summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86RetpolineThunks.cpp
Commit message (Collapse)AuthorAgeFilesLines
* [X86][NFC] Generalize the naming of "Retpoline Thunks" and related code to ↵Scott Constable2020-06-241-286/+0
| | | | | | | | | | | | "Indirect Thunks" There are applications for indirect call/branch thunks other than retpoline for Spectre v2, e.g., https://software.intel.com/security-software-guidance/software-guidance/load-value-injection Therefore it makes sense to refactor X86RetpolineThunks as a more general capability. Differential Revision: https://reviews.llvm.org/D76810
* [X86] Fix uninitialized variable warnings. NFCI.Simon Pilgrim2019-11-041-6/+6
|
* [NewPM] Port MachineModuleInfo to the new pass manager.Yuanfang Chen2019-09-301-3/+3
| | | | | | | | | | | | | Existing clients are converted to use MachineModuleInfoWrapperPass. The new interface is for defining a new pass manager API in CodeGen. Reviewers: fedor.sergeev, philip.pfaffe, chandlerc, arsenm Reviewed By: arsenm, fedor.sergeev Differential Revision: https://reviews.llvm.org/D64183 llvm-svn: 373240
* [Alignment][NFC] Remove unneeded llvm:: scoping on Align typesGuillaume Chatelet2019-09-271-1/+1
| | | | llvm-svn: 373081
* [Alignment][NFC] Remove LogAlignment functionsGuillaume Chatelet2019-09-181-1/+1
| | | | | | | | | | | | | | | | | Summary: This is patch is part of a series to introduce an Alignment type. See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html See this patch for the introduction of the type: https://reviews.llvm.org/D64790 Reviewers: courbet Subscribers: arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, MaskRay, atanasyan, jsji, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D67620 llvm-svn: 372231
* [LLVM][Alignment] Make functions using log of alignment explicitGuillaume Chatelet2019-09-051-1/+1
| | | | | | | | | | | | | | | | | | | | | Summary: This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align. The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment. A few renames uncovered dubious assignments: - `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation. - `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation, - `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation, Reviewers: lattner, thegameg, courbet Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet Tags: #llvm Differential Revision: https://reviews.llvm.org/D65945 llvm-svn: 371045
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [Spectre] Fix MIR verifier errors in retpoline thunksReid Kleckner2018-10-261-6/+17
| | | | | | | | | | | | | | | | | | | | | | | Summary: The main challenge here is that X86InstrInfo::AnalyzeBranch doesn't understand the way we're using a CALL instruction as a branch, so we can't list the CallTarget MBB as a successor of the entry block. If we don't list it as a successor, then the AsmPrinter doesn't print a label for the MBB. Fix the issue by inserting our own label at the beginning of the call target block. We can rely on the AsmPrinter to always emit it, even though the block appears to be unreachable, but address-taken. Fixes PR38391. Reviewers: thegameg, chandlerc, echristo Subscribers: hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D53653 llvm-svn: 345426
* [x86/retpoline] Split the LLVM concept of retpolines into separateChandler Carruth2018-08-231-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | subtarget features for indirect calls and indirect branches. This is in preparation for enabling *only* the call retpolines when using speculative load hardening. I've continued to use subtarget features for now as they continue to seem the best fit given the lack of other retpoline like constructs so far. The LLVM side is pretty simple. I'd like to eventually get rid of the old feature, but not sure what backwards compatibility issues that will cause. This does remove the "implies" from requesting an external thunk. This always seemed somewhat questionable and is now clearly not desirable -- you specify a thunk the same way no matter which set of things are getting retpolines. I really want to keep this nicely isolated from end users and just an LLVM implementation detail, so I've moved the `-mretpoline` flag in Clang to no longer rely on a specific subtarget feature by that name and instead to be directly handled. In some ways this is simpler, but in order to preserve existing behavior I've had to add some fallback code so that users who relied on merely passing -mretpoline-external-thunk continue to get the same behavior. We should eventually remove this I suspect (we have never tested that it works!) but I've not done that in this patch. Differential Revision: https://reviews.llvm.org/D51150 llvm-svn: 340515
* Rename DEBUG macro to LLVM_DEBUG.Nicola Zaghen2018-05-141-1/+1
