| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The LiveDebugValues pass recognizes spills but not restores, which can
cause large gaps in location information for some variables, depending
on control flow. This patch make LiveDebugValues recognize restores and
generate appropriate DBG_VALUE instructions.
This patch was posted previously with r352642 and reverted in r352666 due
to buildbot errors. A missing return statement was the cause for the
failures.
Reviewers: aprantl, NicolaPrica
Differential Revision: https://reviews.llvm.org/D57271
llvm-svn: 353089
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes two problems with CSE done in buildConstant. First, this
would hit an assert when used with a vector result type. Solve this by
allowing CSE on the vector elements, but not on the result vector for
now.
Second, this was also performing the CSE based on the input
ConstantInt pointer. The underlying buildConstant could potentially
convert the constant depending on the result type, giving in a
different ConstantInt*. Stop allowing the APInt and ConstantInt forms
from automatically casting to the result type to avoid any similar
problems in the future.
llvm-svn: 353077
|
| |
|
|
|
|
|
|
|
| |
This was completely broken. The condition was inverted, and changed
the element type for vectors of pointers.
Fixes bug 40592.
llvm-svn: 353069
|
| |
|
|
|
|
|
|
|
| |
This reverts commit 8bbd570fd5205a04d88d2e5513a6e4adbd028039.
Apparently adding ffloor breaks AMDGPU somehow, so I need to back this out
while I look into it.
llvm-svn: 353064
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55625
llvm-svn: 353059
|
| |
|
|
|
|
|
|
|
|
| |
Follow-up to https://reviews.llvm.org/D57484
Adds G_FFLOOR to translateKnownIntrinsic and update arm64-irtranslator.ll.
Differential Revision: https://reviews.llvm.org/D57485
llvm-svn: 353058
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is no-functional-change-intended although there could
be intermediate variations caused by a difference in the
debug info produced by setting that from the builder's
insertion point.
I'm updating the IR test file associated with this code just
to show that the naming differences from using the builder
are visible.
The motivation for adding a helper function is that we are
likely to extend this code to deal with other overflow ops.
llvm-svn: 353056
|
| |
|
|
|
|
|
| |
There was a missing space before the instruction name, and the newline
is redundant since MI::print by default adds one.
llvm-svn: 353046
|
| |
|
|
|
|
|
|
| |
Noticed while investigating PR40483, and fixes the basic test case from the bug - but not a more general case.
We're pretty weak at dealing with ADD/SUB combines compared to the SimplifyAssociativeOrCommutative/SimplifyUsingDistributiveLaws abilities that InstCombine can manage.
llvm-svn: 353044
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).
Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".
These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.
When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.
Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.
Differential Revision: https://reviews.llvm.org/D57244
llvm-svn: 353043
|
| |
|
|
| |
llvm-svn: 353028
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are 2 changes visible here:
1. There's no reason to limit this transform based on number
of condition registers. That diff allows PPC to produce
slightly better (dot-instructions should be generally good)
code.
Note: someone that cares about PPC codegen might want to
look closer at that output because it seems like we could
still improve this.
2. We (probably?) should not bother trying to form uaddo (or
other overflow ops) when there's no target support for such
an op. This goes beyond checking whether the op is expanded
because both PPC and AArch64 show better codegen for standard
types regardless of whether the op is legal/custom.
llvm-svn: 353001
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is not truly NFC because we are bailing out without
a TLI now. That should not be a real concern though because
there should be a TLI in any real-world scenario.
That seems better than passing around a pointer and then
checking it for null-ness all over the place.
The motivation is to fix what appears to be an unintended
restriction on the uaddo transform -
hasMultipleConditionRegisters() shouldn't be reason to limit
the transform.
llvm-svn: 352988
|
| |
|
|
|
|
|
|
|
| |
For the scalar case only.
Also move the similar G_MERGE_VALUES handling to a separate function
and cleanup to make them look more similar.
llvm-svn: 352979
|
| |
|
|
|
|
| |
Handle the basic element extract case.
llvm-svn: 352978
|
| |
|
|
| |
llvm-svn: 352973
|
| |
|
|
|
|
|
|
| |
We already have the getConstantOperandVal helper which returns a uint64_t, but along comes the fuzzer and inserts a i128 -1 constant or something and the whole thing asserts.......
I've updated a few obvious cases, and tried to make use of the const reference where possible, but there's more to do. A number of existing oss-fuzz tickets should be fixed if we start using APInt and perform value clamping where necessary.
llvm-svn: 352961
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Background: At the moment, we record the AtomicOrdering of an access in the MMO, but also mark any atomic access as volatile in SelectionDAG. I'm working towards separating that. See https://reviews.llvm.org/D57601 for context.
Update all usages of isVolatile in lib/CodeGen to preserve behaviour once atomic MMOs stop being also volatile. This is NFC in it's current form, but is essential for correctness once we make that final change.
