| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Windows unwinding is weird. The unwind rules do not (always) describe
the precise layout of the stack, but rather expect the debugger to scan
the stack for something which looks like a plausible return address, and
the unwind based on that. The reason this works somewhat reliably is
because the the unwinder also has access to the frame sizes of the
functions on the stack. This allows it (in most cases) to skip function
pointers in local variables or function arguments, which could otherwise
be mistaken for return addresses.
Implementing this kind of unwind mechanism in lldb was a bit challenging
because we expect to be able to statically describe (in the UnwindPlan)
structure, the layout of the stack for any given instruction. Giving a
precise desription of this is not possible, because it requires
correlating information from two functions -- the pushed arguments to a
function are considered a part of the callers stack frame, and their
size needs to be considered when unwinding the caller, but they are only
present in the unwind entry of the callee. The callee may end up being
in a completely different module, or it may not even be possible to
determine it statically (indirect calls).
This patch implements this functionality by introducing a couple of new
APIs:
SymbolFile::GetParameterStackSize - return the amount of stack space
taken up by parameters of this function.
SymbolFile::GetOwnFrameSize - the size of this function's frame. This
excludes the parameters, but includes stuff like local variables and
spilled registers.
These functions are then used by the unwinder to compute the estimated
location of the return address. This address is not always exact,
because the stack may contain some additional values -- for instance, if
we're getting ready to call a function then the stack will also contain
partially set up arguments, but we will not know their size because we
haven't called the function yet. For this reason the unwinder will crawl
up the stack from the return address position, and look for something
that looks like a possible return address. Currently, we assume that
something is a valid return address if it ends up pointing to an
executable section.
All of this logic kicks in when the UnwindPlan sets the value of CFA as
"isHeuristicallyDetected", which is also the final new API here. Right
now, only SymbolFileBreakpad implements these APIs, but in the future
SymbolFilePDB will use them too.
Differential Revision: https://reviews.llvm.org/D66638
llvm-svn: 373072
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Update StackFrame::GetSymbolContext to mirror the logic in
RegisterContextLLDB::InitializeNonZerothFrame that knows not to do the
pc decrement when the given frame is a signal trap handler frame or the
parent of one, because the pc may not follow a call in these frames.
Accomplish this by adding a behaves_like_zeroth_frame field to
lldb_private::StackFrame, set to true for the zeroth frame, for
signal handler frames, and for parents of signal handler frames.
Also add logic to propagate the signal handler flag from UnwindPlan to
the FrameType on the RegisterContextLLDB it generates, and factor out a
helper to resolve symbol and address range for an Address now that we
need to invoke it in four places.
Reviewers: jasonmolenda, clayborg, jfb
Reviewed By: jasonmolenda
Subscribers: labath, dexonsmith, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D64993
llvm-svn: 367691
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
|
|
|
|
|
|
| |
This changes '@' prefix to '\'.
llvm-svn: 355841
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
| |
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch fixes issues with a stack realignment.
MSVC maintains two frame pointers (`ebx` and `ebp`) for a realigned stack - one
is used for access to function parameters, while another is used for access to
locals. To support this the patch:
- adds an alternative frame pointer (`ebx`);
- considers stack realignment instructions (e.g. `and esp, -32`);
- along with CFA (Canonical Frame Address) which point to the position next to
the saved return address (or to the first parameter on the stack) introduces
AFA (Aligned Frame Address) which points to the position of the stack pointer
right after realignment. AFA is used for access to registers saved after the
realignment (see the test);
Here is an example of the code with the realignment:
```
struct __declspec(align(256)) OverAligned {
char c;
};
void foo(int foo_arg) {
OverAligned oa_foo = { 1 };
auto aaa_foo = 1234;
}
void bar(int bar_arg) {
OverAligned oa_bar = { 2 };
auto aaa_bar = 5678;
foo(1111);
}
int main() {
bar(2222);
return 0;
}
```
and here is the `bar` disassembly:
```
push ebx
mov ebx, esp
sub esp, 8
and esp, -100h
add esp, 4
push ebp
mov ebp, [ebx+4]
mov [esp+4], ebp
mov ebp, esp
sub esp, 200h
mov byte ptr [ebp-200h], 2
mov dword ptr [ebp-4], 5678
push 1111 ; foo_arg
call j_?foo@@YAXH@Z ; foo(int)
add esp, 4
mov esp, ebp
pop ebp
mov esp, ebx
pop ebx
retn
```
Reviewers: labath, zturner, jasonmolenda, stella.stamenova
Reviewed By: jasonmolenda
Subscribers: abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53435
llvm-svn: 345577
|
|
|
|
|
|
|
|
|
|
| |
With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
|
|
|
|
|
|
|
|
| |
source/Plugins/Process/Utility; other minor fixes.
Differential Revision: http://reviews.llvm.org/D13830
llvm-svn: 250593
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
it more generally available.
