| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reinstates commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 216982
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Just fixing comments, no functional change.
Test Plan: N/A
Reviewers: jfb
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D5130
llvm-svn: 216784
|
|
|
|
| |
llvm-svn: 216361
|
|
|
|
| |
llvm-svn: 216351
|
|
|
|
| |
llvm-svn: 215967
|
|
|
|
|
|
|
|
|
|
| |
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
|
|
|
|
|
|
|
|
|
|
|
| |
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
|
|
|
|
|
|
|
|
|
| |
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
|
|
|
|
|
|
| |
information and update all callers. No functional change.
llvm-svn: 214781
|
|
|
|
|
|
| |
Every user has been switched to using EngineBuilder.
llvm-svn: 213871
|
|
|
|
|
|
|
|
| |
This optional dependency on the udis86 library was added some time back to aid
JIT development, but doesn't make much sense to link into LLVM binaries these
days.
llvm-svn: 213300
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 1f502bd9d7d2c1f98ad93a09ffe435e11a95aedd, due to
GCC / MinGW's lack of support for C++11 threading.
It's possible this will go back in after we come up with a
reasonable solution.
llvm-svn: 211401
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change has a bit of a trickle down effect due to the fact that
there are a number of derived implementations of ExecutionEngine,
and that the mutex is not tightly encapsulated so is used by other
classes directly.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4196
llvm-svn: 211214
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This pattern loses some of its usefulness when the mutex type is
statically polymorphic as opposed to runtime polymorphic, as
swapping out the mutex type requires changing a significant number
of function parameters, and templatizing the function parameter
requires the methods to be defined in the headers.
Furthermore, if LLVM is compiled with threads disabled then there
may even be no mutex to acquire anyway, so it should not be up to
individual APIs to know whether or not acquiring a mutex is required
to use those APIs to begin with. It should be up to the user of the
API.
llvm-svn: 211125
|
|
|
|
|
|
|
|
|
|
|
| |
These parameters are intended to serve as sort of a contract that
you cannot access the functions outside of a mutex. However, the
entire JIT class cannot be accessed outside of a mutex anyway, and
all methods acquire a lock as soon as they are entered. Since the
containing class already is not intended to be thread-safe, it only
serves to add code clutter.
llvm-svn: 211071
|
|
|
|
|
|
| |
Thanks to rnk for the suggestion.
llvm-svn: 210205
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
llvm-svn: 210062
|
|
|
|
| |
llvm-svn: 209040
|
|
|
|
| |
llvm-svn: 207394
|
|
|
|
| |
llvm-svn: 207083
|
|
|
|
|
|
|
| |
definition below all the header #include lines. This updates most of the
miscellaneous other lib/... directories. A few left though.
llvm-svn: 206845
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously module verification was always enabled, with no way to turn it off.
As of this commit, module verification is on by default in Debug builds, and off
by default in release builds. The default behaviour can be overridden by calling
setVerifyModules(bool) on the JIT instance (this works for both the old JIT, and
MCJIT).
<rdar://problem/16150008>
llvm-svn: 206561
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
by removing the MallocSlabAllocator entirely and just using
MallocAllocator directly. This makes all off these allocators expose and
utilize the same core interface.
The only ugly part of this is that it exposes the fact that the JIT
allocator has no real handling of alignment, any more than the malloc
allocator does. =/ It would be nice to fix both of these to support
alignments, and then to leverage that in the BumpPtrAllocator to do less
over allocation in order to manually align pointers. But, that's another
patch for another day. This patch has no functional impact, it just
removes the somewhat meaningless wrapper around MallocAllocator.
llvm-svn: 206267
|
|
|
|
|
|
|
|
|
|
|
|
| |
abstract interface. The only user of this functionality is the JIT
memory manager and it is quite happy to have a custom type here. This
removes a virtual function call and a lot of unnecessary abstraction
from the common case where this is just a *very* thin vaneer around
a call to malloc.
Hopefully still no functionality changed here. =]
llvm-svn: 206149
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
slabs rather than embedding a singly linked list in the slabs
themselves. This has a few advantages:
- Better utilization of the slab's memory by not wasting 16-bytes at the
front.
- Simpler allocation strategy by not having a struct packed at the
front.
- Avoids paging every allocated slab in just to traverse them for
deallocating or dumping stats.
The latter is the really nice part. Folks have complained from time to
time bitterly that tearing down a BumpPtrAllocator, even if it doesn't
run any destructors, pages in all of the memory allocated. Now it won't.
=]
Also resolves a FIXME with the scaling of the slab sizes. The scaling
now disregards specially sized slabs for allocations larger than the
threshold.
llvm-svn: 206147
|
|
|
|
|
|
|
|
|
|
| |
parameters rather than runtime parameters.
There is only one user of these parameters and they are compile time for
that user. Making these compile time seems to better reflect their
intended usage as well.
llvm-svn: 205143
|
|
|
|
|
|
|
|
| |
top of the default jit memory manager. This will allow them to be used
as template parameters rather than runtime parameters in a subsequent
commit.
llvm-svn: 204992
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204934
|
|
|
|
|
|
|
|
|
| |
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
llvm-svn: 204784
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204781
|
|
|
|
|
|
| |
class.
llvm-svn: 203344
|
|
|
|
|
|
|
|
|
|
| |
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
|
|
|
|
|
|
| |
already lives.
llvm-svn: 203046
|
|
|
|
|
|
|
|
|
|
|
|
| |
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
llvm-svn: 202824
|
|
|
|
|
|
|
|
|
|
|
| |
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
llvm-svn: 202821
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
llvm-svn: 202204
|
|
|
|
|
|
|
| |
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
llvm-svn: 202168
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.
Reviewed by Andrew Kaylor
llvm-svn: 199926
|
|
|
|
| |
llvm-svn: 196988
|
|
|
|
|
|
| |
Patch by James Lyon!
llvm-svn: 194832
|
|
|
|
|
|
|
|
|
| |
Support for exception handling in the legacy JIT was removed in r181354 and
this code was dead since then.
Thanks to Yaron Keren for noticing it.
llvm-svn: 192101
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
APIs, both in C++ and C land.
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
|
|
|
|
|
|
| |
Thanks to Luca Falavigna for the help and most of the patch.
llvm-svn: 189324
|
|
|
|
|
|
| |
JITMemoryManager.
llvm-svn: 185421
|
|
|
|
|
|
|
| |
the JIT object (including XFAIL an ARM test that now needs fixing). Also renames
internal function for consistency.
llvm-svn: 182085
|
|
|
|
| |
llvm-svn: 181649
|
|
|
|
| |
llvm-svn: 181354
|
|
|
|
|
|
|
|
|
| |
Previously we tried to infer it from the bit width size, with an added
IsIEEE argument for the PPC/IEEE 128-bit case, which had a default
value. This default value allowed bugs to creep in, where it was
inappropriate.
llvm-svn: 173138
|
|
|
|
|
|
| |
Properly cast some more code that triggered cast-away-const errors.
llvm-svn: 172469
|
|
|
|
|
|
| |
Patch by Michael Muller.
llvm-svn: 172214
|