summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Analysis/ScopedNoAliasAA.cpp
Commit message (Collapse)AuthorAgeFilesLines
* Sink all InitializePasses.h includesReid Kleckner2019-11-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This file lists every pass in LLVM, and is included by Pass.h, which is very popular. Every time we add, remove, or rename a pass in LLVM, it caused lots of recompilation. I found this fact by looking at this table, which is sorted by the number of times a file was changed over the last 100,000 git commits multiplied by the number of object files that depend on it in the current checkout: recompiles touches affected_files header 342380 95 3604 llvm/include/llvm/ADT/STLExtras.h 314730 234 1345 llvm/include/llvm/InitializePasses.h 307036 118 2602 llvm/include/llvm/ADT/APInt.h 213049 59 3611 llvm/include/llvm/Support/MathExtras.h 170422 47 3626 llvm/include/llvm/Support/Compiler.h 162225 45 3605 llvm/include/llvm/ADT/Optional.h 158319 63 2513 llvm/include/llvm/ADT/Triple.h 140322 39 3598 llvm/include/llvm/ADT/StringRef.h 137647 59 2333 llvm/include/llvm/Support/Error.h 131619 73 1803 llvm/include/llvm/Support/FileSystem.h Before this change, touching InitializePasses.h would cause 1345 files to recompile. After this change, touching it only causes 550 compiles in an incremental rebuild. Reviewers: bkramer, asbirlea, bollu, jdoerfert Differential Revision: https://reviews.llvm.org/D70211
* [AliasAnalysis] Second prototype to cache BasicAA / anyAA state.Alina Sbirlea2019-03-221-9/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | Summary: Adding contained caching to AliasAnalysis. BasicAA is currently the only one using it. AA changes: - This patch is pulling the caches from BasicAAResults to AAResults, meaning the getModRefInfo call benefits from the IsCapturedCache as well when in "batch mode". - All AAResultBase implementations add the QueryInfo member to all APIs. AAResults APIs maintain wrapper APIs such that all alias()/getModRefInfo call sites are unchanged. - AA now provides a BatchAAResults type as a wrapper to AAResults. It keeps the AAResults instance and a QueryInfo instantiated to batch mode. It delegates all work to the AAResults instance with the batched QueryInfo. More API wrappers may be needed in BatchAAResults; only the minimum needed is currently added. MemorySSA changes: - All walkers are now templated on the AA used (AliasAnalysis=AAResults or BatchAAResults). - At build time, we optimize uses; now we create a local walker (lives only as long as OptimizeUses does) using BatchAAResults. - All Walkers have an internal AA and only use that now, never the AA in MemorySSA. The Walkers receive the AA they will use when built. - The walker we use for queries after the build is instantiated on AliasAnalysis and is built after building MemorySSA and setting AA. - All static methods doing walking are now templated on AliasAnalysisType if they are used both during build and after. If used only during build, the method now only takes a BatchAAResults. If used only after build, the method now takes an AliasAnalysis. Subscribers: sanjoy, arsenm, jvesely, nhaehnle, jlebar, george.burgess.iv, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D59315 llvm-svn: 356783
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [CallSite removal] Migrate all Alias Analysis APIs to use the newlyChandler Carruth2019-01-071-18/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | minted `CallBase` class instead of the `CallSite` wrapper. This moves the largest interwoven collection of APIs that traffic in `CallSite`s. While a handful of these could have been migrated with a minorly more shallow migration by converting from a `CallSite` to a `CallBase`, it hardly seemed worth it. Most of the APIs needed to migrate together because of the complex interplay of AA APIs and the fact that converting from a `CallBase` to a `CallSite` isn't free in its current implementation. Out of tree users of these APIs can fairly reliably migrate with some combination of `.getInstruction()` on the `CallSite` instance and casting the resulting pointer. The most generic form will look like `CS` -> `cast_or_null<CallBase>(CS.getInstruction())` but in most cases there is a more elegant migration. Hopefully, this migrates enough APIs for users to fully move from `CallSite` to the base class. All of the in-tree users were easily migrated in that fashion. Thanks for the review from Saleem! Differential Revision: https://reviews.llvm.org/D55641 llvm-svn: 350503
* [ModRefInfo] Make enum ModRefInfo an enum class [NFC].Alina Sbirlea2017-12-071-4/+4
| | | | | | | | | | | | | | | Summary: Make enum ModRefInfo an enum class. Changes to ModRefInfo values should be done using inline wrappers. This should prevent future bit-wise opearations from being added, which can be more error-prone. Reviewers: sanjoy, dberlin, hfinkel, george.burgess.iv Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D40933 llvm-svn: 320107
* Mark all library options as hidden.Zachary Turner2017-12-011-1/+1
