| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
This ports the MergeFunctions pass to the NewPM. This was rather
straightforward, as no analyses are used.
Additionally MergeFunctions needs to be conditionally enabled in
the PassBuilder, but I left that part out of this patch.
Differential Revision: https://reviews.llvm.org/D72537
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add a RemoveRedundantDbgInstrs to BasicBlockUtils with the
goal to remove redundant dbg intrinsics from a basic block.
This can be useful after various transforms, as it might
be simpler to do a filtering of dbg intrinsics after the
transform than during the transform.
One primary use case would be to replace a too aggressive
removal done by MergeBlockIntoPredecessor, seen at loop
rotate (not done in this patch).
The elimination algorithm currently focuses on dbg.value
intrinsics and is doing two iterations over the BB.
First we iterate backward starting at the last instruction
in the BB. Whenever a consecutive sequence of dbg.value
instructions are found we keep the last dbg.value for
each variable found (variable fragments are identified
using the {DILocalVariable, FragmentInfo, inlinedAt}
triple as given by the DebugVariable helper class).
Next we iterate forward starting at the first instruction
in the BB. Whenever we find a dbg.value describing a
DebugVariable (identified by {DILocalVariable, inlinedAt})
we save the {DIValue, DIExpression} that describes that
variables value. But if the variable already was mapped
to the same {DIValue, DIExpression} pair we instead drop
the second dbg.value.
To ease the process of making lit tests for this utility a
new pass is introduced called RedundantDbgInstElimination.
It can be executed by opt using -redundant-dbg-inst-elim.
Reviewers: aprantl, jmorse, vsk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71478
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first patch adding an initial set of matrix intrinsics and a
corresponding lowering pass. This has been discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2019-October/136240.html
The first patch introduces four new intrinsics (transpose, multiply,
columnwise load and store) and a LowerMatrixIntrinsics pass, that
lowers those intrinsics to vector operations.
Matrixes are embedded in a 'flat' vector (e.g. a 4 x 4 float matrix
embedded in a <16 x float> vector) and the intrinsics take the dimension
information as parameters. Those parameters need to be ConstantInt.
For the memory layout, we initially assume column-major, but in the RFC
we also described how to extend the intrinsics to support row-major as
well.
For the initial lowering, we split the input of the intrinsics into a
set of column vectors, transform those column vectors and concatenate
the result columns to a flat result vector.
This allows us to lower the intrinsics without any shape propagation, as
mentioned in the RFC. In follow-up patches, we plan to submit the
following improvements:
* Shape propagation to eliminate the embedding/splitting for each
intrinsic.
* Fused & tiled lowering of multiply and other operations.
* Optimization remarks highlighting matrix expressions and costs.
* Generate loops for operations on large matrixes.
* More general block processing for operation on large vectors,
exploiting shape information.
We would like to add dedicated transpose, columnwise load and store
intrinsics, even though they are not strictly necessary. For example, we
could instead emit a large shufflevector instruction instead of the
transpose. But we expect that to
(1) become unwieldy for larger matrixes (even for 16x16 matrixes,
the resulting shufflevector masks would be huge),
(2) risk instcombine making small changes, causing us to fail to
detect the transpose, preventing better lowerings
For the load/store, we are additionally planning on exploiting the
intrinsics for better alias analysis.
Reviewers: anemet, Gerolf, reames, hfinkel, andrew.w.kaylor, efriedma, rengolin
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D70456
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert ARMCodeGenPrepare into a generic type promotion pass by:
- Removing the insertion of arm specific intrinsics to handle narrow
types as we weren't using this.
- Removing ARMSubtarget references.
- Now query a generic TLI object to know which types should be
promoted and what they should be promoted to.
- Move all codegen tests into Transforms folder and testing using opt
and not llc, which is how they should have been written in the
first place...
The pass searches up from icmp operands in an attempt to safely
promote types so we can avoid generating unnecessary unsigned extends
during DAG ISel.
Differential Revision: https://reviews.llvm.org/D69556
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces a function pass to inject the scalar-to-vector
mappings stored in the TargetLIbraryInfo (TLI) into the Vector
Function ABI (VFABI) variants attribute.
The test is testing the injection for three vector libraries supported
by the TLI (Accelerate, SVML, MASSV).
The pass does not change any of the analysis associated to the
function.
Differential Revision: https://reviews.llvm.org/D70107
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Delete the BasicBlockPass and BasicBlockManager, all its dependencies and update documentation.
The BasicBlockManager was improperly tested and found to be potentially broken, and was deprecated as of rL373254.
In light of the switch to the new pass manager coming before the next release, this patch is a first cleanup of the LegacyPassManager.
Reviewers: chandlerc, echristo
Subscribers: mehdi_amini, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69121
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374784
|
|
|
|
|
|
|
| |
This reverts commit r374743. It broke the build with Ocaml enabled:
http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/19218
llvm-svn: 374768
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374743
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Existing clients are converted to use MachineModuleInfoWrapperPass. The
new interface is for defining a new pass manager API in CodeGen.
