| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
| |
Part of rdar://11496790
llvm-svn: 157303
|
|
|
|
| |
llvm-svn: 157274
|
|
|
|
| |
llvm-svn: 157273
|
|
|
|
|
|
|
|
|
| |
Also make sure registers aren't erased twice if the dead def mentions
the register twice.
This fixes PR12911.
llvm-svn: 157254
|
|
|
|
|
|
|
|
| |
No in-tree targets exercise this path.
Patch by Micah Villmow.
llvm-svn: 157215
|
|
|
|
| |
llvm-svn: 157195
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This helps compile time when the greedy register allocator splits live
ranges in giant functions. Without the bias, we would try to grow
regions through the giant edge bundles, usually to find out that the
region became too big and expensive.
If a live range has many uses in blocks near the giant bundle, the small
negative bias doesn't make a big difference, and we still consider
regions including the giant edge bundle.
Giant edge bundles are usually connected to landing pads or indirect
branches.
llvm-svn: 157174
|
|
|
|
|
|
|
|
|
|
|
| |
With physreg joining out of the way, it is easy to recognize the
instructions that need their kill flags cleared while testing for
interference.
This allows us to skip the final scan of all instructions for an 11%
speedup of the coalescer pass.
llvm-svn: 157169
|
|
|
|
|
|
|
| |
It can be necessary to restrict to a sub-class before accessing
sub-registers.
llvm-svn: 157164
|
|
|
|
|
|
|
| |
When rewriting operands, make sure the new registers have a compatible
register class.
llvm-svn: 157163
|
|
|
|
|
|
|
| |
may be RAUW'd by the recursive call to LegalizeOps; instead, retrieve
the other operands when calling UpdateNodeOperands. Fixes PR12889.
llvm-svn: 157162
|
|
|
|
|
|
| |
Found by valgrind.
llvm-svn: 157160
|
|
|
|
| |
llvm-svn: 157155
|
|
|
|
|
|
| |
Not all GR64 registers have sub_8bit sub-registers.
llvm-svn: 157150
|
|
|
|
|
|
|
| |
X86 has 2-addr instructions with different constraints on the tied def
and use operands. One is GR32, one is GR32_NOSP.
llvm-svn: 157149
|
|
|
|
| |
llvm-svn: 157148
|
|
|
|
|
|
|
| |
This function adds copies to be erased to DupCopies, avoid also adding
them to DeadCopies.
llvm-svn: 157147
|
|
|
|
|
|
| |
Avoid looking at the operands of a potentially erased instruction.
llvm-svn: 157146
|
|
|
|
| |
llvm-svn: 157145
|
|
|
|
| |
llvm-svn: 157144
|
|
|
|
|
|
| |
That struct ought to be a LiveInterval implementation detail.
llvm-svn: 157143
|
|
|
|
| |
llvm-svn: 157142
|
|
|
|
| |
llvm-svn: 157137
|
|
|
|
|
|
|
|
|
|
|
|
| |
Dead code elimination during coalescing could cause a virtual register
to be split into connected components. The following rewriting would be
confused about the already joined copies present in the code, but
without a corresponding value number in the live range.
Erase all joined copies instantly when joining intervals such that the
MI and LiveInterval representations are always in sync.
llvm-svn: 157135
|
|
|
|
|
|
|
|
|
|
|
| |
Dead code and joined copies are now eliminated on the fly, and there is
no need for a post pass.
This makes the coalescer work like other modern register allocator
passes: Code is changed on the fly, there is no pending list of changes
to be committed.
llvm-svn: 157132
|
|
|
|
|
|
|
|
|
| |
The late dead code elimination is no longer necessary.
The test changes are cause by a register hint that can be either %rdi or
%rax. The choice depends on the use list order, which this patch changes.
llvm-svn: 157131
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before rewriting uses of one value in A to register B, check that there
are no tied uses. That would require multiple A values to be rewritten.
This bug can't bite in the current version of the code for a fairly
subtle reason: A tied use would have caused 2-addr to insert a copy
before the use. If the copy has been coalesced, it will be found by the
same loop changed by this patch, and the optimization is aborted.
This was exposed by 400.perlbench and lua after applying a patch that
deletes joined copies aggressively.
llvm-svn: 157130
|
|
|
|
|
|
|
| |
There is no reason to defer the collection of virtual registers whose
register class may be replaced with a larger class.
llvm-svn: 157125
|
|
|
|
|
|
| |
This will remove the original def once it has no more uses.
llvm-svn: 157104
|
|
|
|
|
|
|
|
|
|
|
| |
Remaining virtreg->physreg copies were rematerialized during
updateRegDefsUses(), but we already do the same thing in joinCopy() when
visiting the physreg copy instruction.