| | | | | | | | | | | | | | | | | These command line options are not intended for public use, and often don't even make sense in the context of a particular tool anyway. About 90% of them are already hidden, but when people add new options they forget to hide them, so if you were to make a brand new tool today, link against one of LLVM's libraries, and run tool -help you would get a bunch of junk that doesn't make sense for the tool you're writing. This patch hides these options. The real solution is to not have libraries defining command line options, but that's a much larger effort and not something I'm prepared to take on. Differential Revision: https://reviews.llvm.org/D40674 llvm-svn: 319505
* [Analysis] Fix some Clang-tidy modernize and Include What You Use warnings; ↵Eugene Zelenko2017-08-181-5/+9
| | | | | | other minor fixes (NFC). llvm-svn: 311212
* [PM] Change the static object whose address is used to uniquely identifyChandler Carruth2016-11-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | analyses to have a common type which is enforced rather than using a char object and a `void *` type when used as an identifier. This has a number of advantages. First, it at least helps some of the confusion raised in Justin Lebar's code review of why `void *` was being used everywhere by having a stronger type that connects to documentation about this. However, perhaps more importantly, it addresses a serious issue where the alignment of these pointer-like identifiers was unknown. This made it hard to use them in pointer-like data structures. We were already dodging this in dangerous ways to create the "all analyses" entry. In a subsequent patch I attempted to use these with TinyPtrVector and things fell apart in a very bad way. And it isn't just a compile time or type system issue. Worse than that, the actual alignment of these pointer-like opaque identifiers wasn't guaranteed to be a useful alignment as they were just characters. This change introduces a type to use as the "key" object whose address forms the opaque identifier. This both forces the objects to have proper alignment, and provides type checking that we get it right everywhere. It also makes the types somewhat less mysterious than `void *`. We could go one step further and introduce a truly opaque pointer-like type to return from the `ID()` static function rather than returning `AnalysisKey *`, but that didn't seem to be a clear win so this is just the initial change to get to a reliably typed and aligned object serving is a key for all the analyses. Thanks to Richard Smith and Justin Lebar for helping pick plausible names and avoid making this refactoring many times. =] And thanks to Sean for the super fast review! While here, I've tried to move away from the "PassID" nomenclature entirely as it wasn't really helping and is overloaded with old pass manager constructs. Now we have IDs for analyses, and key objects whose address can be used as IDs. Where possible and clear I've shortened this to just "ID". In a few places I kept "AnalysisID" to make it clear what was being identified. Differential Revision: https://reviews.llvm.org/D27031 llvm-svn: 287783
* [ScopedNoAliasAA] collectMDInDomain should be a free functionDavid Majnemer2016-08-151-3/+2
| | | | | | | collectMDInDomain doesn't use any class members, making it a free function is not a functional change. llvm-svn: 278651
* [ScopedNoAliasAA] Only collect noalias nodes if we have alias.scope nodesDavid Majnemer2016-08-151-2/+4
| | | | | | No functional change is intended. llvm-svn: 278646
* [ScopedNoAliasAA] Replace !ScopeNodes.size() with ScopeNodes.empty()David Majnemer2016-08-151-1/+1
| | | | | | No functional change is intended. llvm-svn: 278645
* Revert "[ScopedNoAliasAA] Remove an unneccesary set"David Majnemer2016-08-151-13/+20
| | | | | | | This reverts commit r278641. I'm not sure why but this has upset the multistage builders... llvm-svn: 278644
* [ScopedNoAliasAA] Remove an unneccesary setDavid Majnemer2016-08-151-20/+13
| | | | | | | | | | | We are trying to prove that one group of operands is a subset of another. We did this by populating two Sets and determining that every element within one was inside the other. However, this is unnecessary. We can simply construct a single set and test if each operand is within it. llvm-svn: 278641
* Consistently use FunctionAnalysisManagerSean Silva2016-08-091-1/+1
| | | | | | | | | | | Besides a general consistently benefit, the extra layer of indirection allows the mechanical part of https://reviews.llvm.org/D23256 that requires touching every transformation and analysis to be factored out cleanly. Thanks to David for the suggestion. llvm-svn: 278077
* [PM] Make the AnalysisManager parameter to run methods a reference.Chandler Carruth2016-03-111-1/+1
| | | | | | | | | | | | This was originally a pointer to support pass managers which didn't use AnalysisManagers. However, that doesn't realistically come up much and the complexity of supporting it doesn't really make sense. In fact, *many* parts of the pass manager were just assuming the pointer was never null already. This at least makes it much more explicit and clear. llvm-svn: 263219
