| Commit message (Collapse) | Author | Age | Files | Lines |
| ... | |
| |
|
|
|
|
|
|
| |
DAGCombiner::visitINSERT_SUBVECTOR call.
As discussed on D55511, this caused an issue if the inner node deletes a node that the outer node depends upon. As it doesn't affect any lit-tests and I've only been able to expose this with the D55511 change I'm committing this now.
llvm-svn: 348781
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Intrinsic::stackprotector
Record the stack protector index in MachineFrameInfo when translating
Intrinsic::stackprotector similarly as is done by SelectionDAG when
processing the same intrinsic.
Setting this index allows the Prologue/Epilogue Insertion to recognize
that the stack protection is enabled. The pass can then make sure that
the stack protector comes before local variables on the stack and
assigns potentially vulnerable objects first so they are close to the
stack protector slot.
Differential Revision: https://reviews.llvm.org/D55418
llvm-svn: 348761
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This triggers an assert when combining concat_vectors of a bitcast of
merge_values.
With asserts disabled, it fails to select:
fatal error: error in backend: Cannot select: 0x7ff19d000e90: i32 = any_extend 0x7ff19d000ae8
0x7ff19d000ae8: f64,ch = CopyFromReg 0x7ff19d000c20:1, Register:f64 %1
0x7ff19d000b50: f64 = Register %1
In function: d
Differential Revision: https://reviews.llvm.org/D55507
llvm-svn: 348759
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, dbg.value's of "nullptr" are dropped when entering a SelectionDAG --
apparently just because of an oversight when recognising Values that are
constant (see PR39787). This patch adds ConstantPointerNull to the list of
constants that can be turned into DBG_VALUEs.
The matter of what bit-value a null pointer constant in LLVM has was raised
in this mailing list thread:
http://lists.llvm.org/pipermail/llvm-dev/2018-December/128234.html
Where it transpires LLVM relies on (IR) null pointers being zero valued,
thus I've baked this assumption into the patch.
Differential Revision: https://reviews.llvm.org/D55227
llvm-svn: 348753
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a fix for PR39896, where dbg.value's of SDNodes that have been
optimised out do not lead to "DBG_VALUE undef" instructions being created.
Such undef instructions are necessary to terminate earlier variable
ranges, otherwise variable values leak past the point where they're valid.
The "invalidated" flag of SDDbgValue is currently being abused to mean two
things:
* The corresponding SDNode is now invalid
* This SDDbgValue should not be emitted
Of which there are several legitimate combinations of meaning:
* The SDNode has been invalidated and we should emit "DBG_VALUE undef"
* The SDNode has been invalidated but the debug data was salvaged, don't
emit anything for this SDDbgValue
* This SDDbgValue has been emitted
This patch introduces distinct "Emitted" and "Invalidated" fields to the
SDDbgValue class, updates users accordingly, and generates "undef"
DBG_VALUEs for invalidated records. Awkwardly, there are circumstances
where we emit SDDbgValue's twice, specifically DebugInfo/X86/dbg-addr-dse.ll
which I've preserved.
Differential Revision: https://reviews.llvm.org/D55372
llvm-svn: 348751
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is effectively re-committing the changes from:
rL347917 (D54640)
rL348195 (D55126)
...which were effectively reverted here:
rL348604
...because the code had a bug that could induce infinite looping
or eventual out-of-memory compilation.
The bug was that this code did not guard against transforming
opaque constants. More details are in the post-commit mailing
list thread for r347917. A reduced test for that is included
in the x86 bool-math.ll file. (I wasn't able to reduce a PPC
backend test for this, but it was almost the same pattern.)
Original commit message for r347917:
The motivating case for this is shown in:
https://bugs.llvm.org/show_bug.cgi?id=32023
and the corresponding rot16.ll regression tests.
Because x86 scalar shift amounts are i8 values, we can end up with trunc-binop-trunc
sequences that don't get folded in IR.
