| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
"Indirect Thunks"
There are applications for indirect call/branch thunks other than retpoline for Spectre v2, e.g.,
https://software.intel.com/security-software-guidance/software-guidance/load-value-injection
Therefore it makes sense to refactor X86RetpolineThunks as a more general capability.
Differential Revision: https://reviews.llvm.org/D76810
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
assembly.
Summary:
Extend D71677 to apply to all branch-target operands, rather than special-casing call instructions.
Also add a regression test for llvm.org/PR44272, since this finishes fixing it.
Reviewers: thakis, rnk
Reviewed By: thakis
Subscribers: merge_guards_bot, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72417
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch gives out the details of the znver2 scheduler model.
There are few improvements with respect to execution units, latencies and
throughput when compared with znver1.
The tests that were present for znver1 for llvm-mca tool were replicated.
The latencies, execution units, timeline and throughput information are updated for znver2.
Reviewers: craig.topper, Simon Pilgrim
Differential Revision: https://reviews.llvm.org/D66088
|
|
|
|
|
|
|
|
|
|
|
| |
property will be inferred for the instruction by the tablegen backend.
Also use X86any_vfpround instead of X86vfpround in some instruction
definitions so the strict version can be used to infer the chain
property.
Without these changes we don't propagate strict FP chain through
isel for some instructions.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This is a follow up of D69281, it enables the X86 backend support for the FP comparision.
Reviewers: uweigand, kpn, craig.topper, RKSimon, cameron.mcinally, andrew.w.kaylor
Subscribers: hiraditya, llvm-commits, annita.zhang, LuoYuanke, LiuChen3
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70582
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
(Split of off D67120)
SelectionDAG::shouldOptForSize changes for profile guided size optimization.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70095
|
|
|
|
|
|
| |
Stop hardwiring classes
llvm-svn: 375470
|
|
|
|
|
|
|
|
| |
ImmArg to the llvm intrinsics.
Update the isel patterns to use timm instead of imm.
llvm-svn: 372534
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
isAtomic in addition to isVolatile
See D66309 for context.
This is the first sweep of x86 target specific code to add isAtomic bailouts where appropriate. The intention here is to have the switch from AtomicSDNode to LoadSDNode/StoreSDNode be close to NFC; that is, I'm not looking to allow additional optimizations at this time.
Sorry for the lack of tests. As discussed in the review, most of these are vector tests (for which atomicity is not well defined) and I couldn't figure out to exercise the anyextend cases which aren't vector specific.
Differential Revision: https://reviews.llvm.org/D66322
llvm-svn: 371547
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts r370525 (git commit 0bb1630685fba255fa93def92603f064c2ffd203)
Also reverts r370543 (git commit 185ddc08eed6542781040b8499ef7ad15c8ae9f4)
The approach I took only works for functions marked `noreturn`. In
general, a call that is not known to be noreturn may be followed by
unreachable for other reasons. For example, there could be multiple call
sites to a function that throws sometimes, and at some call sites, it is
known to always throw, so it is followed by unreachable. We need to
insert an `int3` in these cases to pacify the Windows unwinder.
I think this probably deserves its own standalone, Win64-only fixup pass
that runs after block placement. Implementing that will take some time,
so let's revert to TrapUnreachable in the mean time.
llvm-svn: 370829
|
|
|
|
| |
llvm-svn: 370543
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Users have complained llvm.trap produce two ud2 instructions on Win64,
one for the trap, and one for unreachable. This change fixes that.
TrapUnreachable was added and enabled for Win64 in r206684 (April 2014)
to avoid poorly understood issues with the Windows unwinder.
There seem to be two major things in play:
- the unwinder
- C++ EH, _CxxFrameHandler3 & co
The unwinder disassembles forward from the return address to scan for
epilogues. Inserting a ud2 had the effect of stopping the unwinder, and
ensuring that it ran the EH personality function for the current frame.
However, it's not clear what the unwinder does when the return address
happens to be the last address of one function and the first address of
the next function.
The Visual C++ EH personality, _CxxFrameHandler3, needs to figure out
what the current EH state number is. It does this by consulting the
ip2state table, which maps from PC to state number. This seems to go
wrong when the return address is the last PC of the function or catch
funclet.