* [PM] Implement the final conclusion as to how the analysis IDs shouldChandler Carruth2016-03-111-0/+2
| | | | | | | | | | | | | | | | | | | | work in the face of the limitations of DLLs and templated static variables. This requires passes that use the AnalysisBase mixin provide a static variable themselves. So as to keep their APIs clean, I've made these private and befriended the CRTP base class (which is the common practice). I've added documentation to AnalysisBase for why this is necessary and at what point we can go back to the much simpler system. This is clearly a better pattern than the extern template as it caught *numerous* places where the template magic hadn't been applied and things were "just working" but would eventually have broken mysteriously. llvm-svn: 263216
* [AA] Hoist the logic to reformulate various AA queries in terms of otherChandler Carruth2016-03-021-10/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | parts of the AA interface out of the base class of every single AA result object. Because this logic reformulates the query in terms of some other aspect of the API, it would easily cause O(n^2) query patterns in alias analysis. These could in turn be magnified further based on the number of call arguments, and then further based on the number of AA queries made for a particular call. This ended up causing problems for Rust that were actually noticable enough to get a bug (PR26564) and probably other places as well. When originally re-working the AA infrastructure, the desire was to regularize the pattern of refinement without losing any generality. While I think it was successful, that is clearly proving to be too costly. And the cost is needless: we gain no actual improvement for this generality of making a direct query to tbaa actually be able to re-use some other alias analysis's refinement logic for one of the other APIs, or some such. In short, this is entirely wasted work. To the extent possible, delegation to other API surfaces should be done at the aggregation layer so that we can avoid re-walking the aggregation. In fact, this significantly simplifies the logic as we no longer need to smuggle the aggregation layer into each alias analysis (or the TargetLibraryInfo into each alias analysis just so we can form argument memory locations!). However, we also have some delegation logic inside of BasicAA and some of it even makes sense. When the delegation logic is baking in specific knowledge of aliasing properties of the LLVM IR, as opposed to simply reformulating the query to utilize a different alias analysis interface entry point, it makes a lot of sense to restrict that logic to a different layer such as BasicAA. So one aspect of the delegation that was in every AA base class is that when we don't have operand bundles, we re-use function AA results as a fallback for callsite alias results. This relies on the IR properties of calls and functions w.r.t. aliasing, and so seems a better fit to BasicAA. I've lifted the logic up to that point where it seems to be a natural fit. This still does a bit of redundant work (we query function attributes twice, once via the callsite and once via the function AA query) but it is *exactly* twice here, no more. The end result is that all of the delegation logic is hoisted out of the base class and into either the aggregation layer when it is a pure retargeting to a different API surface, or into BasicAA when it relies on the IR's aliasing properties. This should fix the quadratic query pattern reported in PR26564, although I don't have a stand-alone test case to reproduce it. It also seems general goodness. Now the numerous AAs that don't need target library info don't carry it around and depend on it. I think I can even rip out the general access to the aggregation layer and only expose that in BasicAA as it is the only place where we re-query in that manner. However, this is a non-trivial change to the AA infrastructure so I want to get some additional eyes on this before it lands. Sadly, it can't wait long because we should really cherry pick this into 3.8 if we're going to go this route. Differential Revision: http://reviews.llvm.org/D17329 llvm-svn: 262490
* [PM] Introduce CRTP mixin base classes to help define passes andChandler Carruth2016-02-261-2/+0
| | | | | | | | | | | | | | | | | analyses in the new pass manager. These just handle really basic stuff: turning a type name into a string statically that is nice to print in logs, and getting a static unique ID for each analysis. Sadly, the format of passes in anonymous namespaces makes using their names in tests really annoying so I've customized the names of the no-op passes to keep tests sane to read. This is the first of a few simplifying refactorings for the new pass manager that should reduce boilerplate and confusion. llvm-svn: 262004
* rangify; NFCISanjay Patel2016-01-131-4/+4
| | | | llvm-svn: 257646