| | | | | | | | | | | | | | | | The DEBUG() macro is very generic so it might clash with other projects. The renaming was done as follows: - git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g' - git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM - Manual change to APInt - Manually chage DOCS as regex doesn't match it. In the transition period the DEBUG() macro is still present and aliased to the LLVM_DEBUG() one. Differential Revision: https://reviews.llvm.org/D43624 llvm-svn: 332240
* Create a MachineBasicBlock for created IR-level BasicBlockJessica Paquette2018-05-011-0/+9
| | | | | | | | | | | | | | | | | | | While running the lit tests for the most recent version of D45916 (https://reviews.llvm.org/D45916), I found that a couple tests for this pass suddenly started segfaulting. Since the outliner wasn't actually doing anything to the code in either of these tests I got curious. I found that the pass doesn’t completely create the machine-level constructs necessary to actually add a MachineFunction and MachineBasicBlock to the module. This patch adds in those missing bits. After this, adding the outliner before this pass won’t cause it to segfault. You can recreate this behaviour by adding the MachineOutliner directly before the pass and having it return false immediately. https://reviews.llvm.org/D46330 llvm-svn: 331307
* [X86] Remove dead code from retpoline thunk generationReid Kleckner2018-02-141-26/+0
| | | | | | Follow-up to r325049 llvm-svn: 325085
* [X86] Use EDI for retpoline when no scratch regs are leftReid Kleckner2018-02-131-31/+11
| | | | | | | | | | | | | | | | | | | | Summary: Instead of solving the hard problem of how to pass the callee to the indirect jump thunk without a register, just use a CSR. At a call boundary, there's nothing stopping us from using a CSR to hold the callee as long as we save and restore it in the prologue. Also, add tests for this mregparm=3 case. I wrote execution tests for __llvm_retpoline_push, but they never got committed as lit tests, either because I never rewrote them or because they got lost in merge conflicts. Reviewers: chandlerc, dwmw2 Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D43214 llvm-svn: 325049
* [x86] Make the retpoline thunk insertion a machine function pass.Chandler Carruth2018-01-311-50/+85
| | | | | | | | | | | | | | | | | | | | Summary: This removes the need for a machine module pass using some deeply questionable hacks. This should address PR36123 which is a case where in full LTO the memory usage of a machine module pass actually ended up being significant. We should revert this on trunk as soon as we understand and fix the memory usage issue, but we should include this in any backports of retpolines themselves. Reviewers: echristo, MatzeB Subscribers: sanjoy, mcrosier, mehdi_amini, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D42726 llvm-svn: 323915
* Introduce the "retpoline" x86 mitigation technique for variant #2 of the ↵Chandler Carruth2018-01-221-0/+276
speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre.. Summary: First, we need to explain the core of the vulnerability. Note that this is a very incomplete description, please see the Project Zero blog post for details: https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html The basis for branch target injection is to direct speculative execution of the processor to some "gadget" of executable code by poisoning the prediction of indirect branches with the address of that gadget. The gadget in turn contains an operation that provides a side channel for reading data. Most commonly, this will look like a load of secret data followed by a branch on the loaded value and then a load of some predictable cache line. The attacker then uses timing of the processors cache to determine which direction the branch took *in the speculative execution*, and in turn what one bit of the loaded value was. Due to the nature of these timing side channels and the branch predictor on Intel processors, this allows an attacker to leak data only accessible to a privileged domain (like the kernel) back into an unprivileged domain. The goal is simple: avoid generating code which contains an indirect branch that could have its prediction poisoned by an attacker. In many cases, the compiler can simply use directed conditional branches and a small search tree. LLVM already has support for lowering switches in this way and the first step of this patch is to disable jump-table lowering of switches and introduce a pass to rewrite explicit indirectbr sequences into a switch over integers. However, there is no fully general alternative to indirect calls. We introduce a new construct we call a "retpoline" to implement indirect calls in a non-speculatable way. It can be thought of loosely as a trampoline for indirect calls which uses the RET instruction on x86. Further, we arrange for a specific call->ret sequence which ensures the processor predicts the return to go to a controlled, known location. The