summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/SystemZ/SystemZCallingConv.h
Commit message (Collapse)AuthorAgeFilesLines
* [SystemZ] Add GHC calling conventionUlrich Weigand2019-11-041-0/+7
| | | | | | | This is a special calling convention to be used by the GHC compiler. Author: Stefan Schulze Frielinghaus Differential Revision: https://reviews.llvm.org/D69024
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [SystemZ] Fix ABI for i128 argument and return typesUlrich Weigand2016-02-191-2/+48
| | | | | | | | | | | | | | | | | | | | | | | | | According to the SystemZ ABI, 128-bit integer types should be passed and returned via implicit reference. However, this is not currently implemented at the LLVM IR level for the i128 type. This does not matter when compiling C/C++ code, since clang will implement the implicit reference itself. However, it turns out that when calling libgcc helper routines operating on 128-bit integers, LLVM will use i128 argument and return value types; the resulting code is not compatible with the ABI used in libgcc, leading to crashes (see PR26559). This should be simple to fix, except that i128 currently is not even a legal type for the SystemZ back end. Therefore, common code will already split arguments and return values into multiple parts. The bulk of this patch therefore consists of detecting such parts, and correctly handling passing via implicit reference of a value split into multiple parts. If at some time in the future, i128 becomes a legal type, this code can be removed again. This fixes PR26559. llvm-svn: 261325
* [SystemZ] Handle sub-128 vectorsUlrich Weigand2015-05-051-0/+17
| | | | | | | | | | | | | | | | | | | | | The ABI allows sub-128 vectors to be passed and returned in registers, with the vector occupying the upper part of a register. We therefore want to legalize those types by widening the vector rather than promoting the elements. The patch includes some simple tests for sub-128 vectors and also tests that we can recognize various pack sequences, some of which use sub-128 vectors as temporary results. One of these forms is based on the pack sequences generated by llvmpipe when no intrinsics are used. Signed unpacks are recognized as BUILD_VECTORs whose elements are individually sign-extended. Unsigned unpacks can have the equivalent form with zero extension, but they also occur as shuffles in which some elements are zero. Based on a patch by Richard Sandiford. llvm-svn: 236525
* [SystemZ] Add CodeGen support for integer vector typesUlrich Weigand2015-05-051-0/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This the first of a series of patches to add CodeGen support exploiting the instructions of the z13 vector facility. This patch adds support for the native integer vector types (v16i8, v8i16, v4i32, v2i64). When the vector facility is present, we default to the new vector ABI. This is characterized by two major differences: - Vector types are passed/returned in vector registers (except for unnamed arguments of a variable-argument list function). - Vector types are at most 8-byte aligned. The reason for the choice of 8-byte vector alignment is that the hardware is able to efficiently load vectors at 8-byte alignment, and the ABI only guarantees 8-byte alignment of the stack pointer, so requiring any higher alignment for vectors would require dynamic stack re-alignment code. However, for compatibility with old code that may use vector types, when *not* using the vector facility, the old alignment rules (vector types are naturally aligned) remain in use. These alignment rules are not only implemented at the C language level (implemented in clang), but also at the LLVM IR level. This is done by selecting a different DataLayout string depending on whether the vector ABI is in effect or not. Based on a patch by Richard Sandiford. llvm-svn: 236521
* Canonicalize header guards into a common format.Benjamin Kramer2014-08-131-2/+2
| | | | | | | | | | Add header guards to files that were missing guards. Remove #endif comments as they don't seem common in LLVM (we can easily add them back if we decide they're useful) Changes made by clang-tidy with minor tweaks. llvm-svn: 215558
* [SystemZ] Update namespace formatting to match current guidelinesRichard Sandiford2014-03-061-7/+7
| | | | | | No functional change intended. llvm-svn: 203103
* [SystemZ] Add back endUlrich Weigand2013-05-061-0/+23
This adds the actual lib/Target/SystemZ target files necessary to implement the SystemZ target. Note that at this point, the target cannot yet be built since the configure bits are missing. Those will be provided shortly by a follow-on patch. This version of the patch incorporates feedback from reviews by Chris Lattner and Anton Korobeynikov. Thanks to all reviewers! Patch by Richard Sandiford. llvm-svn: 181203
OpenPOWER on IntegriCloud