Add checks to UnwindAssembly_x86::AugmentUnwindPlanFromCallSite() so
that it won't try to augment an UnwindPlan that already describes
the function epilogue.
Add a test case for backtracing out of _sigtramp on Darwin systems.
This could probably be adapted to test the same thing on linux/bsd but
the function names of sigtramp and kill are probably platform
specific and I'm not sure what they should be.
llvm-svn: 225578
|
|
|
|
|
|
|
|
|
|
|
|
| |
RegisterContextLLDB. I have core files of half a dozen tricky
unwind situations on x86/arm and they're all working pretty much
correctly at this point, but we'll need to keep an eye out for
unwinder regressions for a little while; it's tricky to get these
heuristics completely correct in all unwind situations.
<rdar://problem/18937193>
llvm-svn: 221866
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
PowerPC handles the stack chain with the current stack pointer being a pointer
to the backchain (CFA). LLDB currently has no way of handling this, so this
adds a "CFA is dereferenced from a register" type.
Discussed with Jason Molenda, who also provided the initial patch for this.
Reviewers: jasonmolenda
Reviewed By: jasonmolenda
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D6182
llvm-svn: 221788
|
|
|
|
|
|
| |
RegisterContextLLDB a bit more in a few places.
llvm-svn: 221677
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
it in RegisterContext.cpp.
There's a lot of bookkeeping code in RegisterContextLLDB where it has
to convert between different register numbering schemes and it makes
some methods like SavedLocationForRegister very hard to read or
maintain. Abstract all of the details about different register numbering
systems for a given register into this new class to make it easier
to understand what the method is doing.
Also add register name printing to all of the logging -- that's easy to
get now that I've got an object to represent the register numbers.
There were some gnarly corner cases of this method that I believe
I've translated correctly - initial testing looks good but it's
possible I missed a corner case, especially with architectures which
uses a link-register aka return address register like arm32/arm64.
Basic behavior is correct but there are a lot of corner casese that are
handled in this method ...
llvm-svn: 221577
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
let's let lldb try the arch default unwind every time but not destructively --
it doesn't permanently replace the main unwind method for that function from
now on.
This fix is for <rdar://problem/18683658>.
I tested it against Ryan Brown's go program test case and also a
collection of core files of tricky unwind scenarios
<rdar://problem/15664282> <rdar://problem/15835846>
<rdar://problem/15982682> <rdar://problem/16099440>
<rdar://problem/17364005> <rdar://problem/18556719>
that I've fixed over the last 6-9 months.
llvm-svn: 221238
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is "invalid" -- it is past the end of the stack trace. Add a new
method IsCompletedStackWalk() so we can tell if an invalid stack
frame is from a complete backtrace or if it might be worth re-trying
the last unwind with a different method.
This fixes the unwinder problems Ryan Brown was having with go
programs. The unwinder can (under the right circumstances) still
destructively replace unwind plans permanently - I'll work on
that in a different patch.
<rdar://problem/18683658>
llvm-svn: 221229
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
detct unwind loops but there was a code path through there (using
architecture default unwind plans) that didn't do the check, and
could end up with an infinite loop unwind. Move that code into a
separate method and call it from both places where it is needed.
Also remove the use of ABI::FunctionCallsChangeCFA in that check.
I thought about it a lot and none of the architecutres that we're
supporting today can have a looping CFA.
Since the unwinder isn't using ABI::FunctionCallsChangeCFA() and
ABI::StackUsesFrames(), and the unwinder was the only reason
those methods exists, I removed them from the ABI and all its
plugins.
<rdar://problem/17364005>
llvm-svn: 216992
|
|
|
|
| |
llvm-svn: 212172
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
class. If we try to unwind a stack frame to find a caller stack
frame, and we fail to get a valid-looking frame, AND if the UnwindPlan
we used is an assembly-inspection based UnwindPlan, then we should
throw away the assembly-inspection UnwindPlan and try unwinding with
the architectural default UnwindPlan.
This code path won't be taken if eh_frame unwind instructions are available -
lldb will always prefer those once it's off the zeroth frame.
The problem I'm trying to fix here is the class of unwind failures that
happen when we have hand-written assembly on the stack, with no eh_frame,
and lldb's assembly parser fails to understand the assembly. People usually
write their hand-written assembly to follow the frame-pointer-preserving
conventions of the platform so the architectural default UnwindPlan will
often work. We won't have the spill location for most of the non-volatile
registers if we fall back to this, but it's better than stopping the unwind
prematurely.
This is a bit of a tricky change that I believe is correct, but if we get
unwinds that go of into the weeds / unwind bogus frames at the end of the
stack, I'll need to revisit it.
<rdar://problem/16099440>
llvm-svn: 201839
|
|
|
|
|
|
|
|
|
|
|
|
| |
specify a list of functions which should be treated as trap handlers.
This will be primarily useful to people working in non-user-level
process debugging - kernels and other standalone environments.
For most people, the trap handler functions provided by the Platform
plugin will be sufficient.
