is problematic from include-what-you-use perspective, but it is
also a layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362389
|
| |
|
|
| |
llvm-svn: 362388
|
| |
|
|
|
|
|
|
|
| |
HexagonMCInstrInfo.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362387
|
| |
|
|
|
|
|
|
|
| |
HexagonMCCodeEmitter.cpp was not using any APIs from Hexagon.h. Doing
so is problematic from include-what-you-use perspective, but it is also
a layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362386
|
| |
|
|
|
|
|
|
|
| |
HexagonMCCompound.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362385
|
| |
|
|
|
|
|
|
|
|
| |
HexagonShuffler.cpp was not using any APIs from Hexagon.h, and was only
including it for transitive dependencies. Doing so is problematic from
include-what-you-use perspective, but it is also a layering issue (it
creates a dependency cycle between the primary Hexagon target library
and the MCTargetDesc library).
llvm-svn: 362384
|
| |
|
|
|
|
|
|
|
| |
HexagonMCChecker.cpp was not using any APIs from Hexagon.h. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362383
|
| |
|
|
|
|
|
|
|
| |
HexagonMCTargetDesc.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362382
|
| |
|
|
|
|
|
|
|
| |
HexagonMCShuffler.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362381
|
| |
|
|
|
|
|
|
|
|
| |
HexagonELFObjectWriter.cpp was not using any APIs from Hexagon.h, and
was only including it for transitive dependencies. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362376
|
| |
|
|
|
|
|
|
|
| |
HexagonAsmBackend.cpp was not using any APIs from Hexagon.h. Doing so
is problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the MCTargetDesc library).
llvm-svn: 362372
|
| |
|
|
|
|
|
|
|
| |
HexagonAsmParser.cpp was not using any APIs from Hexagon.h. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
Hexagon target library and the AsmParser library).
llvm-svn: 362370
|
| |
|
|
|
|
|
|
|
|
| |
HexagonShuffler.h was not using any APIs from Hexagon.h, and was only
including it for transitive dependencies. Doing so is problematic from
include-what-you-use perspective, but it is also a layering issue (it
creates a dependency cycle between the primary Hexagon target library
and the MCTargetDesc library).
llvm-svn: 362369
|
| |
|
|
|
|
|
|
|
| |
BPFMCTargetDesc.cpp was not using any APIs from BPF.h. Doing so is
problematic from include-what-you-use perspective, but it is also a
layering issue (it creates a dependency cycle between the primary
BPF target library and the MCTargetDesc library).
llvm-svn: 362368
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
- pr42062
When compiling for MinSize,
ARMTargetLowering::LowerCall decides to indirect
multiple calls to a same function. However,
it disconsiders the limitation that thumb1
indirect calls require the callee to be in a
register from r0 to r3 (llvm limiation).
If all those registers are used by arguments, the
compiler dies with "error: run out of registers
during register allocation".
This patch tells the function
IsEligibleForTailCallOptimization if we intend to
perform indirect calls, as to avoid tail call
optimization.
Reviewers: dmgreen, efriedma
Reviewed By: efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62683
llvm-svn: 362366
|
| |
|
|
|
|
|
|
|
|
|
| |
DAGCombiner was hitting a SimpleType assertion when trying to combine
a v3f32 before type legalization.
bugzilla: https://bugs.llvm.org/show_bug.cgi?id=41916
Differential Revision: https://reviews.llvm.org/D62734
llvm-svn: 362365
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
LDWRdPtr would be expanded to ld+ldd. ldd only accepts the pointer register is Y or Z.
So the register class of pointer of LDWRdPtr should be PTRDISPREGS instead of PTRREGS.
Reviewers: dylanmckay
Reviewed By: dylanmckay
Subscribers: dylanmckay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62300
llvm-svn: 362351
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A mixture of internal tests and review of the scheduler models indicates we're overestimating the cost of a masked load, which we're estimating at 4x regular memory ops - more realistic values indicates that its closer to 2x. Masked stores costs are a lot more diverse but 8x is roughly in the middle of the range.
e.g. SandyBridge
defm : X86WriteRes<WriteFMaskedLoad, [SBPort23,SBPort05], 8, [1,2], 3>;
defm : X86WriteRes<WriteFMaskedLoadY, [SBPort23,SBPort05], 9, [1,2], 3>;
defm : X86WriteRes<WriteFMaskedStore, [SBPort4,SBPort01,SBPort23], 5, [1,1,1], 3>;
defm : X86WriteRes<WriteFMaskedStoreY, [SBPort4,SBPort01,SBPort23], 5, [1,1,1], 3>;
e.g. Btver2
defm : X86WriteRes<WriteFMaskedLoad, [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY, [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>;
defm : X86WriteRes<WriteFMaskedStore, [JSAGU, JFPU01, JFPX], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteFMaskedStoreY, [JSAGU, JFPU01, JFPX], 6, [2, 2, 4], 2>;
Differential Revision: https://reviews.llvm.org/D61257
llvm-svn: 362338
|
| |
|
|
|
|
| |
Prep work before resurrecting D61257.