Reviewers: fedor.sergeev, philip.pfaffe, chandlerc, arsenm
Reviewed By: arsenm, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D64183
llvm-svn: 373240
|
|
|
|
|
|
|
|
|
|
|
| |
This patch reuses the MIR vreg renamer from the MIRCanonicalizerPass to cleanup
names of vregs in a MIR file for MIR test authors. I found it useful when
writing a regression test for a globalisel failure I encountered recently and
thought it might be useful for other folks as well.
Differential Revision: https://reviews.llvm.org/D67209
llvm-svn: 371121
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Emitting a schedule is really hard. There are lots of corner cases to take care of; in fact, of the 60+ SWP-specific testcases in the Hexagon backend most of those are testing codegen rather than the schedule creation itself.
One issue is that to test an emission corner case we must craft an input such that the generated schedule uses that corner case; sometimes this is very hard and convolutes testcases. Other times it is impossible but we want to test it anyway.
This patch adds a simple test pass that will consume a module containing a loop and generate pipelined code from it. We use post-instr-symbols as a way to annotate instructions with the stage and cycle that we want to schedule them at.
We also provide a flag that causes the MachinePipeliner to generate these annotations instead of actually emitting code; this allows us to generate an input testcase with:
llc < %s -stop-after=pipeliner -pipeliner-annotate-for-testing -o test.mir
And run the emission in isolation with:
llc < test.mir -run-pass=modulo-schedule-test
llvm-svn: 370705
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Given an instruction I, the MustBeExecutedContextExplorer allows to
easily traverse instructions that are guaranteed to be executed whenever
I is. For now, these instruction have to be statically "after" I, in
the same or different basic blocks.
This patch also adds a pass which prints the must-be-executed-context
for each instruction in a module. It is used to test the
MustBeExecutedContextExplorer, for now on the examples given in the
class comment of the MustBeExecutedIterator.
Differential Revision: https://reviews.llvm.org/D65186
llvm-svn: 369765
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For targets requiring aggressive scheduling and/or software pipeline we need to
apply predication before preRA scheduling. This adds a pass re-using the early
if-cvt infrastructure but generating predicated instructions instead of
speculatively executing instructions. It allows doing if conversion on blocks
containing instructions with side-effects. The pass re-use the target hook from
postRA if-conversion to let the target decide on the heuristic to apply.
Differential Revision: https://reviews.llvm.org/D66190
llvm-svn: 369395
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
|
|
|
|
|
|
| |
This reverts commit 5652f35817f07b16f8b3856d594cc42f4d7ee29c.
llvm-svn: 366153
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
|
|
|
|
|
|
|
|
|
|
|
| |
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch which introduces a target-independent framework for generating
hardware loops at the IR level. Most of the code has been taken from
PowerPC CTRLoops and PowerPC has been ported over to use this generic
pass. The target dependent parts have been moved into
TargetTransformInfo, via isHardwareLoopProfitable, with
HardwareLoopInfo introduced to transfer information from the backend.
Three generic intrinsics have been introduced:
- void @llvm.set_loop_iterations
Takes as a single operand, the number of iterations to be executed.
- i1 @llvm.loop_decrement(anyint)
Takes the maximum number of elements processed in an iteration of
the loop body and subtracts this from the total count. Returns
false when the loop should exit.
- anyint @llvm.loop_decrement_reg(anyint, anyint)
Takes the number of elements remaining to be processed as well as
the maximum numbe of elements processed in an iteration of the loop
body. Returns the updated number of elements remaining.
llvm-svn: 362774
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
NOTE: Note that no attributes are derived yet. This patch will not go in
alone but only with others that derive attributes. The framework is
split for review purposes.
This commit introduces the Attributor pass infrastructure and fixpoint
iteration framework. Further patches will introduce abstract attributes
into this framework.
In a nutshell, the Attributor will update instances of abstract
arguments until a fixpoint, or a "timeout", is reached. Communication
between the Attributor and the abstract attributes that are derived is
restricted to the AbstractState and AbstractAttribute interfaces.
Please see the file comment in Attributor.h for detailed information
including design decisions and typical use case. Also consider the class
documentation for Attributor, AbstractState, and AbstractAttribute.
Reviewers: chandlerc, homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames
Subscribers: mehdi_amini, mgorny, hiraditya, bollu, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59918
llvm-svn: 362578
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: gchatelet, spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62287
llvm-svn: 361490
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Port hardware assisted address sanitizer to new PM following the same guidelines as msan and tsan.
Changes:
- Separate HWAddressSanitizer into a pass class and a sanitizer class.
- Create new PM wrapper pass for the sanitizer class.
- Use the getOrINsert pattern for some module level initialization declarations.
- Also enable kernel-kwasan in new PM
- Update llvm tests and add clang test.