As the TODO comments suggest, there will be regressions if we extend this (for x86,
we mostly seem to be missing LEA opportunities, but there are likely vector folds
missing too). I think those should be considered existing bugs because this is the
same transform that we do as an IR canonicalization in instcombine. We just need
more tests to make those visible independent of this patch.
llvm-svn: 348706
|
| |
|
|
|
|
|
|
| |
getNode. NFCI
These nodes should have two results. A real VT and a Glue. But this code would have returned Undef which would only be a single result. But we're in the single result version of getNode so these opcodes should never be seen by this function anyway.
llvm-svn: 348670
|
| |
|
|
|
|
|
|
| |
This adds IR translation support for @llvm.log10 and updates relevant tests.
https://reviews.llvm.org/D55392
llvm-svn: 348657
|
| |
|
|
|
|
| |
This adds the other intrinsics used by ARC and codegen's them to their respective runtime methods.
llvm-svn: 348646
|
| |
|
|
|
|
|
| |
This duplicates several shared checks, but we need to split
this up to fix underlying bugs in smaller steps.
llvm-svn: 348627
|
| |
|
|
|
|
|
|
|
|
| |
As discussed in the post-commit thread of r347917, this
transform is fighting with an existing transform causing
an infinite loop or out-of-memory, so this is effectively
reverting r347917 and its follow-up r348195 while we
investigate the bug.
llvm-svn: 348604
|
| |
|
|
|
|
|
|
| |
As noted in the post-commit thread for rL347917:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181203/608936.html
...we don't need to repeat these calls because the combiner does it automatically.
llvm-svn: 348597
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Fixes an assertion:
llc: lib/CodeGen/SelectionDAG/SelectionDAG.cpp:2200: llvm::KnownBits llvm::SelectionDAG::computeKnownBits(llvm::SDValue, const llvm::APInt&, unsigned int) const: Assertion `(!Op.getValueType().isVector() || NumElts == Op.getValueType().getVectorNumElements()) && "Unexpected vector size"' failed.
Committed on behalf of: @pendingchaos (Rhys Perry)
Differential Revision: https://reviews.llvm.org/D55223
llvm-svn: 348574
|
| |
|
|
|
|
|
|
|
|
|
| |
If this is not a valid way to assign an SDLoc, then we get this
wrong all over SDAG.
I don't know enough about the SDAG to explain this. IIUC, theoretically,
debug info is not supposed to affect codegen. But here it has clearly
affected 3 different targets, and the x86 change is an actual improvement.
llvm-svn: 348552
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
We shouldn't care about the debug location for a node that
we're creating, but attaching the root of the pattern should
be the best effort. (If this is not true, then we are doing
it wrong all over the SDAG).
This is no-functional-change-intended, and there are no
regression test diffs...and that's what I expected. But
there's a similar line above this diff, where those
assumptions apparently do not hold.
llvm-svn: 348550
|
| |
|
|
|
|
| |
This code can still misbehave.
llvm-svn: 348547
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was probably organized as it was because bswap is a unary op.
But that's where the similarity to the other opcodes ends. We should
not limit this transform to scalars, and we should not try it if
either input has other uses. This is another step towards trying to
clean this whole function up to prevent it from causing infinite loops
and memory explosions.
Earlier commits in this series:
rL348501
rL348508
rL348518
llvm-svn: 348534
|
| |
|
|
|
|
|
|
| |
Unlike some of the folds in hoistLogicOpWithSameOpcodeHands()
above this shuffle transform, this has the expected hasOneUse()
checks in place.
llvm-svn: 348523
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces a new DAGCombiner rule to simplify concat_vectors nodes:
concat_vectors( bitcast (scalar_to_vector %A), UNDEF)
--> bitcast (scalar_to_vector %A)
This patch only partially addresses PR39257. In particular, it is enough to fix
one of the two problematic cases mentioned in PR39257. However, it is not enough
to fix the original test case posted by Craig; that particular case would
probably require a more complicated approach (and knowledge about used bits).
Before this patch, we used to generate the following code for function PR39257
(-mtriple=x86_64 , -mattr=+avx):
vmovsd (%rdi), %xmm0 # xmm0 = mem[0],zero
vxorps %xmm1, %xmm1, %xmm1
vblendps $3, %xmm0, %xmm1, %xmm0 # xmm0 = xmm0[0,1],xmm1[2,3]
vmovaps %ymm0, (%rsi)
vzeroupper
retq
Now we generate this:
vmovsd (%rdi), %xmm0 # xmm0 = mem[0],zero
vmovaps %ymm0, (%rsi)
vzeroupper
retq
As a side note: that VZEROUPPER is completely redundant...
I guess the vzeroupper insertion pass doesn't realize that the definition of
%xmm0 from vmovsd is already zeroing the upper half of %ymm0. Note that on
%-mcpu=btver2, we don't get that vzeroupper because pass vzeroupper insertion
%pass is disabled.
Differential Revision: https://reviews.llvm.org/D55274
llvm-svn: 348522
|
| |
|
|
|
|
|
|
|
| |
The PPC test with 2 extra uses seems clearly better by avoiding this transform.
