summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/NVPTX/NVPTXFrameLowering.h
Commit message (Collapse)AuthorAgeFilesLines
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [DEBUGINFO, NVPTX] Emit correct debug information for local variables.Alexey Bataev2018-07-261-0/+2
| | | | | | | | | | | | | | | | Summary: NVPTX target dos not use register-based frame information. Instead it relies on the artificial local_depot that is used instead of the frame and the data for variables must be emitted relatively to this local_depot. Reviewers: tra, jlebar, echristo Subscribers: jholewinski, aprantl, JDevlieghere, llvm-commits Differential Revision: https://reviews.llvm.org/D45963 llvm-svn: 338039
* Move TargetFrameLowering.h to CodeGen where it's implementedDavid Blaikie2017-11-031-1/+1
| | | | | | | | | | | This header already includes a CodeGen header and is implemented in lib/CodeGen, so move the header there to match. This fixes a link error with modular codegeneration builds - where a header and its implementation are circularly dependent and so need to be in the same library, not split between two like this. llvm-svn: 317379
* Change eliminateCallFramePseudoInstr() to return an iteratorHans Wennborg2016-03-311-1/+1
| | | | | | | | | | | | | | | | | | | | | This will become necessary in a subsequent change to make this method merge adjacent stack adjustments, i.e. it might erase the previous and/or next instruction. It also greatly simplifies the calls to this function from Prolog- EpilogInserter. Previously, that had a bunch of logic to resume iteration after the call; now it just continues with the returned iterator. Note that this changes the behaviour of PEI a little. Previously, it attempted to re-visit the new instruction created by eliminateCallFramePseudoInstr(). That code was added in r36625, but I can't see any reason for it: the new instructions will obviously not be pseudo instructions, they will not have FrameIndex operands, and we have already accounted for the stack adjustment. Differential Revision: http://reviews.llvm.org/D18627 llvm-svn: 265036
* Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)Alexander Kornienko2015-06-231-1/+1
| | | | | | Apparently, the style needs to be agreed upon first. llvm-svn: 240390
* Fixed/added namespace ending comments using clang-tidy. NFCAlexander Kornienko2015-06-191-1/+1
| | | | | | | | | | | | | The patch is generated using this command: tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \ -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \ llvm/lib/ Thanks to Eugene Kosov for the original patch! llvm-svn: 240137
* [ShrinkWrap] Add (a simplified version) of shrink-wrapping.Quentin Colombet2015-05-051-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces a new pass that computes the safe point to insert the prologue and epilogue of the function. The interest is to find safe points that are cheaper than the entry and exits blocks. As an example and to avoid regressions to be introduce, this patch also implements the required bits to enable the shrink-wrapping pass for AArch64. ** Context ** Currently we insert the prologue and epilogue of the method/function in the entry and exits blocks. Although this is correct, we can do a better job when those are not immediately required and insert them at less frequently executed places. The job of the shrink-wrapping pass is to identify such places. ** Motivating example ** Let us consider the following function that perform a call only in one branch of a if: define i32 @f(i32 %a, i32 %b) { %tmp = alloca i32, align 4 %tmp2 = icmp slt i32 %a, %b br i1 %tmp2, label %true, label %false true: store i32 %a, i32* %tmp, align 4 %tmp4 = call i32 @doSomething(i32 0, i32* %tmp) br label %false false: %tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ] ret i32 %tmp.0 } On AArch64 this code generates (removing the cfi directives to ease readabilities): _f: ; @f ; BB#0: stp x29, x30, [sp, #-16]! mov x29, sp sub sp, sp, #16 ; =16 cmp w0, w1 b.ge LBB0_2 ; BB#1: ; %true stur w0, [x29, #-4] sub x1, x29, #4 ; =4 mov w0, wzr bl _doSomething LBB0_2: ; %false mov sp, x29 ldp x29, x30, [sp], #16 ret With shrink-wrapping we could generate: _f: ; @f ; BB#0: cmp w0, w1 b.ge LBB0_2 ; BB#1: ; %true stp x29, x30, [sp, #-16]! mov x29, sp sub sp, sp, #16 ; =16 stur w0, [x29, #-4] sub x1, x29, #4 ; =4 mov w0, wzr bl _doSomething add sp, x29, #16 ; =16 ldp x29, x30, [sp], #16 LBB0_2: ; %false ret Therefore, we would pay the