I'm not sure precisely which system is involved here, but in order to
address these real or hypothetical problems, I believe it is enough to
insert int3 after a call site if it would otherwise be the last
instruction in a function or funclet. I was able to reproduce some
similar problems locally by arranging for a noreturn call to appear at
the end of a catch block immediately before an unrelated function, and I
confirmed that the problems go away when an extra trailing int3
instruction is added.
MSVC inserts int3 after every noreturn function call, but I believe it's
only necessary to do it if the call would be the last instruction. This
change inserts a pseudo instruction that expands to int3 if it is in the
last basic block of a function or funclet. I did what I could to run the
Microsoft compiler EH tests, and the ones I was able to run showed no
behavior difference before or after this change.
Differential Revision: https://reviews.llvm.org/D66980
llvm-svn: 370525
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-Deprecate -mmpx and -mno-mpx command line options
-Remove CPUID detection of mpx for -march=native
-Remove MPX from all CPUs
-Remove MPX preprocessor define
I've left the "mpx" string in the backend so we don't fail on old IR, but its not connected to anything.
gcc has also deprecated these command line options. https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
Differential Revision: https://reviews.llvm.org/D66669
llvm-svn: 370393
|
|
|
|
|
|
| |
vpermil2pd/ps. Only allow MCConstantExprs.
llvm-svn: 368505
|
|
|
|
|
|
|
|
| |
We have aliases that disambiguate memory forms of bt/btc/btr/bts
without suffixes to the 32-bit form. These aliases should have
been updated when the instructions were updated in r356413.
llvm-svn: 368127
|
|
|
|
|
|
|
|
|
|
| |
The upper 4 bits of the immediate byte are used to encode a
register. We need to limit the explicit immediate to fit in the
remaining 4 bits.
Fixes PR42899.
llvm-svn: 368123
|
|
|
|
|
|
| |
Fixes similar issues to r352306.
llvm-svn: 365705
|
|
|
|
|
|
|
|
|
|
| |
Support Intel AVX512 VP2INTERSECT instructions in llvm
Patch by Xiang Zhang (xiangzhangllvm)
Differential Revision: https://reviews.llvm.org/D62366
llvm-svn: 362188
|
|
|
|
|
|
|
|
|
|
|
|
| |
For more details about these instructions, please refer to the latest
ISE document:
https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference.
Patch by Tianqing Wang (tianqing)
Differential Revision: https://reviews.llvm.org/D62281
llvm-svn: 362053
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
1. Enable infrastructure of AVX512_BF16, which is supported for BFLOAT16 in Cooper Lake;
2. Enable VCVTNE2PS2BF16, VCVTNEPS2BF16 and DPBF16PS instructions, which are Vector Neural Network Instructions supporting BFLOAT16 inputs and conversion instructions from IEEE single precision.
VCVTNE2PS2BF16: Convert Two Packed Single Data to One Packed BF16 Data.
VCVTNEPS2BF16: Convert Packed Single Data to Packed BF16 Data.
VDPBF16PS: Dot Product of BF16 Pairs Accumulated into Packed Single Precision.
For more details about BF16 isa, please refer to the latest ISE document: https://software.intel.com/en-us/download/intel-architecture-instruction-set-extensions-programming-reference
Author: LiuTianle
Reviewers: craig.topper, smaslov, LuoYuanke, wxiao3, annita.zhang, RKSimon, spatel
Reviewed By: craig.topper
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60550
llvm-svn: 360017
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
load is 4 byte aligned or better and not volatile.
Summary:
Previously we would use MOVZXrm8/MOVZXrm16, but those are longer encodings.
This is similar to what we do in the loadi32 predicate.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60341
llvm-svn: 357875
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
single instructions that store the condition code as an immediate.
Summary:
Reorder the condition code enum to match their encodings. Move it to MC layer so it can be used by the scheduler models.
This avoids needing an isel pattern for each condition code. And it removes
translation switches for converting between CMOV instructions and condition
codes.
Now the printer, encoder and disassembler take care of converting the immediate.
We use InstAliases to handle the assembly matching. But we print using the
asm string in the instruction definition. The instruction itself is marked
IsCodeGenOnly=1 to hide it from the assembly parser.
This does complicate the scheduler models a little since we can't assign the
A and BE instructions to a separate class now.
I plan to make similar changes for SETcc and Jcc.
Reviewers: RKSimon, spatel, lebedev.ri, andreadb, courbet
Reviewed By: RKSimon
Subscribers: gchatelet, hiraditya, kristina, lebedev.ri, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60041
llvm-svn: 357800
|
|
|
|
|
|
|
|
| |
Rename the functions that query the optimization kind attributes.
