| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
| |
This reverts commit r312879 - An accidental partial commit.
llvm-svn: 312880
|
| |
|
|
| |
llvm-svn: 312879
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Just because INC/DEC is a little slow on some processors doesn't mean we shouldn't prefer it when optimizing for size.
This appears to match gcc behavior.
Reviewers: chandlerc, zvi, RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37177
llvm-svn: 312866
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is intended to be a superset of the functionality from D31037 (EarlyCSE) but implemented
as an independent pass, so there's no stretching of scope and feature creep for an existing pass.
I also proposed a weaker version of this for SimplifyCFG in D30910. And I initially had almost
this same functionality as an addition to CGP in the motivating example of PR31028:
https://bugs.llvm.org/show_bug.cgi?id=31028
The advantage of positioning this ahead of SimplifyCFG in the pass pipeline is that it can allow
more flattening. But it needs to be after passes (InstCombine) that could sink a div/rem and
undo the hoisting that is done here.
Decomposing remainder may allow removing some code from the backend (PPC and possibly others).
Differential Revision: https://reviews.llvm.org/D37121
llvm-svn: 312862
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
test
Summary:
Once we've done our custom isel for these nodes, I think we should be calling removeDeadNode to prune them out of the DAG. Table driven isel ultimately either calls morphNodeTo which modifies a node and doesn't leave dead nodes. Or it emits new nodes and then calls removeDeadNode as part of Opc_CompleteMatch.
If you run a simple multiply test case like this through llc with -debug you'll see a umul_lohi node get printed as part of the dump for Instruction Selection ends.
```
define i64 @foo(i64 %a, i64 %b) local_unnamed_addr #0 {
entry:
%conv = zext i64 %a to i128
%conv1 = zext i64 %b to i128
%mul = mul nuw nsw i128 %conv1, %conv
%shr = lshr i128 %mul, 64
%conv2 = trunc i128 %shr to i64
ret i64 %conv2
}
```
Reviewers: RKSimon, spatel, zvi, guyblank, niravd
Reviewed By: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37547
llvm-svn: 312857
|
| |
|
|
|
|
|
|
| |
X86ISD::SHRUNKBLEND to ISD::VSELECT during isel.
This ensures that the SHRUNKBLEND node gets erased immediately.
llvm-svn: 312856
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The lxv/stxv instructions require an offset that is 0 % 16. Previously we were
selecting lxv/stxv for loads and stores to the stack where the offset from the
slot was a multiple of 16, but the stack slot was not 16 or more byte aligned.
When the frame gets lowered these transform to r(1|31) + slot + offset.
If slot is not aligned, slot + offset may not be 0 % 16.
Now we require 16 byte or more alignment for select lxv/stxv to stack slots.
Includes a testcase that shows both sufficiently and insufficiently aligned
stack slots.
llvm-svn: 312843
|
| |
|
|
| |
llvm-svn: 312836
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixed an issue in printImm64Operand where if the value is
an expression, print out the expression properly. Currently,
it will print
r1 = <MCOperand Expr:(tx_port)>ll
With the patch, the printout will be
r1 = tx_port
Suggested-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 312833
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
We have a lot of operand definition work essentially producing
every valid permutation of operands to workaround builiding
operand lists based on the instruction features. Apparently tablegen
already has a mostly undocumented operator to concat dags which
simplies this.
Convert one simple place to use this. The BUF instruction definitions
have much more complicated logic that can be totally rewritten now.
llvm-svn: 312822
|
| |
|
|
|
|
|
|
| |
The various scalar bit operations set SCC,
so one is erased or moved it needs to be recomputed.
Not sure why the existing tests don't fail on this.
llvm-svn: 312819
|
| |
|
|
| |
llvm-svn: 312809
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
SLP vectorizer supports horizontal reductions for Add/FAdd binary
operations. Patch adds support for horizontal min/max reductions.