Eliminate the preserveSrcInt argument to reMaterializeTrivialDef(). It
is now always true.
llvm-svn: 157103
|
|
|
|
|
|
|
| |
There is no need for these instructions to stick around since they are
known to be not dead.
llvm-svn: 157102
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Dead copies cause problems because they are trivial to coalesce, but
removing them gived the live range a dangling end point. This patch
enables full dead code elimination which trims live ranges to their uses
so end points don't dangle.
DCE may erase multiple instructions. Put the pointers in an ErasedInstrs
set so we never risk visiting erased instructions in the work list.
There isn't supposed to be any dead copies entering RegisterCoalescer,
but they do slip by as evidenced by test/CodeGen/X86/coalescer-dce.ll.
llvm-svn: 157101
|
|
|
|
|
|
| |
The dead code elimination with callbacks is still useful.
llvm-svn: 157100
|
|
|
|
|
|
| |
No functional change.
llvm-svn: 157079
|
|
|
|
|
|
| |
This will make it possible to filter out erased instructions later.
llvm-svn: 157073
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
llvm-svn: 157062
|
|
|
|
| |
llvm-svn: 157060
|
|
|
|
|
|
|
|
|
| |
It is no longer necessary to separate VirtCopies, PhysCopies, and
ImpDefCopies. Implicitly defined copies are extremely rare after we
added the ProcessImplicitDefs pass, and physical register copies are not
joined any longer.
llvm-svn: 157059
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This has been disabled for a while, and it is not a feature we want to
support. Copies between physical and virtual registers are eliminated by
good hinting support in the register allocator. Joining virtual and
physical registers is really a form of register allocation, and the
coalescer is not properly equipped to do that. In particular, it cannot
backtrack coalescing decisions, and sometimes that would cause it to
create programs that were impossible to register allocate, by exhausting
a small register class.
It was also very difficult to keep track of the live ranges of aliasing
registers when extending the live range of a physreg. By disabling
physreg joining, we can let fixed physreg live ranges remain constant
throughout the register allocator super-pass.
One type of physreg joining remains: A virtual register that has a
single value which is a copy of a reserved register can be merged into
the reserved physreg. This always lowers register pressure, and since we
don't compute live ranges for reserved registers, there are no problems
with aliases.
llvm-svn: 157055
|
|
|
|
|
|
| |
SelectionDAGBuilder::Clusterify : main functinality was replaced with CRSBuilder::optimize, so big part of Clusterify's code was reduced.
llvm-svn: 157046
|
|
|
|
|
|
|
|
|
| |
non-profitable commute using outdated info. The test case would still fail
because of poor pre-RA schedule. That will be fixed by MI scheduler.
rdar://11472010
llvm-svn: 157038
|
|
|
|
| |
llvm-svn: 157020
|
|
|
|
| |
llvm-svn: 157007
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce the basic strategy for register pressure scheduling.
1) Respect target limits at all times.
2) Indentify critical register classes (pressure sets).
Track pressure within the scheduled region.
Avoid increasing scheduled pressure for critical registers.
3) Avoid exceeding the max pressure of the region prior to scheduling.
Added logic for picking between the top and bottom ready Q's based on
regpressure heuristics.
Status: functional but needs to be asjusted to achieve good results.
llvm-svn: 157006
|
|
|
|
| |
llvm-svn: 157005
|
|
|
|
| |
llvm-svn: 157004
|
|
|
|
| |
llvm-svn: 157003
|
|
|
|
| |
llvm-svn: 157002
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RegisterCoalescer set <undef> flags on all operands of copy instructions
that are scheduled to be removed. This is so they won't affect
shrinkToUses() by introducing false register reads.
Make sure those <undef> flags are never cleared, or shrinkToUses() could
cause live intervals to end at instructions about to be deleted.
This would be a lot simpler if RegisterCoalescer could just erase joined
copies immediately instead of keeping all the to-be-deleted instructions
around.
This fixes PR12862. Unfortunately, bugpoint can't create a sane test
case for this. Like many other coalescer problems, this failure depends
of a very fragile series of events.
<rdar://problem/11474428>
llvm-svn: 157001
|
|
|
|
|
|
| |
Make sure useless (def-only) intervals also get verified.
llvm-svn: 157000
|