* don't repeat names in comments ; NFCSanjay Patel2016-01-131-5/+5
| | | | llvm-svn: 257643
* fix typoSanjay Patel2016-01-131-1/+1
| | | | llvm-svn: 257626
* Fix Clang-tidy modernize-use-nullptr warnings in source directories and ↵Hans Wennborg2015-10-061-2/+3
| | | | | | | | | | generated files; other minor cleanups. Patch by Eugene Zelenko! Differential Revision: http://reviews.llvm.org/D13321 llvm-svn: 249482
* [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatibleChandler Carruth2015-09-091-73/+77
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | with the new pass manager, and no longer relying on analysis groups. This builds essentially a ground-up new AA infrastructure stack for LLVM. The core ideas are the same that are used throughout the new pass manager: type erased polymorphism and direct composition. The design is as follows: - FunctionAAResults is a type-erasing alias analysis results aggregation interface to walk a single query across a range of results from different alias analyses. Currently this is function-specific as we always assume that aliasing queries are *within* a function. - AAResultBase is a CRTP utility providing stub implementations of various parts of the alias analysis result concept, notably in several cases in terms of other more general parts of the interface. This can be used to implement only a narrow part of the interface rather than the entire interface. This isn't really ideal, this logic should be hoisted into FunctionAAResults as currently it will cause a significant amount of redundant work, but it faithfully models the behavior of the prior infrastructure. - All the alias analysis passes are ported to be wrapper passes for the legacy PM and new-style analysis passes for the new PM with a shared result object. In some cases (most notably CFL), this is an extremely naive approach that we should revisit when we can specialize for the new pass manager. - BasicAA has been restructured to reflect that it is much more fundamentally a function analysis because it uses dominator trees and loop info that need to be constructed for each function. All of the references to getting alias analysis results have been updated to use the new aggregation interface. All the preservation and other pass management code has been updated accordingly. The way the FunctionAAResultsWrapperPass works is to detect the available alias analyses when run, and add them to the results object. This means that we should be able to continue to respect when various passes are added to the pipeline, for example adding CFL or adding TBAA passes should just cause their results to be available and to get folded into this. The exception to this rule is BasicAA which really needs to be a function pass due to using dominator trees and loop info. As a consequence, the FunctionAAResultsWrapperPass directly depends on BasicAA and always includes it in the aggregation. This has significant implications for preserving analyses. Generally, most passes shouldn't bother preserving FunctionAAResultsWrapperPass because rebuilding the results just updates the set of known AA passes. The exception to this rule are LoopPass instances which need to preserve all the function analyses that the loop pass manager will end up needing. This means preserving both BasicAAWrapperPass and the aggregating FunctionAAResultsWrapperPass. Now, when preserving an alias analysis, you do so by directly preserving that analysis. This is only necessary for non-immutable-pass-provided alias analyses though, and there are only three of interest: BasicAA, GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is preserved when needed because it (like DominatorTree and LoopInfo) is marked as a CFG-only pass. I've expanded GlobalsAA into the preserved set everywhere we previously were preserving all of AliasAnalysis, and I've added SCEVAA in the intersection of that with where we preserve SCEV itself. One significant challenge to all of this is that the CGSCC passes were actually using the alias analysis implementations by taking advantage of a pretty amazing set of loop holes in the old pass manager's analysis management code which allowed analysis groups to slide through in many cases. Moving away from analysis groups makes this problem much more obvious. To fix it, I've leveraged the flexibility the design of the new PM components provides to just directly construct the relevant alias analyses for the relevant functions in the IPO passes that need them. This is a bit hacky, but should go away with the new pass manager, and is already in many ways cleaner than the prior state. Another significant challenge is that various facilities of the old alias analysis infrastructure just don't fit any more. The most significant of these is the alias analysis 'counter' pass. That pass relied on the ability to snoop on AA queries at different points in the analysis group chain. Instead, I'm planning to build printing functionality directly into the aggregation layer. I've not included that in this patch merely to keep it smaller. Note that all of this needs a nearly complete rewrite of the AA documentation. I'm planning to do that, but I'd like to make sure the new design settles, and to flesh out a bit more of what it looks like in the new pass manager first. Differential Revision: http://reviews.llvm.org/D12080 llvm-svn: 247167