Differential revision: https://reviews.llvm.org/D60287
llvm-svn: 357731
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
new ISD opcodes instead.
These inserters inserted some instructions to zero some registers and copied from virtual registers to physical registers.
This change instead inserts the zeros directly into the DAG at lowering time using new ISD opcodes
that take the extra zeroes as inputs. The zeros will then go through isel on their own to select
the MOV32r0 pseudo. Then we just need to mention the physical registers directly
in the isel patterns and the isel table and InstrEmitter will take care of inserting the necessary
copies to/from physical registers.
llvm-svn: 357659
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
instruction selection instead.
This custom inserter existed so we could do a weird thing where we pretended that the instructions support
a full address mode instead of taking a pointer in EAX/RAX. I think was largely so we could be pointer
size agnostic in the isel pattern.
To make this work we would then put the address into an LEA into EAX/RAX in front of the instruction after
isel. But the LEA is overkill when we just have a base pointer. So we end up using the LEA as a slower MOV
instruction.
With this change we now just do custom selection during isel instead and just assign the incoming address
of the intrinsic into EAX/RAX based on its size. After the intrinsic is selected, we can let isel take
care of selecting an LEA or other operation to do any address computation needed in this basic block.
I've also split the instruction into a 32-bit mode version and a 64-bit mode version so the implicit
use is properly sized based on the pointer. Without this we get comments in the assembly output about
killing eax and defing rax or vice versa depending on whether we define the instruction to use EAX/RAX.
llvm-svn: 357652
|
|
|
|
|
|
|
|
|
|
| |
X86::OPERAND_ROUNDING_CONTROL instead of MCOI::OPERAND_IMMEDIATE. Add an assert on legal values of rounding control in the encoder and remove an explicit mask.
This should allow llvm-exegesis to intelligently constrain the rounding mode.
The mask in the encoder shouldn't be necessary any more. We used to allow codegen to use 8-11 for rounding mode and the assembler would use 0-3 to mean the same thing so we masked here and in the printer. Codegen now matches the assembler and the printer was updated, but I forgot to update the encoder.
llvm-svn: 357419
|
|
|
|
|
|
|
|
| |
immediate into instructions under optsize."
Looking back over how the one use optimization works, I don't think this is the right way to fix this.
llvm-svn: 356866
|
|
|
|
|
|
|
|
|
|
|
|
| |
instructions under optsize.
Under optsize we try to avoid folding immediates into instructions under optsize. But if the immediate is 16-bits or 32 bits, but can be encoded as an 8-bit immediate we don't save enough from disabling the folding unless the immediate has enough uses to make up for the size of the move which is either 3 bytes or 5 bytes since there are no sign extended 8-bit moves. We would also save something if the immediate was a live out of the basic block and thus a move was unavoidable, but that would require a more advanced heuristic than just counting uses.
Note we only avoid folding multiple use immediates into the patterns that use X86ISD::ADD/SUB/XOR/OR/AND/CMP/ADC/SBB nodes and not the more common ISD::ADD/SUB/XOR/OR/AND nodes.
Differential Revision: https://reviews.llvm.org/D59522
llvm-svn: 356688
|
|
|
|
|
|
|
|
|
|
|
|
| |
including 'generic'. Disable use of CMPXCHG8B when this flag isn't set.
CMPXCHG8B was introduced on i586/pentium generation.
If its not enabled, limit the atomic width to 32 bits so the AtomicExpandPass will expand to lib calls. Unclear if we should be using a different limit for other configs. The default is 1024 and experimentation shows that using an i256 atomic will cause a crash in SelectionDAG.
Differential Revision: https://reviews.llvm.org/D59576
llvm-svn: 356631
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the following dag node opcodes from namespace X86ISD:
RDTSC_DAG,
RDTSCP_DAG,
RDPMC_DAG
The logic that expands RDTSC/RDPMC/XGETBV intrinsics is basically the same. The
only differences are:
RDTSC/RDTSCP don't implicitly read ECX.
RDTSCP also implicitly writes ECX.
I moved the common expansion logic into a helper function with the goal to get
rid of code repetition. That helper is now used for the expansion of
RDTSC/RDTSCP/RDPMC/XGETBV intrinsics.
No functional change intended.