retpoline then "smashes" the return address pushed onto the stack by the call with the desired target of the original indirect call. The result is a predicted return to the next instruction after a call (which can be used to trap speculative execution within an infinite loop) and an actual indirect branch to an arbitrary address. On 64-bit x86 ABIs, this is especially easily done in the compiler by using a guaranteed scratch register to pass the target into this device. For 32-bit ABIs there isn't a guaranteed scratch register and so several different retpoline variants are introduced to use a scratch register if one is available in the calling convention and to otherwise use direct stack push/pop sequences to pass the target address. This "retpoline" mitigation is fully described in the following blog post: https://support.google.com/faqs/answer/7625886 We also support a target feature that disables emission of the retpoline thunk by the compiler to allow for custom thunks if users want them. These are particularly useful in environments like kernels that routinely do hot-patching on boot and want to hot-patch their thunk to different code sequences. They can write this custom thunk and use `-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this case, on x86-64 thu thunk names must be: ``` __llvm_external_retpoline_r11 ``` or on 32-bit: ``` __llvm_external_retpoline_eax __llvm_external_retpoline_ecx __llvm_external_retpoline_edx __llvm_external_retpoline_push ``` And the target of the retpoline is passed in the named register, or in the case of the `push` suffix on the top of the stack via a `pushl` instruction. There is one other important source of indirect branches in x86 ELF binaries: the PLT. These patches also include support for LLD to generate PLT entries that perform a retpoline-style indirection. The only other indirect branches remaining that we are aware of are from precompiled runtimes (such as crt0.o and similar). The ones we have found are not really attackable, and so we have not focused on them here, but eventually these runtimes should also be replicated for retpoline-ed configurations for completeness. For kernels or other freestanding or fully static executables, the compiler switch `-mretpoline` is sufficient to fully mitigate this particular attack. For dynamic executables, you must compile *all* libraries with `-mretpoline` and additionally link the dynamic executable and all shared libraries with LLD and pass `-z retpolineplt` (or use similar functionality from some other linker). We strongly recommend also using `-z now` as non-lazy binding allows the retpoline-mitigated PLT to be substantially smaller. When manually apply similar transformations to `-mretpoline` to the Linux kernel we observed very small performance hits to applications running typical workloads, and relatively minor hits (approximately 2%) even for extremely syscall-heavy applications. This is largely due to the small number of indirect branches that occur in performance sensitive paths of the kernel. When using these patches on statically linked applications, especially C++ applications, you should expect to see a much more dramatic performance hit. For microbenchmarks that are switch, indirect-, or virtual-call heavy we have seen overheads ranging from 10% to 50%. However, real-world workloads exhibit substantially lower performance impact. Notably, techniques such as PGO and ThinLTO dramatically reduce the impact of hot indirect calls (by speculatively promoting them to direct calls) and allow optimized search trees to be used to lower switches. If you need to deploy these techniques in C++ applications, we *strongly* recommend that you ensure all hot call targets are statically linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well tuned servers using all of these techniques saw 5% - 10% overhead from the use of retpoline. We will add detailed documentation covering these components in subsequent patches, but wanted to make the core functionality available as soon as possible. Happy for more code review, but we'd really like to get these patches landed and backported ASAP for obvious reasons. We're planning to backport this to both 6.0 and 5.0 release streams and get a 5.0 release with just this cherry picked ASAP for distros and vendors. This patch is the work of a number of people over the past month: Eric, Reid, Rui, and myself. I'm mailing it out as a single commit due to the time sensitive nature of landing this and the need to backport it. Huge thanks to everyone who helped out here, and everyone at Intel who helped out in discussions about how to craft this. Also, credit goes to Paul Turner (at Google, but not an LLVM contributor) for much of the underlying retpoline design. Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits Differential Revision: https://reviews.llvm.org/D41723 llvm-svn: 323155
OpenPOWER on IntegriCloud