llvm-svn: 362335
|
| |
|
|
|
|
| |
Let's us match horizontal op patterns on fast-variable-shuffle targets (Haswell etc.)
llvm-svn: 362327
|
| |
|
|
|
|
|
|
|
|
| |
bitcast(insert_subvector(x,y),c2)
Move this combine from x86 into generic DAGCombine, which currently only manages cases where the bitcast is between types of the same scalarsize.
Differential Revision: https://reviews.llvm.org/D59188
llvm-svn: 362324
|
| |
|
|
| |
llvm-svn: 362309
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `cfcmsa` and `ctcmsa` instructions accept index of MSA control
register. The MIPS64 SIMD Architecture define eight MSA control
registers. But register index for `cfcmsa` and `ctcmsa` instructions
might be any number in 0..31 range. If the index is greater then 7,
`cfcmsa` writes zero to the destination registers and `ctcmsa` does
nothing [1].
[1] MIPS Architecture for Programmers Volume IV-j:
The MIPS64 SIMD Architecture Module
https://www.mips.com/?do-download=the-mips64-simd-architecture-module
Differential Revision: https://reviews.llvm.org/D62597
llvm-svn: 362299
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
If we would allow register coalescing on PTRDISPREGS class then register
allocator can lock Z register to some virtual register. Larger instructions
requiring a memory acces then fail during the register allocation phase since
there is no available register to hold a pointer if Y register was already
taken for a stack frame. This patch prevents it by keeping Z register
spillable. It does it by not allowing coalescer to lock it.
Original discussion on https://github.com/avr-rust/rust/issues/128.
llvm-svn: 362298
|
| |
|
|
|
|
| |
folding tables.
llvm-svn: 362288
|
| |
|
|
|
|
|
|
|
| |
output to make it easier to diff.
Fix a few other formatting issues in the manual table. And remove some
old FIXMEs.
llvm-svn: 362287
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CodeView has its own register map which is defined in cvconst.h. Missing this
mapping before saving register to CodeView causes debugger to show incorrect
value for all register based variables, like variables in register and local
variables addressed by register (stack pointer + offset).
This change added mapping between LLVM register and CodeView register so the
correct register number will be stored to CodeView/PDB, it aso fixed the
mapping from CodeView register number to register name based on current
CPUType but print PDB to yaml still assumes X86 CPU and needs to be fixed.
Differential Revision: https://reviews.llvm.org/D62608
llvm-svn: 362280
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
It looks like since INLINEASM_BR was created off of INLINEASM (r353563),
a few checks for INLINEASM needed to be updated to check for either
case.
pr/41999
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: nemanjai, hiraditya, kbarton, jsji, llvm-commits, craig.topper, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62403
llvm-svn: 362278
|
| |
|
|
|
|
| |
Fixes missing test from r293000.
llvm-svn: 362275
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
AMDGPU uses multiplier 9 for the inline cost. It is taken into account
everywhere except for inline hint threshold. As a result we are penalizing
functions with the inline hint making them less probable to be inlined
than those without the hint. Defaults are 225 for a normal function and
325 for a function with an inline hint. Currently we have effective
threshold 225 * 9 = 2025 for normal functions and just 325 for those with
the hint. That is fixed by this patch.
Differential Revision: https://reviews.llvm.org/D62707
llvm-svn: 362239
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In PPCReduceCRLogicals after splitting the original MBB into 2, the 2 impacted branches still use original branch probability. This is unreasonable. Suppose we have following code, and the probability of each successor is 50%.
condc = conda || condb
br condc, label %target, label %fallthrough
It can be transformed to following,
br conda, label %target, label %newbb
newbb:
br condb, label %target, label %fallthrough
Since each branch has a probability of 50% to each successor, the total probability to %fallthrough is 25% now, and the total probability to %target is 75%. This actually changed the original profiling data. A more reasonable probability can be set to 70% to the false side for each branch instruction, so the total probability to %fallthrough is close to 50%.
This patch assumes the branch target with two incoming edges have same edge frequency and computes new probability fore each target, and keep the total probability to original targets unchanged.