Function getReductionCost() is split to getArithmeticReductionCost() for
binary operation reductions and getMinMaxReductionCost() for min/max
reductions.
Patch fixes PR26956.
Differential revision: https://reviews.llvm.org/D27846
llvm-svn: 312791
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This fixes code-gen for XRay in PPC. The regression wasn't caught by
codegen tests which we add in this change.
What happened was the following:
- For tail exits, we used to unconditionally prepend the returns/exits
with a pseudo-instruction that gets lowered to the instrumentation
sled (and leave the actual return/exit instruction as-is).
- Changes to the XRay instrumentation pass caused the tail exits to
suddenly also emit the tail exit pseudo-instruction, since the check
for whether a return instruction was also a call instruction meant it
was a tail exit instruction.
- None of the tests caught the regression either due to non-existent
tests, or the tests being disabled/removed for continuous breakage.
This change re-introduces some of the basic tests and verifies that
we're back to a state that allows the back-end to generate appropriate
XRay instrumented binaries for PPC in the presence of tail exits.
Reviewers: echristo, timshen
Subscribers: nemanjai, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D37570
llvm-svn: 312772
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cover the bitwise operators.
Nothing really exciting here, this just stamps out the rest of the core
operations that can RMW memory and set flags.
Still not implemented here: ADC, SBB. Those will require more
interesting logic to channel the flags *in*, and I'm not currently
planning to try to tackle that. It might be interesting for someone who
wants to improve our code generation for bignum implementations.
Differential Revision: https://reviews.llvm.org/D37141
llvm-svn: 312768
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
operands and used flags to support matching immediate operands.
This is a bit trickier than register operands, and we still want to fall
back on a register operands even for things that appear to be
"immediates" when they won't actually select into the operation's
immediate operand. This also requires us to handle things like selecting
`sub` vs. `add` to minimize the number of bits needed to represent the
immediate, and picking the shortest immediate encoding. In order to
that, we in turn need to scan to make sure that CF isn't used as it will
get inverted.
The end result seems very nice though, and we're now generating
optimal instruction sequences for these patterns IMO.
A follow-up patch will further expand this to other operations with RMW
memory operands. But handing `add` and `sub` are useful starting points
to flesh out the machinery and make sure interesting and complex cases
can be handled.
Thanks to Craig Topper who provided a few fixes and improvements to this
patch in addition to the review!
Differential Revision: https://reviews.llvm.org/D37139
llvm-svn: 312764
|
| |
|
|
|
|
|
| |
Many of these uses can get by with forward declarations. Hopefully this
speeds up compilation after adding a single intrinsic.
llvm-svn: 312759
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
For now CUDA-9 is not included in the list of CUDA versions clang
searches for, so the path to CUDA-9 must be explicitly passed
via --cuda-path=.
On LLVM side NVPTX added sm_70 GPU type which bumps required
PTX version to 6.0, but otherwise is equivalent to sm_62 at the moment.
Differential Revision: https://reviews.llvm.org/D37576
llvm-svn: 312734
|
| |
|
|
| |
llvm-svn: 312732
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D36862
llvm-svn: 312729
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D37397
llvm-svn: 312725
|
| |
|
|
|
|
|
|
| |
These don't add any value as they're just compositions of existing
patterns. However, they can confuse the cost logic in ISel, leading to
duplicated vcvt instructions like in PR33199.
llvm-svn: 312724
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(VF{8|16|32} stride 3).
This patch expands the support of lowerInterleavedload to {8|16|32}x8i stride 3.
LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=3 VF={8|16|32}) and we plan to include the store (deinterleved side).