It useful to keep in mind that AtomicSDNode is not a parent of LoadSDNode, StoreSDNode, or LSBaseSDNode. As a result, any call to isVolatile on one of those static types doesn't need a companion isAtomic check. We should probably adjust that class hierarchy long term, but for now, that seperation is useful.
I'm deliberately being conservative about handling. I want the change to stop adding volatile to be NFC itself, and then will work through places where we can be less conservative for atomics one by one in separate changes w/tests.
Differential Revision: https://reviews.llvm.org/D57596
llvm-svn: 352937
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
objects
Summary: This fixes using the correct stack registers for SEH when stack realignment is needed or when variable size objects are present.
Reviewers: rnk, efriedma, ssijaric, TomTan
Reviewed By: rnk, efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D57183
llvm-svn: 352923
|
| |
|
|
|
|
|
|
|
| |
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
|
| |
|
|
|
|
|
|
|
| |
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
|
| |
|
|
|
|
|
|
|
| |
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
|
| |
|
|
|
|
|
|
|
|
| |
location description's length.
Reviewer: davide, JDevliegere
Differential Revision: https://reviews.llvm.org/D57550
llvm-svn: 352889
|
| |
|
|
|
|
|
|
| |
The version of FoldConstantArithmetic() that takes arbitrary nodes
was confusingly naming those nodes as constants when they might
not be; also "Cst" reads like "Cast".
llvm-svn: 352884
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This might be the start of tracking all vector element constants generally if we take it to its
logical conclusion, but let's stop here and make sure this is correct/beneficial so far.
The affected tests require a convoluted path before they get simplified currently because we
don't call SimplifyDemandedVectorElts() from binops directly and don't modify the binop operands
directly in SimplifyDemandedVectorElts().
That's why the tests all have a trailing shuffle to induce a chain reaction of transforms. So
something like this is happening:
1. Improve the knowledge of undefs in the binop via a SimplifyDemandedVectorElts() call that
originates from a shuffle.
2. Transfer that undef knowledge back to the shuffle mask user as more undef lanes.
3. Combine the modified shuffle by calling SimplifyDemandedVectorElts() again.
4. Translate the improved shuffle mask as undemanded lanes of build vector constants causing
those to become full undef constants.
5. Simplify the binop now that it has a full undef operand.
As we can see from the unchanged 'and' and 'or' tests, tracking undefs alone isn't a full solution.
We would need to track zero and all-ones constants to improve those opcodes. We'd probably need to
track NaN for FP ops too (assuming we don't have fast-math-flags set).
Differential Revision: https://reviews.llvm.org/D57066
llvm-svn: 352880
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, LiveRegUnits was assuming that if a block has no successors
and does not return, then no registers are live at the end of it
(because the end of the block is unreachable). This was causing the
register scavenger to use callee-saved registers to materialise stack
frame addresses without saving them in the prologue. This would normally
be fine, because the end of the block is unreachable, but this is not
legal if the block ends by throwing a C++ exception. If this happens,
the scratch register will be modified, but its previous value won't be
preserved, so it doesn't get restored by the exception unwinder.
Differential revision: https://reviews.llvm.org/D57381
llvm-svn: 352844
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
For targets where i32 is not a legal type (e.g. 64-bit RISC-V),
LegalizeIntegerTypes must promote the integer operand of ISD::FPOWI. As this
is a signed value, this should be sign-extended.
This patch enables all tests in test/CodeGen/RISCVfloat-intrinsics.ll for
RV64, as prior to this patch that file couldn't be compiled for RV64 due to an
assertion when performing codegen for fpowi.
Differential Revision: https://reviews.llvm.org/D54574
llvm-svn: 352832
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
|
| |
|
|
|
|
|
| |
It should probably just be mandatory for getTgtMemIntrinsic to return
the alignment.
llvm-svn: 352817
|
| |
|
|
|
|
|
|
|
| |
This reverts commit f47d6b38c7a61d50db4566b02719de05492dcef1 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes pr39098.
For the attached test case, CombineZExtLogicopShiftLoad can optimize it to
t25: i64 = Constant<1099511627775>
t35: i64 = Constant<0>
t0: ch = EntryToken
t57: i64,ch = load<(load 4 from `i40* undef`, align 8), zext from i32> t0, undef:i64, undef:i64
t58: i64 = srl t57, Constant:i8<1>
t60: i64 = and t58, Constant:i64<524287>
t29: ch = store<(store 5 into `i40* undef`, align 8), trunc to i40> t57:1, t60, undef:i64, undef:i64
But later visitANDLike transforms it to
t25: i64 = Constant<1099511627775>
t35: i64 = Constant<0>
t0: ch = EntryToken
t57: i64,ch = load<(load 4 from `i40* undef`, align 8), zext from i32> t0, undef:i64, undef:i64
t61: i32 = truncate t57
t63: i32 = srl t61, Constant:i8<1>
t64: i32 = and t63, Constant:i32<524287>
t65: i64 = zero_extend t64
t58: i64 = srl t57, Constant:i8<1>
t60: i64 = and t58, Constant:i64<524287>
t29: ch = store<(store 5 into `i40* undef`, align 8), trunc to i40> t57:1, t60, undef:i64, undef:i64
And it triggers CombineZExtLogicopShiftLoad again, causes a dead loop.