* [PM/AA] Hoist ScopedNoAliasAA's interface into a header and move theChandler Carruth2015-08-141-40/+1
| | | | | | | | | creation function there. Same basic refactoring as the other alias analyses. Nothing special required this time around. llvm-svn: 245012
* [PM/AA] Run clang-format over the ScopedNoAliasAA pass prior to makingChandler Carruth2015-08-141-16/+12
| | | | | | substantial changes to normalize any formatting. llvm-svn: 245010
* [PM/AA] Extract the ModRef enums from the AliasAnalysis class inChandler Carruth2015-07-221-18/+16
| | | | | | | | | | | | | | | | | | | | | | | preparation for de-coupling the AA implementations. In order to do this, they had to become fake-scoped using the traditional LLVM pattern of a leading initialism. These can't be actual scoped enumerations because they're bitfields and thus inherently we use them as integers. I've also renamed the behavior enums that are specific to reasoning about the mod/ref behavior of functions when called. This makes it more clear that they have a very narrow domain of applicability. I think there is a significantly cleaner API for all of this, but I don't want to try to do really substantive changes for now, I just want to refactor the things away from analysis groups so I'm preserving the exact original design and just cleaning up the names, style, and lifting out of the class. Differential Revision: http://reviews.llvm.org/D10564 llvm-svn: 242963
* [PM/AA] Hoist the AliasResult enum out of the AliasAnalysis class.Chandler Carruth2015-06-221-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | This will allow classes to implement the AA interface without deriving from the class or referencing an internal enum of some other class as their return types. Also, to a pretty fundamental extent, concepts such as 'NoAlias', 'MayAlias', and 'MustAlias' are first class concepts in LLVM and we aren't saving anything by scoping them heavily. My mild preference would have been to use a scoped enum, but that feature is essentially completely broken AFAICT. I'm extremely disappointed. For example, we cannot through any reasonable[1] means construct an enum class (or analog) which has scoped names but converts to a boolean in order to test for the possibility of aliasing. [1]: Richard Smith came up with a "solution", but it requires class templates, and lots of boilerplate setting up the enumeration multiple times. Something like Boost.PP could potentially bundle this up, but even that would be quite painful and it doesn't seem realistically worth it. The enum class solution would probably work without the need for a bool conversion. Differential Revision: http://reviews.llvm.org/D10495 llvm-svn: 240255
* [PM/AA] Remove the Location typedef from the AliasAnalysis class nowChandler Carruth2015-06-171-7/+9
| | | | | | | | | | | | that it is its own entity in the form of MemoryLocation, and update all the callers. This is an entirely mechanical change. References to "Location" within AA subclases become "MemoryLocation", and elsewhere "AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps out-of-tree folks update. llvm-svn: 239885
* Make DataLayout Non-Optional in the ModuleMehdi Amini2015-03-041-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: DataLayout keeps the string used for its creation. As a side effect it is no longer needed in the Module. This is "almost" NFC, the string is no longer canonicalized, you can't rely on two "equals" DataLayout having the same string returned by getStringRepresentation(). Get rid of DataLayoutPass: the DataLayout is in the Module The DataLayout is "per-module", let's enforce this by not duplicating it more than necessary. One more step toward non-optionality of the DataLayout in the module. Make DataLayout Non-Optional in the Module Module->getDataLayout() will never returns nullptr anymore. Reviewers: echristo Subscribers: resistor, llvm-commits, jholewinski Differential Revision: http://reviews.llvm.org/D7992 From: Mehdi Amini <mehdi.amini@apple.com> llvm-svn: 231270
* [cleanup] Re-sort all the #include lines in LLVM usingChandler Carruth2015-01-141-1/+1
| | | | | | | | | | | utils/sort_includes.py. I clearly haven't done this in a while, so more changed than usual. This even uncovered a missing include from the InstrProf library that I've added. No functionality changed here, just mechanical cleanup of the include order. llvm-svn: 225974
* Revert "IR: MDNode => Value"Duncan P. N. Exon Smith2014-11-111-6/+6
| | | | | | | | | | | | | | | | | Instead, we're going to separate metadata from the Value hierarchy. See PR21532. This reverts commit r221375. This reverts commit r221373. This reverts commit r221359. This reverts commit r221167. This reverts commit r221027. This reverts commit r221024. This reverts commit r221023. This reverts commit r220995. This reverts commit r220994. llvm-svn: 221711
