summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/AArch64/AArch64SpeculationHardening.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Prune a LegacyDivergenceAnalysis and MachineLoopInfo include eachReid Kleckner2019-10-191-0/+1
| | | | | | Now X86ISelLowering doesn't depend on many IR analyses. llvm-svn: 375320
* Do a sweep of symbol internalization. NFC.Benjamin Kramer2019-08-231-3/+3
| | | | llvm-svn: 369803
* [aarch64] Apply llvm-prefer-register-over-unsigned from clang-tidy to LLVMDaniel Sanders2019-08-121-3/+3
| | | | | | | | | | | | | | | | | | | | | | | Summary: This clang-tidy check is looking for unsigned integer variables whose initializer starts with an implicit cast from llvm::Register and changes the type of the variable to llvm::Register (dropping the llvm:: where possible). Manual fixups in: AArch64InstrInfo.cpp - genFusedMultiply() now takes a Register* instead of unsigned* AArch64LoadStoreOptimizer.cpp - Ternary operator was ambiguous between Register/MCRegister. Settled on Register Depends on D65919 Reviewers: aemerson Subscribers: jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits Tags: #llvm Differential Revision for full review was: https://reviews.llvm.org/D65962 llvm-svn: 368628
* [SLH] AArch64: correctly pick temporary register to mask SPKristof Beyls2019-01-231-57/+118
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As part of speculation hardening, the stack pointer gets masked with the taint register (X16) before a function call or before a function return. Since there are no instructions that can directly mask writing to the stack pointer, the stack pointer must first be transferred to another register, where it can be masked, before that value is transferred back to the stack pointer. Before, that temporary register was always picked to be x17, since the ABI allows clobbering x17 on any function call, resulting in the following instruction pattern being inserted before function calls and returns/tail calls: mov x17, sp and x17, x17, x16 mov sp, x17 However, x17 can be live in those locations, for example when the call is an indirect call, using x17 as the target address (blr x17). To fix this, this patch looks for an available register just before the call or terminator instruction and uses that. In the rare case when no register turns out to be available (this situation is only encountered twice across the whole test-suite), just insert a full speculation barrier at the start of the basic block where this occurs. Differential Revision: https://reviews.llvm.org/D56717 llvm-svn: 351930
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* Initial AArch64 SLH implementation.Kristof Beyls2019-01-091-14/+287
| | | | | | | | | | | | | | This is an initial implementation for Speculative Load Hardening for AArch64. It builds on top of the recently introduced AArch64SpeculationHardening pass. This doesn't implement (yet) some of the optimizations implemented for the X86SpeculativeLoadHardening pass. I thought introducing the optimizations incrementally in follow-up patches should make this easier to review. Differential Revision: https://reviews.llvm.org/D55929 llvm-svn: 350729
* Introduce control flow speculation tracking pass for AArch64Kristof Beyls2018-12-181-0/+368
The pass implements tracking of control flow miss-speculation into a "taint" register. That taint register can then be used to mask off registers with sensitive data when executing under miss-speculation, a.k.a. "transient execution". This pass is aimed at mitigating against SpectreV1-style vulnarabilities. At the moment, it implements the tracking of miss-speculation of control flow into a taint register, but doesn't implement a mechanism yet to then use that taint register to mask off vulnerable data in registers (something for a follow-on improvement). Possible strategies to mask out vulnerable data that can be implemented on top of this are: - speculative load hardening to automatically mask of data loaded in registers. - using intrinsics to mask of data in registers as indicated by the programmer (see https://lwn.net/Articles/759423/). For AArch64, the following implementation choices are made. Some of these are different than the implementation choices made in the similar pass implemented in X86SpeculativeLoadHardening.cpp, as the instruction set characteristics result in different trade-offs. - The speculation hardening is done after register allocation. With a relative abundance of registers, one register is reserved (X16) to be the taint register. X16 is expected to not clash with other register reservation mechanisms with very high probability because: . The AArch64 ABI doesn't guarantee X16 to be retained across any call. . The only way to request X16 to be used as a programmer is through inline assembly. In the rare case a function explicitly demands to use X16/W16, this pass falls back to hardening against speculation by inserting a DSB SYS/ISB barrier pair which will prevent control flow speculation. - It is easy to insert mask operations at this late stage as we have mask operations available that don't set flags. - The taint variable contains all-ones when no miss-speculation is detected, and contains all-zeros when miss-speculation is detected. Therefore, when masking, an AND instruction (which only changes the register to be masked, no other side effects) can easily be inserted anywhere that's needed. - The tracking of miss-speculation is done by using a data-flow conditional select instruction (CSEL) to evaluate the flags that were also used to make conditional branch direction decisions. Speculation of the CSEL instruction can be limited with a CSDB instruction - so the combination of CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL aren't speculated. When conditional branch direction gets miss-speculated, the semantics of the inserted CSEL instruction is such that the taint register will contain all zero bits. One key requirement for this to work is that the conditional branch is followed by an execution of the CSEL instruction, where the CSEL instruction needs to use the same flags status as the conditional branch. This means that the conditional branches must not be implemented as one of the AArch64 conditional branches that do not use the flags as input (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction selectors to not produce these instructions when speculation hardening is enabled. This pass will assert if it does encounter such an instruction. - On function call boundaries, the miss-speculation state is transferred from the taint register X16 to be encoded in the SP register as value 0. Future extensions/improvements could be: - Implement this functionality using full speculation barriers, akin to the x86-slh-lfence option. This may be more useful for the intrinsics-based approach than for the SLH approach to masking. Note that this pass already inserts the full speculation barriers if the function for some niche reason makes use of X16/W16. - no indirect branch misprediction gets protected/instrumented; but this could be done for some indirect branches, such as switch jump tables. Differential Revision: https://reviews.llvm.org/D54896 llvm-svn: 349456
OpenPOWER on IntegriCloud