Differential Revision: https://reviews.llvm.org/D59547
llvm-svn: 356546
|
|
|
|
|
|
| |
This was broken recently when I factored the 64 bit mode check into hasCmpxchg16 without thinking about the AssemblerPredicate.
llvm-svn: 356531
|
|
|
|
|
|
|
|
| |
extended 8-bit immediates.
We need to allow [128,255] in addition to [-128, 127] to match gas.
llvm-svn: 356413
|
|
|
|
|
|
| |
For the i8, i16, and i32 instructions we were using a relocImm. Presumably we should for i64 as well.
llvm-svn: 356406
|
|
|
|
|
|
| |
relocImm8_su/relocImm16_su/relocImm32_su/ to accurately reflect what they are.
llvm-svn: 356393
|
|
|
|
|
|
|
|
|
|
| |
custom printing and custom parsing to achieve the same result and more
Similar to previous change done for VPCOM and VPCMP
Differential Revision: https://reviews.llvm.org/D59468
llvm-svn: 356384
|
|
|
|
|
|
|
|
|
|
|
|
| |
for all other printing functions.
The only thing the print methods currently need to know is the string to print for the memory size in intel syntax.
This patch merges the functions based on this string. If we ever need something else in the future, its easy to split them back out.
This reduces the number of cases in the assembly printers. It shrinks the intel printer to only use 7 bytes per instruction instead of 8.
llvm-svn: 356352
|
|
|
|
|
|
|
|
|
|
| |
of custom printing and custom parsing to achieve the same result and more
Similar to the previous patch for VPCOM.
Differential Revision: https://reviews.llvm.org/D59398
llvm-svn: 356344
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
custom printing and custom parsing to achieve the same result and more
Previously we had a regular form of the instruction used when the immediate was 0-7. And _alt form that allowed the full 8 bit immediate. Codegen would always use the 0-7 form since the immediate was always checked to be in range. Assembly parsing would use the 0-7 form when a mnemonic like vpcomtrueb was used. If the immediate was specified directly the _alt form was used. The disassembler would prefer to use the 0-7 form instruction when the immediate was in range and the _alt form otherwise. This way disassembly would print the most readable form when possible.
The assembly parsing for things like vpcomtrueb relied on splitting the mnemonic into 3 pieces. A "vpcom" prefix, an immediate representing the "true", and a suffix of "b". The tablegenerated printing code would similarly print a "vpcom" prefix, decode the immediate into a string, and then print "b".
The _alt form on the other hand parsed and printed like any other instruction with no specialness.
With this patch we drop to one form and solve the disassembly printing issue by doing custom printing when the immediate is 0-7. The parsing code has been tweaked to turn "vpcomtrueb" into "vpcomb" and then the immediate for the "true" is inserted either before or after the other operands depending on at&t or intel syntax.
I'd rather not do the custom printing, but I tried using an InstAlias for each possible mnemonic for all 8 immediates for all 16 combinations of element size, signedness, and memory/register. The code emitted into printAliasInstr ended up checking the number of operands, the register class of each operand, and the immediate for all 256 aliases. This was repeated for both the at&t and intel printer. Despite a lot of common checks between all of the aliases, when compiled with clang at least this commonality was not well optimized. Nor do all the checks seem necessary. Since I want to do a similar thing for vcmpps/pd/ss/sd which have 32 immediate values and 3 encoding flavors, 3 register sizes, etc. This didn't seem to scale well for clang binary size. So custom printing seemed a better trade off.
I also considered just using the InstAlias for the matching and not the printing. But that seemed like it would add a lot of extra rows to the matcher table. Especially given that the 32 immediates for vpcmpps have 46 strings associated with them.
Differential Revision: https://reviews.llvm.org/D59398
llvm-svn: 356343
|
|
|
|
|
|
|
|
|
|
|
|
| |
The feature flag alone can't be trusted since it can be passed via -mattr. Need to ensure 64-bit mode as well.
We had a 64 bit mode check on the instruction to make the assembler work correctly. But we weren't guarding any of our lowering code or the hooks for the AtomicExpandPass.
I've added 32-bit command lines to atomic128.ll with and without cx16. The tests there would all previously fail if -mattr=cx16 was passed to them. I had to move one test case for f128 to a new file as it seems to have a different 32-bit mode or possibly sse issue.
Differential Revision: https://reviews.llvm.org/D59308
llvm-svn: 356078
|
|
|
|
|
|
|
|
|
|
| |
arguments where on is %st.
