| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In BPF Instruction Selection DAGToDAG transformation phase,
BPF backend had an optimization to turn load from readonly data
section to direct load of the values. This phase is implemented
before libbpf has readonly section support and before alu32
is supported.
This phase however may generate incorrect type when alu32 is
enabled. The following is an example,
-bash-4.4$ cat ~/tmp2/t.c
struct t {
unsigned char a;
unsigned char b;
unsigned char c;
};
extern void foo(void *);
int test() {
struct t v = {
.b = 2,
};
foo(&v);
return 0;
}
The compiler will turn local variable "v" into a readonly section.
During instruction selection phase, the compiler generates two
loads from readonly section, one 2 byte load or 1 byte load, e.g., for 2 loads,
t8: i32,ch = load<(dereferenceable load 2 from `i8* getelementptr inbounds
(%struct.t, %struct.t* @__const.test.v, i64 0, i32 0)`, align 1),
anyext from i16> t3, GlobalAddress:i64<%struct.t* @__const.test.v> 0, undef:i64
t9: ch = store<(store 2 into %ir.v1.sub1), trunc to i16> t3, t8,
FrameIndex:i64<0>, undef:i64
BPF backend changed t8 to i64 = Constant<2> and eventually the generated machine IR:
t10: i64 = MOV_ri TargetConstant:i64<2>
t40: i32 = SLL_ri_32 t10, TargetConstant:i32<8>
t41: i32 = OR_ri_32 t40, TargetConstant:i64<0>
t9: ch = STH32<Mem:(store 2 into %ir.v1.sub1)> t41, TargetFrameIndex:i64<0>,
TargetConstant:i64<0>, t3
Note that t10 in the above is not correct. The type should be i32 and instruction
should be MOV_ri_32. The reason for incorrect insn selection is BPF insn selection
generated an i64 constant instead of an i32 constant as specified in the original
load instruction. Such incorrect insn sequence eventually caused the following
fatal error when a COPY insn tries to copy a 64bit register to a 32bit subregister.
Impossible reg-to-reg copy
UNREACHABLE executed at ../lib/Target/BPF/BPFInstrInfo.cpp:42!
This patch fixed the issue by using the load result type instead of always i64
when doing readonly load optimization.
Differential Revision: https://reviews.llvm.org/D81630
(cherry picked from commit 4db1878158a3f481ff673fef2396c12b7a53d280)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, BPF backend is doing truncation elimination. If one truncation
is performed on a value defined by narrow loads, then it could be redundant
given BPF loads zero extend the destination register implicitly.
When the definition of the truncated value is a merging value (PHI node)
that could come from different code paths, then checks need to be done on
all possible code paths.
Above described optimization was introduced as r306685, however it doesn't
work when there is back-edge, for example when loop is used inside BPF
code.
For example for the following code, a zero-extended value should be stored
into b[i], but the "and reg, 0xffff" is wrongly eliminated which then
generates corrupted data.
void cal1(unsigned short *a, unsigned long *b, unsigned int k)
{
unsigned short e;
e = *a;
for (unsigned int i = 0; i < k; i++) {
b[i] = e;
e = ~e;
}
}
The reason is r306685 was trying to do the PHI node checks inside isel
DAG2DAG phase, and the checks are done on MachineInstr. This is actually
wrong, because MachineInstr is being built during isel phase and the
associated information is not completed yet. A quick search shows none
target other than BPF is access MachineInstr info during isel phase.
For an PHI node, when you reached it during isel phase, it may have all
predecessors linked, but not successors. It seems successors are linked to
PHI node only when doing SelectionDAGISel::FinishBasicBlock and this
happens later than PreprocessISelDAG hook.
Previously, BPF program doesn't allow loop, there is probably the reason
why this bug was not exposed.
This patch therefore fixes the bug by the following approach:
- The existing truncation elimination code and the associated
"load_to_vreg_" records are removed.
- Instead, implement truncation elimination using MachineSSA pass, this
is where all information are built, and keep the pass together with other
similar peephole optimizations inside BPFMIPeephole.cpp. Redundant move
elimination logic is updated accordingly.
- Unit testcase included + no compilation errors for kernel BPF selftest.