Both forms should generate same instructions, CombineZExtLogicopShiftLoad generated IR looks cleaner. But it looks more difficult to prevent visitANDLike to do the transform, so I prevent CombineZExtLogicopShiftLoad to do the transform if the ZExt is free.
Differential Revision: https://reviews.llvm.org/D57491
llvm-svn: 352792
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
While dangling nodes will eventually be pruned when they are
considered, leaving them disables combines requiring single-use.
Reviewers: Carrot, spatel, craig.topper, RKSimon, efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D57520
llvm-svn: 352784
|
| |
|
|
|
|
|
|
|
|
|
| |
r zero scale SMULFIX, expand into MUL which produces better code for X86.
For vector arguments, expand into MUL if SMULFIX is provided with a zero scale.
Otherwise, expand into MULH[US] or [US]MUL_LOHI.
Differential Revision: https://reviews.llvm.org/D56987
llvm-svn: 352783
|
| |
|
|
|
|
|
|
| |
This ensures that if we make it to the backend w/o lowering widenable_conditions first, that we generate correct code. Doing it in CGP - instead of isel - let's us fold control flow before hitting block local instruction selection.
Differential Revision: https://reviews.llvm.org/D57473
llvm-svn: 352779
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
And instead just generate a libcall. My motivating example on ARM was a simple:
shl i64 %A, %B
for which the code bloat is quite significant. For other targets that also
accept __int128/i128 such as AArch64 and X86, it is also beneficial for these
cases to generate a libcall when optimising for minsize. On these 64-bit targets,
the 64-bits shifts are of course unaffected because the SHIFT/SHIFT_PARTS
lowering operation action is not set to custom/expand.
Differential Revision: https://reviews.llvm.org/D57386
llvm-svn: 352736
|
| |
|
|
|
|
|
|
| |
This change reverts r351626.
The changes in r351626 cause quadratic work in several cases. (See r351626 thread on llvm-commits for details.)
llvm-svn: 352722
|
| |
|
|
| |
llvm-svn: 352720
|
| |
|
|
| |
llvm-svn: 352719
|
| |
|
|
| |
llvm-svn: 352718
|
| |
|
|
|
|
| |
For AMDGPU the result is always 32-bit for 64-bit inputs.
llvm-svn: 352717
|
| |
|
|
|
|
|
|
| |
Also fix an alignment bug getMachineMemOperand. If the
tracked value is null, the offset isn't tracked so the
base alignment needs to be reduced.
llvm-svn: 352716
|
| |
|
|
| |
llvm-svn: 352712
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fixes PR40267, in which the removed assertion was triggering on
perfectly valid IR. As far as I can tell, constant out of bounds
indices should be allowed when splitting extract_vector_elt, since
they will simply be propagated as out of bounds indices in the
resulting split vector and handled appropriately elsewhere.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya
Differential Revision: https://reviews.llvm.org/D57471
llvm-svn: 352702
|
| |
|
|
|
|
|
|
|
|
| |
default case of some type legalization handlers that can be reached with intrinsics with result or operands that aren't legal types.
These can be triggered by mistakenly using a 64-bit mode only intrinsics with a -mtriple=i686. Using report_fatal_error gives a better experience for this mistake in release builds instead of probably crashing.
We already do this for some of the vector type legalization handles.
llvm-svn: 352699
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This teaches the legalizer to handle G_FEXP in AArch64. As a result, it also
allows us to select G_FEXP.
It...
- Updates the legalizer-info tests
- Adds a test for legalizing exp
- Updates the existing fp tests to show that we can now select G_FEXP
https://reviews.llvm.org/D57483
llvm-svn: 352692
|
| |
|
|
|
|
| |
No test as it's a preventative fix.
llvm-svn: 352691
|
| |
|
|
| |
llvm-svn: 352686
|
| |
|
|
|
|
|
|
|
|
| |
This extends the existing transform for:
add X, 0/1 --> sub X, 0/-1
...to allow the sibling subtraction fold.
This pattern could regress with the proposed change in D57401.
llvm-svn: 352680
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This teaches GlobalISel to emit a RTLib call for @llvm.log2 when it encounters
it.
It updates the existing floating point tests to show that we don't fall back on
the intrinsic, and select the correct instructions. It also adds a legalizer
test for G_FLOG2.
https://reviews.llvm.org/D57357
llvm-svn: 352673
|