All of these instructions consume one encoded register and the other register is %st. They either write the result to %st or the encoded register. Previously we printed both arguments when the encoded register was written. And we printed one argument when the result was written to %st. For the stack popping forms the encoded register is always the destination and we didn't print both operands. This was inconsistent with gcc and objdump and just makes the output assembly code harder to read.
This patch changes things to always print both operands making us consistent with gcc and objdump. The parser should still be able to handle the single register forms just as it did before. This also matches the GNU assembler behavior.
llvm-svn: 353061
|
|
|
|
|
|
|
|
| |
printing it as %st(0) when its encoded in the instruction.
This is a step back from the change I made in r352985. This appears to be more consistent with gcc and objdump behavior.
llvm-svn: 353015
|
|
|
|
|
|
|
|
|
|
| |
as the clobber name to make MS inline asm work correctly"
Looking into gcc and objdump behavior more this was overly aggressive. If the register is encoded in the instruction we should print %st(0), if its implicit we should print %st.
I'll be making a more directed change in a future patch.
llvm-svn: 353013
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
name to make MS inline asm work correctly
Summary:
When calculating clobbers for MS style inline assembly we fail if the asm clobbers stack top because we print st(0) and try to pass it through the gcc register name check. This was found with when I attempted to make a emms/femms clobber all ST registers. If you use emms/femms in MS inline asm we would try to use st(0) as the clobber name but clang would think that wasn't a valid clobber name.
This also matches what objdump disassembly prints. It's also what is printed by gcc -S.
Reviewers: RKSimon, rnk, efriedma, spatel, andreadb, lebedev.ri
Reviewed By: rnk
Subscribers: eraman, gbedwell, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D57621
llvm-svn: 352985
|
|
|
|
|
|
|
|
|
|
| |
EmitPriority of some FP instruction aliases. NFC
As far as I can tell we already won't emit these aliases due to an operand count check in the tablegen code. Removing these because I couldn't make sense of the inconsistency between fadd and fmul from reading the code.
I checked the AsmMatcher and AsmWriter files before and after this change and there were no differences.
llvm-svn: 352608
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The add+and sequence followed by a branch can
happen e.g. when looping over the set bits of an integer:
```
while (x != 0) {
func(x & ~x);
x &= x - 1;
}
```
Reviewed By: ctopper
Differential Revision: https://reviews.llvm.org/D57296
llvm-svn: 352306
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
INC/DEC are pretty much the same as ADD/SUB except that they don't update the C flag.
This patch removes the special nodes and just pattern matches from ADD/SUB during isel if the C flag isn't being used.
I had to avoid selecting DEC is the result isn't used. This will become a SUB immediate which will turned into a CMP later by optimizeCompareInstr. This lead to the one test change where we use a CMP instead of a DEC for an overflow intrinsic since we only checked the flag.
This also exposed a hole in our RMW flag matching use of hasNoCarryFlagUses. Our root node for the match is a store and there's no guarantee that all the flag users have been selected yet. So hasNoCarryFlagUses needs to check copyToReg and machine opcodes, but it also needs to check for the pre-match SETCC, SETCC_CARRY, BRCOND, and CMOV opcodes.
Differential Revision: https://reviews.llvm.org/D55975
llvm-svn: 350245
|
|
|
|
|
|
|
|
|
|
|
|
| |
turned the root nodes into one of the flag producing binops.
This fixes the patterns that have or/and as a root. 'and' is handled differently since thy usually have a CMP wrapped around them.
I had to look for uses of the CF flag because all these nodes have non-standard CF flag behavior. A real or/xor would always clear CF. In practice we shouldn't be using the CF flag from these nodes as far as I know.
Differential Revision: https://reviews.llvm.org/D55813
llvm-svn: 349962
|
|
|
|
|
|
|
|
| |
common code. NFCI.
Prep work for PR39467.
llvm-svn: 347067
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The machine scheduler currently biases register copies to/from
physical registers to be closer to their point of use / def to
minimize their live ranges. This change extends this to also physical
register assignments from immediate values.
This causes a reduction in reduction in overall register pressure and
minor reduction in spills and indirectly fixes an out-of-registers
assertion (PR39391).
Most test changes are from minor instruction reorderings and register
name selection changes and direct consequences of that.
Reviewers: MatzeB, qcolombet, myatsina, pcc
Subscribers: nemanjai, jvesely, nhaehnle, eraman, hiraditya,
javed.absar, arphaman, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D54218
llvm-svn: 346894
|