Patch Review
===
Patch was sent to and reviewed by BPF community at:
https://lore.kernel.org/bpf
Reported-by: David Beckett <david.beckett@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 375007
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
|
|
|
|
|
|
| |
llvm::Register as started by r367614. NFC
llvm-svn: 367633
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
|
|
|
|
| |
llvm-svn: 328907
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The instruction mapping between eBPF/arm64/x86_64 are:
eBPF arm64 x86_64
LD1 BPF_LDX | BPF_B ldrb movzbl
LD2 BPF_LDX | BPF_H ldrh movzwl
LD4 BPF_LDX | BPF_W ldr movl
movzbl/movzwl/movl on x86_64 accept 32-bit sub-register, for example %eax,
the same for ldrb/ldrh on arm64 which accept 32-bit "w" register. And
actually these instructions only accept sub-registers. There is no point
to have LD1/2/4 (unsigned) for 64-bit register, because on these arches,
upper 32-bits are guaranteed to be zeroed by hardware or VM, so load into
the smallest available register class is the best choice for maintaining
type information.
For eBPF we should adopt the same philosophy, to change current
format (A):
r = *(u8 *) (r + off) // BPF_LDX | BPF_B
r = *(u16 *)(r + off) // BPF_LDX | BPF_H
r = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = r // BPF_STX | BPF_B
*(u16 *)(r + off) = r // BPF_STX | BPF_H
*(u32 *)(r + off) = r // BPF_STX | BPF_W
into B:
w = *(u8 *) (r + off) // BPF_LDX | BPF_B
w = *(u16 *)(r + off) // BPF_LDX | BPF_H
w = *(u32 *)(r + off) // BPF_LDX | BPF_W
*(u8 *) (r + off) = w // BPF_STX | BPF_B
*(u16 *)(r + off) = w // BPF_STX | BPF_H
*(u32 *)(r + off) = w // BPF_STX | BPF_W
There is no change on encoding nor how should they be interpreted,
everything is as it is, load the specified length, write into low bits of
the register then zeroing all remaining high bits.
The only change is their associated register class and how compiler view
them.
Format A still need to be kept, because eBPF LLVM backend doesn't support
sub-registers at default, but once 32-bit subregister is enabled, it should
use format B.
This patch implemented this together with all those necessary extended load
and truncated store patterns.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325987
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The reference '&' is missing in the function parameter. If there are
back-to-back optimizations in terms of dag node list like below:
t29: i64,ch = load<LD4[bitcast (%struct.test_t* @test.t to i8*)+12](dereferenceable), zext from i32> t3, t43, undef:i64
t34: i64,ch = load<LD4[bitcast (%struct.test_t* @test.t to i8*)](dereferenceable), zext from i32> t3, t41, undef:i64
The bug will trigger a segfault for the added test case remove_truncate_5.ll:
LLVMSymbolizer: error reading file: No such file or directory
#0 0x000000000241c4d9 (llc+0x241c4d9)
#1 0x000000000241c56a (llc+0x241c56a)
#2 0x000000000241aa50 (llc+0x241aa50)
...
#22 0x0000000000fd5edf (llc+0xfd5edf)
#23 0x00007f0fe03bec05 __libc_start_main (/lib64/libc.so.6+0x21c05)
#24 0x0000000000fd3e69 (llc+0xfd3e69)
...
Segmentation fault
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325267
|
|
|
|
|
|
|
|
|
|
|
|
| |
blank lines are printed during isel process to make things more sensibly grouped.
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As commented on the existing code:
// The Reg operand should be a virtual register, which is defined
// outside the current basic block. DAG combiner has done a pretty
// good job in removing truncating inside a single basic block.
However, when the Reg operand comes from bpf_load_[byte | half | word]
intrinsics, the generic optimizer doesn't understand their results are
zero extended, so these single basic block elimination opportunities were
missed.
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 322534
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Work towards the unification of MIR and debug output by refactoring the
interfaces.
For MachineOperand::print, keep a simple version that can be easily called
from `dump()`, and a more complex one which will be called from both the
MIRPrinter and MachineInstr::print.