overhead of setting up/destroying the frame only if we actually do the call. ** Proposed Solution ** This patch introduces a new machine pass that perform the shrink-wrapping analysis (See the comments at the beginning of ShrinkWrap.cpp for more details). It then stores the safe save and restore point into the MachineFrameInfo attached to the MachineFunction. This information is then used by the PrologEpilogInserter (PEI) to place the related code at the right place. This pass runs right before the PEI. Unlike the original paper of Chow from PLDI’88, this implementation of shrink-wrapping does not use expensive data-flow analysis and does not need hack to properly avoid frequently executed point. Instead, it relies on dominance and loop properties. The pass is off by default and each target can opt-in by setting the EnableShrinkWrap boolean to true in their derived class of TargetPassConfig. This setting can also be overwritten on the command line by using -enable-shrink-wrap. Before you try out the pass for your target, make sure you properly fix your emitProlog/emitEpilog/adjustForXXX method to cope with basic blocks that are not necessarily the entry block. ** Design Decisions ** 1. ShrinkWrap is its own pass right now. It could frankly be merged into PEI but for debugging and clarity I thought it was best to have its own file. 2. Right now, we only support one save point and one restore point. At some point we can expand this to several save point and restore point, the impacted component would then be: - The pass itself: New algorithm needed. - MachineFrameInfo: Hold a list or set of Save/Restore point instead of one pointer. - PEI: Should loop over the save point and restore point. Anyhow, at least for this first iteration, I do not believe this is interesting to support the complex cases. We should revisit that when we motivating examples. Differential Revision: http://reviews.llvm.org/D9210 <rdar://problem/3201744> llvm-svn: 236507
* Remove all use of is64bit off of NVPTXSubtarget and clean up codeEric Christopher2015-02-191-6/+4
| | | | | | | accordingly. This changes the constructors of a number of classes that don't need to know the subtarget's 64-bitness. llvm-svn: 229787
* Canonicalize header guards into a common format.Benjamin Kramer2014-08-131-2/+2
| | | | | | | | | | Add header guards to files that were missing guards. Remove #endif comments as they don't seem common in LLVM (we can easily add them back if we decide they're useful) Changes made by clang-tidy with minor tweaks. llvm-svn: 215558
* Move the constructor for NVPTXFrameLowering into the implementationEric Christopher2014-06-271-5/+2
| | | | | | file in preparation for the subtarget move. llvm-svn: 211847
* Remove unnecessary caching of the TargetMachine on NVPTXFrameLowering.Eric Christopher2014-06-271-5/+4
| | | | | | Adjust the constructor accordingly. llvm-svn: 211846
* [C++11] Add 'override' keywords and remove 'virtual'. Additionally add ↵Craig Topper2014-04-291-5/+5
| | | | | | 'final' and leave 'virtual' on some methods that are marked virtual without overriding anything and have no obvious overrides themselves. NVPTX edition llvm-svn: 207505
* [NVPTX] Run clang-format on all NVPTX sources.Justin Holewinski2013-03-301-5/+3
| | | | | | | Hopefully this resolves any outstanding style issues and gives us an automated way of ensuring we conform to the style guidelines. llvm-svn: 178415
* Move the eliminateCallFramePseudoInstr method from TargetRegisterInfoEli Bendersky2013-02-211-0/+4
| | | | | | | | | | | | | | | to TargetFrameLowering, where it belongs. Incidentally, this allows us to delete some duplicated (and slightly different!) code in TRI. There are potentially other layering problems that can be cleaned up as a result, or in a similar manner. The refactoring was OK'd by Anton Korobeynikov on llvmdev. Note: this touches the target interfaces, so out-of-tree targets may be affected. llvm-svn: 175788
* This patch adds a new NVPTX back-end to LLVM which supports code generation ↵Justin Holewinski2012-05-041-0/+40
for NVIDIA PTX 3.0. This back-end will (eventually) replace the current PTX back-end, while maintaining compatibility with it. The new target machines are: nvptx (old ptx32) => 32-bit PTX nvptx64 (old ptx64) => 64-bit PTX The sources are based on the internal NVIDIA NVPTX back-end, and contain more functionality than the current PTX back-end currently provides. NV_CONTRIB llvm-svn: 156196
OpenPOWER on IntegriCloud