With 1 extra use, we also prevent an extra register move (although that might
be an RA problem). The general rule should be to only make a change here if
it is always profitable. The x86 diffs are all neutral.
llvm-svn: 348518
|
| |
|
|
| |
llvm-svn: 348517
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The AVX512 diffs are neutral, but the bswap test shows a clear overreach in
hoistLogicOpWithSameOpcodeHands(). If we don't check for other uses, we can
increase the instruction count.
This could also fight with transforms trying to go in the opposite direction
and possibly blow up/infinite loop. This might be enough to solve the bug
noted here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181203/608593.html
I did not add the hasOneUse() checks to all opcodes because I see a perf
regression for at least one opcode. We may decide that's irrelevant in the
face of potential compiler crashing, but I'll see if I can salvage that first.
llvm-svn: 348508
|
| |
|
|
|
|
|
|
|
| |
Added FIXME and TODO comments for lack of safety checks.
This function is a suspect in out-of-memory errors as discussed in
the follow-up thread to r347917:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181203/608593.html
llvm-svn: 348501
|
| |
|
|
|
|
| |
VT.getVectorNumElements(). NFCI.
llvm-svn: 348494
|
| |
|
|
| |
llvm-svn: 348483
|
| |
|
|
|
|
|
|
| |
Reviewers: erik.pilkington, ahatanak
Differential Revision: https://reviews.llvm.org/D55233
llvm-svn: 348441
|
| |
|
|
|
|
|
|
| |
Once again, following the wisdom of the LLVM Programmer's Manual.
I think that's enough refactoring for today. :)
llvm-svn: 348439
|
| |
|
|
|
|
| |
See http://llvm.org/docs/ProgrammersManual.html#vector
llvm-svn: 348433
|
| |
|
|
|
|
|
|
|
|
| |
Refactoring.
This map was only used when we used a string of integers to output the outlined
sequence. Since it's no longer used for anything, there's no reason to keep it
around.
llvm-svn: 348432
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
G_CONCAT_VECTOR opcodes.
These opcodes are intended to subsume some of the capability of G_MERGE_VALUES,
as it was too powerful and thus complex to add deal with throughout the GISel
pipeline.
G_BUILD_VECTOR creates a vector value from a sequence of uniformly typed
scalar values. G_BUILD_VECTOR_TRUNC is a special opcode for handling scalar
operands which are larger than the destination vector element type, and
therefore does an implicit truncate.
G_CONCAT_VECTOR creates a vector by concatenating smaller, uniformly typed,
vectors together.
These will be used in a subsequent commit. This commit just adds the initial
infrastructure.
Differential Revision: https://reviews.llvm.org/D53594
llvm-svn: 348430
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
More refactoring.
Since the pruning logic has changed, and the candidate list is gone,
everything can be sunk into findCandidates.
We no longer need to keep track of the length of the longest substring, so we
can drop all of that logic as well.
After this, we just find all of the candidates and move to outlining.
llvm-svn: 348428
|
| |
|
|
|
|
|
|
|
|
|
| |
More refactoring.
After the changes to the pruning logic, and removing CandidateList, there's
no reason for Candiates to be shared_ptrs (or pointers at all).
std::shared_ptr<Candidate> -> Candidate.
llvm-svn: 348427
|
| |
|
|
|
|
|
| |
After removing the pruning logic, there's no reason to populate a list of
Candidates. Remove CandidateList and update comments.
llvm-svn: 348422
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
A bot didn't like my lambda. This ought to fix it.
Example:
http://lab.llvm.org:8011/builders/lld-x86_64-win7/builds/30139/steps/build%20lld/logs/stdio
error C3493: 'AlreadyRemoved' cannot be implicitly captured because no default
capture mode has been specified
llvm-svn: 348421
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since we're now performing outlining per OutlinedFunction rather than per
Candidate, we can simply outline each candidate as it shows up.
Instead of having a pruning phase, instead, we'll outline entire functions.
Then we'll update the UnsignedVec we mapped to reflect the deletion. If any
candidate is in a space that's marked dirty, then we'll drop it.
This lets us remove the pruning logic entirely, and greatly simplifies the
code.
llvm-svn: 348420
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Mostly NFC, only change is the order of outlined function names.
Loop over the outlined functions instead of walking the candidate list.
This is a bit easier to understand. It's far more natural to create a function,
then replace all of its occurrences with calls than the other way around.
The functions outlined after this do not change, but their names will be
decided by their benefit. E.g, OUTLINED_FUNCTION_0 will now always be the
most beneficial function, rather than the first one seen.
This makes it easier to enforce an ordering on the outlined functions. So,
this also adds a test to make sure that the ordering works as expected.
llvm-svn: 348414
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
|
| |
|
|
|
|
|
|
|
|
|
| |
Some gardening/refactoring.