Add extra checks inside MachineOperand for detached operands (operands
with getParent() == nullptr).
https://reviews.llvm.org/D40836
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/kill: ([^ ]+) ([^ ]+)<def> ([^ ]+)/kill: \1 def \2 \3/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/kill: ([^ ]+) ([^ ]+) ([^ ]+)<def>/kill: \1 \2 def \3/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/kill: def ([^ ]+) ([^ ]+) ([^ ]+)<def>/kill: def \1 \2 def \3/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/<def>//g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<kill>/killed \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-use,kill>/implicit killed \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<dead>/dead \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<def[ ]*,[ ]*dead>/dead \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-def[ ]*,[ ]*dead>/implicit-def dead \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-def>/implicit-def \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-use>/implicit \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<internal>/internal \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<undef>/undef \1/g'
llvm-svn: 320022
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
|
|
|
|
|
| |
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 316519
|
|
|
|
|
|
|
|
| |
Previous implementation for per-function scope
is incorrect and too conservative.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 316481
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In BPF backend, we try to optimize away redundant
trunc operations so that kernel verifier rewrite
remains valid. Previous implementation only works
for a single function.
This patch fixed the issue for multiple functions.
It clears internal map data structure before
performing optimization for each function.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 316469
|
|
|
|
|
|
| |
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 313593
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For networking-type bpf program, it often needs to access
packet data. A context data structure is provided to the bpf
programs with two fields:
u32 data;
u32 data_end;
User can access these two fields with ctx->data and ctx->data_end.
During program verification process, the kernel verifier modifies
the bpf program with loading of actual pointer value from kernel
data structure.
r = ctx->data ===> r = actual data start ptr
r = ctx->data_end ===> r = actual data end ptr
A typical program accessing ctx->data like
char *data_ptr = (char *)(long)ctx->data
will result in a 32-bit load followed by a zero extension.
Such an operation is combined into a single LDW in DAG combiner
as bpf LDW does zero extension automatically.
In cases like the below (which can be a result of global value numbering
and partial redundancy elimination before insn selection):
B1:
u32 a = load-32-bit &ctx->data
u64 pa = zext a
...
B2:
u32 b = load-32-bit &ctx->data
u64 pb = zext b
...
B3:
u32 m = PHI(a, b)
u64 pm = zext m
In B3, "pm = zext m" cannot be removed, which although is legal
from compiler perspective, will generate incorrect code after
kernel verification.
This patch recognizes this pattern and traces through PHI node
to see whether the operand of "zext m" is defined with LDWs or not.
If it is, the "zext m" itself can be removed.
The patch also recognizes the pattern where the load and use of
the load value not in the same basic block, where truncate operation
may be removed as well.
The patch handles 1-byte, 2-byte and 4-byte truncation.
Two test cases are added to verify the transformation happens properly
for the above code pattern.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 306685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Davide Italiano reported the following issue if llvm
is compiled with gcc -Wstrict-aliasing -Werror:
.....
lib/Target/BPF/CMakeFiles/LLVMBPFCodeGen.dir/BPFISelDAGToDAG.cpp.o
../lib/Target/BPF/BPFISelDAGToDAG.cpp: In member function ‘virtual
void {anonymous}::BPFDAGToDAGISel::PreprocessISelDAG()’:
../lib/Target/BPF/BPFISelDAGToDAG.cpp:264:26: warning: dereferencing
type-punned pointer will break strict-aliasing rules
[-Wstrict-aliasing]
val = *(uint16_t *)new_val;
.....
The error is caused by my previous commit (revision 305560).
This patch fixed the issue by introducing an union to avoid
type casting.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305608
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If users tried to have a structure decl/init code like below
struct test_t t = { .memeber1 = 45 };
It is very likely that compiler will generate a readonly section
to hold up the init values for variable t. Later load of t members,
e.g., t.member1 will result in a read from readonly section.
BPF program cannot handle relocation. This will force users to
write:
struct test_t t = {};
t.member1 = 45;
This is just inconvenient and unintuitive.
This patch addresses this issue by implementing BPF PreprocessISelDAG.
For any load from a global constant structure or an global array of
constant struct, it attempts to
translate it into a constant directly. The traversal of the
constant struct and other constant data structures are similar
to where the assembler emits read-only sections.
Four different unit test cases are also added to cover
different scenarios.