* IR: MDNode => Value: Instruction::getMetadata()Duncan P. N. Exon Smith2014-11-011-8/+8
| | | | | | | | | | Change `Instruction::getMetadata()` to return `Value` as part of PR21433. Update most callers to use `Instruction::getMDNode()`, which wraps the result in a `cast_or_null<MDNode>`. llvm-svn: 221024
* Add override to overriden virtual methods, remove virtual keywords.Benjamin Kramer2014-09-031-13/+11
| | | | | | No functionality change. Changes made by clang-tidy + some manual cleanup. llvm-svn: 217028
* Simplify and improve scoped-noalias metadata semanticsHal Finkel2014-07-251-47/+51
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In the process of fixing the noalias parameter -> metadata conversion process that will take place during inlining (which will be committed soon, but not turned on by default), I have come to realize that the semantics provided by yesterday's commit are not really what we want. Here's why: void foo(noalias a, noalias b, noalias c, bool x) { *q = x ? a : b; *c = *q; } Generically, we know that *c does not alias with *a and with *b (so there is an 'and' in what we know we're not), and we know that *q might be derived from *a or from *b (so there is an 'or' in what we know that we are). So we do not want the semantics currently, where any noalias scope matching any alias.scope causes a NoAlias return. What we want to know is that the noalias scopes form a superset of the alias.scope list (meaning that all the things we know we're not is a superset of all of things the other instruction might be). Making that change, however, introduces a composibility problem. If we inline once, adding the noalias metadata, and then inline again adding more, and we append new scopes onto the noalias and alias.scope lists each time. But, this means that we could change what was a NoAlias result previously into a MayAlias result because we appended an additional scope onto one of the alias.scope lists. So, instead of giving scopes the ability to have parents (which I had borrowed from the TBAA implementation, but seems increasingly unlikely to be useful in practice), I've given them domains. The subset/superset condition now applies within each domain independently, and we only need it to hold in one domain. Each time we inline, we add the new scopes in a new scope domain, and everything now composes nicely. In addition, this simplifies the implementation. llvm-svn: 213948
* Add scoped-noalias metadataHal Finkel2014-07-241-0/+243
This commit adds scoped noalias metadata. The primary motivations for this feature are: 1. To preserve noalias function attribute information when inlining 2. To provide the ability to model block-scope C99 restrict pointers Neither of these two abilities are added here, only the necessary infrastructure. In fact, there should be no change to existing functionality, only the addition of new features. The logic that converts noalias function parameters into this metadata during inlining will come in a follow-up commit. What is added here is the ability to generally specify noalias memory-access sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA nodes: !scope0 = metadata !{ metadata !"scope of foo()" } !scope1 = metadata !{ metadata !"scope 1", metadata !scope0 } !scope2 = metadata !{ metadata !"scope 2", metadata !scope0 } !scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 } !scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 } Loads and stores can be tagged with an alias-analysis scope, and also, with a noalias tag for a specific scope: ... = load %ptr1, !alias.scope !{ !scope1 } ... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 } When evaluating an aliasing query, if one of the instructions is associated with an alias.scope id that is identical to the noalias scope associated with the other instruction, or is a descendant (in the scope hierarchy) of the noalias scope associated with the other instruction, then the two memory accesses are assumed not to alias. Note that is the first element of the scope metadata is a string, then it can be combined accross functions and translation units. The string can be replaced by a self-reference to create globally unqiue scope identifiers. [Note: This overview is slightly stylized, since the metadata nodes really need to just be numbers (!0 instead of !scope0), and the scope lists are also global unnamed metadata.] Existing noalias metadata in a callee is "cloned" for use by the inlined code. This is necessary because the aliasing scopes are unique to each call site (because of possible control dependencies on the aliasing properties). For example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } -- now just because we know that a1 does not alias with b1 at the first call site, and a2 does not alias with b2 at the second call site, we cannot let inlining these functons have the metadata imply that a1 does not alias with b2. llvm-svn: 213864
OpenPOWER on IntegriCloud