Differential Revision: https://reviews.llvm.org/D62430
llvm-svn: 362237
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
* WHILEGE, WHILEGT, WHILEHS, WHILEHI, WHILEWR, WHILERW
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62601
llvm-svn: 362215
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A three sources variant of the TBL instruction is added to the existing
SVE instruction in SVE2. This is implemented with minor changes to the
existing TableGen class. TBX is a new instruction with its own
definition.
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62600
llvm-svn: 362214
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Patch adds support for the following instructions:
* STNT1B, STNT1H, STNT1S, STNT1D
The specification can be found here:
https://developer.arm.com/docs/ddi0602/latest
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D62599
llvm-svn: 362213
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Handle position independent code for MIPS32.
When callee is global address, lower call will emit callee
as G_GLOBAL_VALUE and add target flag if needed.
Support $gp in getRegBankFromRegClass().
Select G_GLOBAL_VALUE, specially handle case when
there are target flags attached by lowerCall.
Differential Revision: https://reviews.llvm.org/D62589
llvm-svn: 362210
|
| |
|
|
|
|
|
|
|
|
|
| |
Move initGlobalBaseReg from MipsSEDAGToDAGISel to MipsFunctionInfo.
This way functions used for handling position independent code during
instruction selection, getGlobalBaseReg and initGlobalBaseReg,
end up in same class.
Differential Revision: https://reviews.llvm.org/D62586
llvm-svn: 362206
|
| |
|
|
|
|
|
|
|
| |
Lower call for callee that is register for MIPS32.
Register should contain callee function address.
Differential Revision: https://reviews.llvm.org/D62585
llvm-svn: 362204
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
These patterns can incorrectly narrow a volatile load from 128-bits to 64-bits.
Similar to PR42079.
Switch to using (v4i32 (bitcast (v2i64 (scalar_to_vector (loadi64))))) as the
load pattern used in the instructions.
This probably still has issues in 32-bit mode where loadi64 isn't legal. Maybe
we should use VZMOVL for widened loads even when we don't need the upper bits
as zeroes?
llvm-svn: 362203
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
extloads instead.
DAG combine will usually fold fpextend+load to an fp extload anyway. So the
256 and 512 patterns were probably unnecessary. The 128 bit pattern was special
in that it looked for a v4f32 load, but then used it in an instruction that
only loads 64-bits. This is bad if the load happens to be volatile. We could
probably make the patterns volatile aware, but that's more work for something
that's probably rare. The peephole pass might kick in and save us anyway. We
might also be able to fix this with some additional DAG combines.
This also adds patterns for vselect+extload to enabled masked vcvtps2pd to be
used. Previously we looked for the unlikely vselect+fpextend+load.
llvm-svn: 362199
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instructions.
This makes the 5 address operands come first. And the data operand comes last.
This matches the operand order the instruction is created with. It's also the
expected order in X86MCInstLower. So everything appeared to work, but the
operands didn't match their declared type.
Fixes a -verify-machineinstrs failure.
Also remove the isel patterns from these instructions since they should only
be used for stack spills and reloads. I'm not even sure what types the patterns
were looking for to match.
llvm-svn: 362193
|
| |
|
|
|
|
|
|
|
|
| |
Support Intel AVX512 VP2INTERSECT instructions in llvm
Patch by Xiang Zhang (xiangzhangllvm)
Differential Revision: https://reviews.llvm.org/D62366
llvm-svn: 362188
|
| |
|
|
|
|
|
|
|
|
| |
extloadv2f32/extloadv4f32/extloadv8f32 PatFrags. NFC
The result types aren't mentioned in the pattern name so really shouldn't be in the PatFrags.
The users of these either have their own type constraint or rely on the type constranit system to realize the only legal extend would be to f64.
llvm-svn: 362175
|
| |
|
|
|
|
|
|
|
|
| |
v2f32/v4f32/v8f32 as Legal for SSE2/AVX/AVX512 respectively. NFC
The LoadExt table defaults to all combinations being Legal. For
vector types, only src VTs with an i1 element type were ever changed.
So we don't need to mark them legal manually.
llvm-svn: 362170
|
| |
|
|
|
|
| |
Avoids crashing in PEI in a future change.
llvm-svn: 362136
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With LLPC, previous investigation has suggested that si-scheduler
interacts badly with SiFormMemoryClauses on an XNACK target in some
games.
That needs further investigation in the future. In the meantime, this
commit adds a target-specific attribute to allow us to disable
SIFormMemoryClauses by setting it to 1 on a per-function basis for LLPC
to use.
Differential Revision: https://reviews.llvm.org/D62572
Change-Id: Ia0ca12ce79093cbbe86caded723ffb13384ede92
llvm-svn: 362127
|