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 305560
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the offset cannot fit into the instruction, an addition to the
pointer is emitted before the actual access. However, BPF offsets are
16-bit but LLVM considers them to be, for the matter of this check,
to be 32-bit long.
This causes the following program:
int bpf_prog1(void *ign)
{
volatile unsigned long t = 0x8983984739ull;
return *(unsigned long *)((0xffffffff8fff0002ull) + t);
}
To generate the following (wrong) code:
0: 18 01 00 00 39 47 98 83 00 00 00 00 89 00 00 00
r1 = 590618314553ll
2: 7b 1a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r1
3: 79 a1 f8 ff 00 00 00 00 r1 = *(u64 *)(r10 - 8)
4: 79 10 02 00 00 00 00 00 r0 = *(u64 *)(r1 + 2)
5: 95 00 00 00 00 00 00 00 exit
Fix it by changing the offset check to 16-bit.
Patch by Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Differential Revision: https://reviews.llvm.org/D32055
llvm-svn: 300269
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
|
|
|
|
| |
llvm-svn: 283004
|
|
|
|
|
|
|
|
|
| |
- Where we were returning a node before, call ReplaceNode instead.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269350
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a step towards removing the rampant undefined behaviour in
SelectionDAG, which is a part of llvm.org/PR26808.
We rename SelectionDAGISel::Select to SelectImpl and update targets to
match, and then change Select to return void and consolidate the
sketchy behaviour we're trying to get away from there.
Next, we'll update backends to implement `void Select(...)` instead of
SelectImpl and eventually drop the base Select implementation.
llvm-svn: 268693
|
|
|
|
|
|
| |
Signed-off-by: Yonghong Song <yhs@plumgrid.com>
Signed-off-by: Alexei Starovoitov <ast@fb.com>
llvm-svn: 263842
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
o Before this patch, BPF backend will expand UNDEF node
to i64 constant 0.
o For second pass of dag combiner, legalizer will run through
each to-be-processed dag node.
o If any new SDNode is generated and has an undef operand,
dag combiner will put undef node, newly-generated constant-0 node,
and any node which uses these nodes in the working list.
o During this process, it is possible undef operand is
generated again, and this will form an infinite loop
for dag combiner pass2.
o This patch allows UNDEF to be a legal type.
Signed-off-by: Yonghong Song <yhs@plumgrid.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
llvm-svn: 249718
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For the program like below
struct key_t {
int pid;
char name[16];
};
extern void test1(char *);
int test() {
struct key_t key = {};
test1(key.name);
return 0;
}
For key.name, the llc/bpf may generate the below code:
R1 = R10 // R10 is the frame pointer
R1 += -24 // framepointer adjustment
R1 |= 4 // R1 is then used as the first parameter of test1
OR operation is not recognized by in-kernel verifier.
This patch introduces an intermediate FI_ri instruction and
generates the following code that can be properly verified:
R1 = R10
R1 += -20
Patch by Yonghong Song <yhs@plumgrid.com>
llvm-svn: 249371
|
|
|
|
|
|
| |
Apparently, the style needs to be agreed upon first.
llvm-svn: 240390
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
|
|
|
|
|
|
| |
Patch by Brenden Blanco.
llvm-svn: 236030
|
|
|
|
|
|
| |
No functional change intended.
llvm-svn: 234586
|
|
|
|
| |
llvm-svn: 232998
|
|
Summary:
V8->V9:
- cleanup tests
V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests
V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)
V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
46 files changed, 456 insertions(+), 469 deletions(-)
V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense
V3->V4:
- added CODE_OWNERS entry for BPF backend
V2->V3:
- fix metadata in tests
V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin
V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.
The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/
http://lwn.net/Articles/575531/
http://lwn.net/Articles/603983/
http://lwn.net/Articles/606089/
http://lwn.net/Articles/612878/
One of use cases: dtrace/systemtap alternative.
bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
Short summary of instruction set:
- 64-bit registers
R0 - return value from in-kernel function, and exit value for BPF program
R1 - R5 - arguments from BPF program to in-kernel function
R6 - R9 - callee saved registers that in-kernel function will preserve
R10 - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd
Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.
It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.
This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6494
llvm-svn: 227008
|