The patch goal is to optimize the following sequence:
a0 b0 c0 a1 b1 c1 a2 b2
c2 a3 b3 c3 a4 b4 c4 a5
b5 c5 a6 b6 c6 a7 b7 c7
into
a0 a1 a2 a3 a4 a5 a6 a7
b0 b1 b2 b3 b4 b5 b6 b7
c0 c1 c2 c3 c4 c5 c6 c7
Reviewers
1. zvi
2. igor
3. guyblank
4. dorit
5. Ayal
llvm-svn: 312722
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This change converts the `MipsAsmBackend` constructor to the "standard"
form. It makes possible to use `RegisterMCAsmBackend` for the backends
registrations. Now we pass `Triple` instance to the `MipsAsmBackend`
ctor and deduce all required options like endianness and bitness from
the triple. We still need to implement explicit ABI checking for
providing correct options to backends.
Differential revision: https://reviews.llvm.org/D37519
llvm-svn: 312720
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ARM, BPF, MSP430, Sparc and Mips backends all use a similar code sequence
for lowering SelectCC. As pointed out by @reames in D29937, this code isn't
particularly clear and in most of these backends doesn't actually match the
comments. This patch makes the code sequence clearer for the Sparc backend
through better variable naming and more accurate comments (e.g. we are
inserting triangle control flow, _not_ diamond). There is no functional
change.
Differential Revision: https://reviews.llvm.org/D37194
llvm-svn: 312713
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add patterns for
fptoui <16 x float> to <16 x i8>
fptoui <16 x float> to <16 x i16>
Reviewers: igorb, delena, craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37505
llvm-svn: 312704
|
| |
|
|
|
|
|
|
|
|
| |
element types so we can remove some patterns from isel.
Intrinsic handling is still creating these nodes with 32-bit elements as well. But at least this gets rid of 8 and 16.
Ideally, someday we'll convert the intrinsics to generic vector shuffles and remove the intrinsics.
llvm-svn: 312702
|
| |
|
|
|
|
|
| |
Keeping non-i16 extloads makes it easier to match some new
gfx9 load instructions.
llvm-svn: 312699
|
| |
|
|
|
|
|
|
| |
X86ISD::MOVSD.
I don't think we ever generate these. If we did, I would expect we would also be able to generate v16f32 and v8f64, but we don't have those patterns.
llvm-svn: 312694
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Globals that are promoted to an ARM constant pool may alias with another
existing constant pool entry. We need to keep a reference to all globals
that were promoted to each constant pool value so that we can emit a
distinct label for each promoted global. These labels are necessary so
that debug info can refer to the promoted global without an undefined
reference during linking.
Patch by Stephen Crane!
llvm-svn: 312692
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D37325
llvm-svn: 312676
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Tail merging can convert an undef use into a normal one when creating a
common tail. Doing so can make the register live out from a block which
previously contained the undef use. To keep the liveness up-to-date,
insert IMPLICIT_DEFs in such blocks when necessary.
To enable this patch the computeLiveIns() function which used to
compute live-ins for a block and set them immediately is split into new
functions:
- computeLiveIns() just computes the live-ins in a LivePhysRegs set.
- addLiveIns() applies the live-ins to a block live-in list.
- computeAndAddLiveIns() is a convenience function combining the other
two functions and behaving like computeLiveIns() before this patch.
Based on a patch by Krzysztof Parzyszek <kparzysz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D37034
llvm-svn: 312668
|
| |
|
|
|
|
| |
This moves more of our subvector insert/extract tricks to X86InstrVecCompiler.td and refactors them into multiclasses.
llvm-svn: 312661
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D37522
llvm-svn: 312660
|
| |
|
|
| |
llvm-svn: 312650
|
| |
|
|
|
|
|
|
|
|
|
|
| |
patterns from SSE and AVX512
This patch moves some of similar non-instruction patterns from X86InstrSSE.td and X86InstrAVX512.td to a common file.
This is intended as a starting point. There are many other optimization patterns that exist in both files that we could move here.
Differential Revision: https://reviews.llvm.org/D37455
llvm-svn: 312649
|
| |
|
|
| |
llvm-svn: 312644
|
| |
|
|
|
|
|
|
| |
Flat loads do not have vdata operand but have vdst instead.