Differential Revision: https://reviews.llvm.org/D61709
llvm-svn: 360707
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Differential Revision: https://reviews.llvm.org/D55851
llvm-svn: 358607
|
|
|
|
|
|
| |
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358553
|
|
|
|
|
|
|
|
| |
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
|
|
|
|
|
|
| |
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Phabricator: https://reviews.llvm.org/D55851
llvm-svn: 358543
|
|
|
|
|
|
|
|
|
|
|
| |
It hasn't seen active development in years, and it hasn't reached a
state where it was useful.
Remove the code until someone is interested in working on it again.
Differential Revision: https://reviews.llvm.org/D59133
llvm-svn: 355862
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The basic idea of the pass is to use a circular buffer to log the execution ordering of the functions. We only log the function when it is first executed. We use a 8-byte hash to log the function symbol name.
In this pass, we add three global variables:
(1) an order file buffer: a circular buffer at its own llvm section.
(2) a bitmap for each module: one byte for each function to say if the function is already executed.
(3) a global index to the order file buffer.
At the function prologue, if the function has not been executed (by checking the bitmap), log the function hash, then atomically increase the index.
Differential Revision: https://reviews.llvm.org/D57463
llvm-svn: 355133
|
|
|
|
|
|
| |
Fixed UBSan failures.
llvm-svn: 355005
|
|
|
|
|
|
| |
This reverts commit r354930, it was causing UBSan failures.
llvm-svn: 354953
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Current PGO profile counts are not context sensitive. The branch probabilities
for the inlined functions are kept the same for all call-sites, and they might
be very different from the actual branch probabilities. These suboptimal
profiles can greatly affect some downstream optimizations, in particular for
the machine basic block placement optimization.
In this patch, we propose to have a post-inline PGO instrumentation/use pass,
which we called Context Sensitive PGO (CSPGO). For the users who want the best
possible performance, they can perform a second round of PGO instrument/use on
the top of the regular PGO. They will have two sets of profile counts. The
first pass profile will be manly for inline, indirect-call promotion, and
CGSCC simplification pass optimizations. The second pass profile is for
post-inline optimizations and code-gen optimizations.
A typical usage:
// Regular PGO instrumentation and generate pass1 profile.
> clang -O2 -fprofile-generate source.c -o gen
> ./gen
> llvm-profdata merge default.*profraw -o pass1.profdata
// CSPGO instrumentation.
> clang -O2 -fprofile-use=pass1.profdata -fcs-profile-generate -o gen2
> ./gen2
// Merge two sets of profiles
> llvm-profdata merge default.*profraw pass1.profdata -o profile.profdata
// Use the combined profile. Pass manager will invoke two PGO use passes.
> clang -O2 -fprofile-use=profile.profdata -o use
This change touches many components in the compiler. The reviewed patch
(D54175) will committed in phrases.
Differential Revision: https://reviews.llvm.org/D54175
llvm-svn: 354930
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
|
|
|
|
|
|
|
|
|
|
|
| |
Introduces a pass that provides default lowering strategy for the
`experimental.widenable.condition` intrinsic, replacing all its uses with
`i1 true`.
Differential Revision: https://reviews.llvm.org/D56096
Reviewed By: reames
llvm-svn: 352739
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Second iteration of D56433 which got reverted in rL350719. The problem
in the previous version was that we dropped the thunk calling the tsan init
function. The new version keeps the thunk which should appease dyld, but is not
actually OK wrt. the current semantics of function passes. Hence, add a
helper to insert the functions only on the first time. The helper
allows hooking into the insertion to be able to append them to the
global ctors list.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56538
llvm-svn: 351314
|
|
|
|
|
|
|
|
|
|
| |
https://reviews.llvm.org/D52803
This patch adds support to continuously CSE instructions during
each of the GISel passes. It consists of a GISelCSEInfo analysis pass
that can be used by the CSEMIRBuilder.
llvm-svn: 351283
|
|
|
|
|
|
|
| |
This patch breaks thread sanitizer on some macOS builders, e.g.
http://green.lab.llvm.org/green/job/clang-stage1-configure-RA/52725/
llvm-svn: 350719
|
|
|
|
|
|
|
|
|
| |
A straightforward port of tsan to the new PM, following the same path
as D55647.
Differential Revision: https://reviews.llvm.org/D56433
llvm-svn: 350647
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At -O0, globalopt is not run during the compile step, and we can have a
chain of an alias having an immediate aliasee of another alias. The
summaries are constructed assuming aliases in a canonical form
(flattened chains), and as a result only the base object but no
intermediate aliases were preserved.
Fix by adding a pass that canonicalize aliases, which ensures each
alias is a direct alias of the base object.
Reviewers: pcc, davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54507
llvm-svn: 350423
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D54848
llvm-svn: 348570
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: eugenis, vlad.tsyrklevich
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D54541
llvm-svn: 347610
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: eugenis, vlad.tsyrklevich
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D54502
llvm-svn: 347602
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Patch by: markus (Markus Lavin)
Reviewers: chandlerc, fedor.sergeev
Reviewed By: fedor.sergeev
Subscribers: llvm-commits, Ka-Ka, bjope
Differential Revision: https://reviews.llvm.org/D54695
llvm-svn: 347392
|