It's cleaner to copy the instructions into the MachineFunction using the first
candidate instead of going to the mapper.
Also, by doing this we can remove the Seq member from OutlinedFunction entirely.
llvm-svn: 348390
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
(PR39893)
Because we're potentially peeking through a bitcast in this transform,
we need to use overall bitwidths rather than number of elements to
determine when it's safe to proceed.
Should fix:
https://bugs.llvm.org/show_bug.cgi?id=39893
llvm-svn: 348383
|
| |
|
|
|
|
|
|
| |
SimplifyDemandedVectorElts
These have no test coverage and the KnownZero flags can't be guaranteed unlike SIGN/ZERO_EXTEND cases.
llvm-svn: 348361
|
| |
|
|
|
|
|
|
|
|
| |
This is an initial patch to add a minimum level of support for funnel shifts to the SelectionDAG and to begin wiring it up to the X86 SHLD/SHRD instructions.
Some partial legalization code has been added to handle the case for 'SlowSHLD' where we want to expand instead and I've added a few DAG combines so we don't get regressions from the existing DAG builder expansion code.
Differential Revision: https://reviews.llvm.org/D54698
llvm-svn: 348353
|
| |
|
|
|
|
| |
As requested in D54698.
llvm-svn: 348350
|
| |
|
|
|
|
|
|
| |
Fix potential issue with the ISD::INSERT_VECTOR_ELT case tweaking the DemandedElts mask instead of using a local copy - so later uses of the mask use the tweaked version.....
Noticed while investigating adding zero/undef folding to SimplifyDemandedVectorElts and the altered DemandedElts mask was causing mismatches.
llvm-svn: 348348
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
in post-RA LICM
It looks like MCRegAliasIterator can visit the same physical register twice. When this happens in this code in LICM we end up setting the PhysRegDef and then later in the same loop visit the register again. Now we see that PhysRegDef is set from the earlier iteration so now set PhysRegClobber.
This patch splits the loop so we have one that uses the previous value of PhysRegDef to update PhysRegClobber and second loop that updates PhysRegDef.
The X86 atomic test is an improvement. I had to add sideeffect to the two shrink wrapping tests to prevent hoisting from occurring. I'm not sure about the AMDGPU tests. It looks like the branch instruction changed at end the of the loops. And in the branch-relaxation test I think there is now "and vcc, exec, -1" instruction that wasn't there before.
Differential Revision: https://reviews.llvm.org/D55102
llvm-svn: 348330
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's a 64k limit on the number of SDNode operands, and some very large
functions with 64k or more loads can cause crashes due to this limit being hit
when a TokenFactor with this many operands is created. To fix this, create
sub-tokenfactors if we've exceeded the limit.
No test case as it requires a very large function.
rdar://45196621
Differential Revision: https://reviews.llvm.org/D55073
llvm-svn: 348324
|
| |
|
|
| |
llvm-svn: 348288
|
| |
|
|
|
|
|
|
|
|
| |
Currently if you use -{start,stop}-{before,after}, it picks
the first instance with the matching pass name. If you run
the same pass multiple times, there's no way to distinguish them.
Allow specifying a run index wih ,N to specify which you mean.
llvm-svn: 348285
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
(PR17686)
PR17686 demonstrates that for some targets FP exceptions can fire in cases where the FP_TO_UINT is expanded using a FP_TO_SINT instruction.
The existing code converts both the inrange and outofrange cases using FP_TO_SINT and then selects the result, this patch changes this for 'strict' cases to pre-select the FP_TO_SINT input and the offset adjustment.
The X87 cases don't need the strict flag but generates much nicer code with it....
Differential Revision: https://reviews.llvm.org/D53794
llvm-svn: 348251
|
| |
|
|
|
|
|
|
| |
Add support for ISD::*_EXTEND and ISD::*_EXTEND_VECTOR_INREG opcodes.
The extra broadcast in trunc-subvector.ll will be fixed in an upcoming patch.
llvm-svn: 348246
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the smallest vector enhancement I could find to D54640.
Here, we're allowing narrowing to only legal vector ops because we'll see
regressions without that. All of the test diffs are wins from what I can tell.
With AVX/AVX512, we can shrink ymm/zmm ops to xmm.
x86 vector multiplies are the problem case that we're avoiding due to the
patchwork ISA, and it's not clear to me if we can dance around those
regressions using TLI hooks or if we need preliminary patches to plug those
holes.
Differential Revision: https://reviews.llvm.org/D55126
llvm-svn: 348195
|