Differential Revision: https://reviews.llvm.org/D37502
llvm-svn: 312640
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Mesa still uses a hack where empty inline assembly is used as a kind of
optimization barrier. This exposed a problem where not enough wait states
were inserted, because the hazard recognizer implicitly assumed that each
inline assembly "instruction" has at least one wait state.
Reviewers: arsenm
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D37205
llvm-svn: 312635
|
| |
|
|
|
|
|
|
|
|
| |
As noted in PR34080, a lot of x87 instructions alter the FPSW status register (or leave it in an undefined state) but aren't tagged as such in the tablegen.
This patch tags the control word, stack, wait and math instructions as altering FPSW, which matches what the AMD APMs suggests happens.
Differential Revision: https://reviews.llvm.org/D36414
llvm-svn: 312629
|
| |
|
|
| |
llvm-svn: 312624
|
| |
|
|
|
|
|
|
|
|
|
| |
performing a zext of a register.
On the PR there is discussion of how to more effectively handle this,
but this patch prevents us from miscompiling code.
Differential Revision: https://reviews.llvm.org/D37504
llvm-svn: 312620
|
| |
|
|
|
|
| |
This matches what we already do for AVX512. The peephole pass makes up for this in most if not all cases. But this makes isel behavior for these consistent with every other instruction.
llvm-svn: 312613
|
| |
|
|
|
|
|
| |
xscvdpspn was not introduced until the P8, so don't use it on the P7. Fixes a
regression introduced in r288152.
llvm-svn: 312612
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Most instructions in AVX work “in-lane”, that is, each source element is applied only to other
elements of the same lane, thus a cross lane permutation is costly and needs more than one instrution.
AVX2 includes instructions to perform any-to-any permutation of words over a 256-bit register
and vectorized table lookup.
This should also Fix PR34369
Differential Revision: https://reviews.llvm.org/D37388
llvm-svn: 312608
|
| |
|
|
|
|
|
|
|
| |
When packet size equals packet align and is power of 2, transform
__read_pipe* and __write_pipe* to specialized library function.
Differential Revision: https://reviews.llvm.org/D36831
llvm-svn: 312598
|
| |
|
|
|
|
|
|
|
|
|
| |
Missing these could potentially screw up post-ra scheduling.
Issue found by inspection, so I don't have a real testcase. Included
test just verifies the expected operands after expansion.
Differential Revision: https://reviews.llvm.org/D35156
llvm-svn: 312589
|
| |
|
|
|
|
|
|
| |
This allows -run-pass etc. to refer to it.
(Split off from D35156.)
llvm-svn: 312587
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FR32X)))) patterns
We had already disabled the pattern for SSE4.1 and SSE4.2. But it got re-enabled for AVX and AVX512.
With SSE41 we rely on a separate (v4f32 (X86vzmovl VR128)) pattern to select blendps with a xorps to create zeroess. And a separate (v4f32 (scalar_to_vector FR32X)) to select a COPY_TO_REG_CLASS to move FR32 to VR128
The same thing can happen for AVX with vblendps and those separate patterns already exist.
For AVX512, (v4f32 (X86vzmov VR128)) will select a VMOVSS instruction instead of VBLENDPS due to their not being a EVEX VBLENDPS. This is what we were getting out of the larger pattern anyway. So the larger pattern is unneeded for AVX512 too.
For SSE1-SSSE3 we can rely on (v4f32 (X86vzmov VR128)) selecting a MOVSS similar to AVX512. Again this is what the larger pattern did too.
So the only real change here is that AVX1/2 now properly outputs a VBLENDPS during isel instead of a VMOVSS to match SSE41. Most tests didn't notice because the two address instruction pass knows how to turn VMOVSS into VBLENDPS to get an independent destination register.
llvm-svn: 312564
|
| |
|
|
|
|
|
|
|
| |
- Refactor SIMemOpInfo's constructors
- Allow construction of NotAtomic SIMemOpInfo
Differential Revision: https://reviews.llvm.org/D37396
llvm-svn: 312563
|