summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp
Commit message (Collapse)AuthorAgeFilesLines
* [X86] Add an Unoptimized Load Value Injection (LVI) Load Hardening PassScott Constable2020-06-241-0/+76
| | | | | | | | | | @nikic raised an issue on D75936 that the added complexity to the O0 pipeline was causing noticeable slowdowns for `-O0` builds. This patch addresses the issue by adding a pass with equal security properties, but without any optimizations (and more importantly, without the need for expensive analysis dependencies). Reviewers: nikic, craig.topper, mattdr Reviewed By: craig.topper, mattdr Differential Revision: https://reviews.llvm.org/D80964
* [X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)Scott Constable2020-06-241-3/+306
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After finding all such gadgets in a given function, the pass minimally inserts LFENCE instructions in such a manner that the following property is satisfied: for all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at least one LFENCE instruction. The algorithm that implements this minimal insertion is influenced by an academic paper that minimally inserts memory fences for high-performance concurrent programs: http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf The algorithm implemented in this pass is as follows: 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the following components: -SOURCE instructions (also includes function arguments) -SINK instructions -Basic block entry points -Basic block terminators -LFENCE instructions 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e., gadgets) are already mitigated by existing LFENCEs. If all gadgets have been mitigated, go to step 6. 3. Use a heuristic or plugin to approximate minimal LFENCE insertion. 4. Insert one LFENCE along each CFG edge that was cut in step 3. 5. Go to step 2. 6. If any LFENCEs were inserted, return true from runOnFunction() to tell LLVM that the function was modified. By default, the heuristic used in Step 3 is a greedy heuristic that avoids inserting LFENCEs into loops unless absolutely necessary. There is also a CLI option to load a plugin that can provide even better optimization, inserting fewer fences, while still mitigating all of the LVI gadgets. The plugin can be found here: https://github.com/intel/lvi-llvm-optimization-plugin, and a description of the pass's behavior with the plugin can be found here: https://software.intel.com/security-software-guidance/insights/optimized-mitigation-approach-load-value-injection. Differential Revision: https://reviews.llvm.org/D75937
* [X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) ↵Scott Constable2020-06-241-0/+521
| | | | | | | | | | | | | | Gadgets Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph. More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK). Also adds a new target feature to X86: +lvi-load-hardening The feature can be added via the clang CLI using -mlvi-hardening. Differential Revision: https://reviews.llvm.org/D75936
* Revert "[X86] Add a Pass that builds a Condensed CFG for Load Value ↵Craig Topper2020-06-241-586/+0
| | | | | | | | | Injection (LVI) Gadgets" This reverts commit c74dd640fd740c6928f66a39c7c15a014af3f66f. Reverting to address coding standard issues raised in post-commit review.
* Revert "[X86] Add Support for Load Hardening to Mitigate Load Value ↵Craig Topper2020-06-241-277/+5
| | | | | | | | | Injection (LVI)" This reverts commit 62c42e29ba43c9d79cd5bd2084b641fbff6a96d5 Reverting to address coding standard issues raised in post-commit review.
* [X86] Add Support for Load Hardening to Mitigate Load Value Injection (LVI)Scott Constable2020-06-241-5/+277
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After finding all such gadgets in a given function, the pass minimally inserts LFENCE instructions in such a manner that the following property is satisfied: for all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at least one LFENCE instruction. The algorithm that implements this minimal insertion is influenced by an academic paper that minimally inserts memory fences for high-performance concurrent programs: http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf The algorithm implemented in this pass is as follows: 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the following components: -SOURCE instructions (also includes function arguments) -SINK instructions -Basic block entry points -Basic block terminators -LFENCE instructions 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e., gadgets) are already mitigated by existing LFENCEs. If all gadgets have been mitigated, go to step 6. 3. Use a heuristic or plugin to approximate minimal LFENCE insertion. 4. Insert one LFENCE along each CFG edge that was cut in step 3. 5. Go to step 2. 6. If any LFENCEs were inserted, return true from runOnFunction() to tell LLVM that the function was modified. By default, the heuristic used in Step 3 is a greedy heuristic that avoids inserting LFENCEs into loops unless absolutely necessary. There is also a CLI option to load a plugin that can provide even better optimization, inserting fewer fences, while still mitigating all of the LVI gadgets. The plugin can be found here: https://github.com/intel/lvi-llvm-optimization-plugin, and a description of the pass's behavior with the plugin can be found here: https://software.intel.com/security-software-guidance/insights/optimized-mitigation-approach-load-value-injection. Differential Revision: https://reviews.llvm.org/D75937
* [X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) ↵Scott Constable2020-06-241-0/+586
Gadgets Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph. More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK). Also adds a new target feature to X86: +lvi-load-hardening The feature can be added via the clang CLI using -mlvi-hardening. Differential Revision: https://reviews.llvm.org/D75936
OpenPOWER on IntegriCloud