<rdar://problem/15835846>, <rdar://problem/15982682>
llvm-svn: 201386
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
aka asynchronous signal handlers, which subclasses should fill
in as appropriate. For most Unix user process environments,
the one entry in this list is _sigtramp. For bare-board and
kernel environments, there will be different sets of trap
handlers.
The unwinder needs to know when a frame is a trap handler
because the rules it enforces for the frame "above" the
trap handler is different from most middle-of-the-stack frames.
<rdar://problem/15835846>
llvm-svn: 201300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes http://llvm.org/bugs/show_bug.cgi?id=18656.
Note this exposes a failure on Linux of
TestInferiorAssert.test_inferior_asserting_disassemble, similar to how
it fails on FreeBSD. I'll file a bug for this next. We're now getting
another frame beyond where we used to prior to this fix, so the fix is
exposing failures in previosly not-reachable frames.
Much thanks to Jason Molenda, who had much to do with helping figure
out where unwinding was breaking.
llvm-svn: 200600
|
|
|
|
|
|
|
|
|
|
| |
its stack frame is a constructed, fake thing that may not conform
correctly to these rules. This fixes a problem where lldb couldn't
backtrace past an asynchronous signal handler (_sigtramp) frame on
a stack on Mac OS X.
<rdar://problem/15035673>
llvm-svn: 198450
|
|
|
|
|
|
| |
the macros and just use C++11.
llvm-svn: 179805
|
|
|
|
|
|
|
|
|
|
|
|
| |
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
|
|
|
|
|
|
|
|
|
| |
allowed volatile registers to be returned up the stack. That leads
to unexpected/incorrect values provided to the user and we need to
avoid that.
<rdar://problem/12714247>
llvm-svn: 168123
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Full UnwindPlan is trying to do an impossible unwind; in that case
invalidate the Full UnwindPlan and replace it with the architecture
default unwind plan.
This is a scenario that happens occasionally with arm unwinds in
particular; the instruction analysis based full unwindplan can
mis-parse the functions and the stack walk stops prematurely. Now
we can do a simpleminded frame-chain walk to find the caller frame
and continue the unwind. It's not ideal but given the complicated
nature of analyzing the arm functions, and the lack of eh_frame
information on iOS, it is a distinct improvement and fixes some
long-standing problems with the unwinder on that platform.
This is fixing <rdar://problem/12091421>. I may re-use this
invalidate feature in the future if I can identify other cases where
the full unwindplan's unwind information is clearly incorrect.
This checkin also includes some cleanup for the volatile register
definition in the arm ABI plugin for <rdar://problem/10652166>
although work remains to be done for that bug.
llvm-svn: 166757
|
|
|
|
|
|
|
| |
Prepare LLDB to be built with C++11 by hiding all accesses to std::tr1 behind
macros that allows us to easily compile for either C++.
llvm-svn: 152698
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1 -- an address pointing off into non-executable memory -- don't
abort the unwind. We'll use the ABI's default UnwindPlan to try
to get out of frame 1 and on many platforms with a standard frame
chain stack layout we can get back on track and get a valid frame
2. This preserves the lldb behavior to-date; the change last week
to require the memory region to be executable broke it.
I'd like to mark this frame specially when displayed to the user;
I tried to override the places where the frame's pc value is returned
to change it to a sentinel value (e.g. LLDB_INVALID_ADDRESS) but
couldn't get that to work cleanly so I backed that part out for
now. When this happens we'll often miss one of the user's actual
frames, the one that's of most interest to the user, so I'd like
to make this visually distinctive.
Note that a frame in non-executable memory region is only allowed
for frame 1. After that we should be solid on the unwind and any
pc address in non-executable memory indicates a failure and we
should stop unwinding.
llvm-svn: 146723
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RegisterContextLLDBs it contains.
Previously RegisterContextLLDB objects had a pointer to their "next"
frame down the stack. e.g. stack starts at frame 0; frame 3 has a
pointer to frame 2. This is used to retreive callee saved register
values. When debugging an inferior that has blown out its own stack,
however, this could result in lldb blowing out its own stack while
recursing down to retrieve register values.
RegisterContextLLDB no longer has a pointer to its next frame; it
has a reference to the UnwindLLDB which contains it. When it needs
to retrieve a reg value, it asks the UnwindLLDB for that reg value
and UnwindLLDB iterates through the frames until it finds a location.
llvm-svn: 143423
|
|
|
|
|
|
|
|
|
| |
multiple stack frames
with the same CFA (or an alternating sequence between two CFA values) to catch a handful of
unwind cases where lldb will inf loop trying to unwind a stack.
llvm-svn: 142331
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
|
|
|
|
|
|
|
|
| |
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ArchDefaultUnwindPlan plug-in interfaces are now cached per architecture
instead of being leaked for every frame.
Split the ArchDefaultUnwindPlan_x86 into ArchDefaultUnwindPlan_x86_64 and
ArchDefaultUnwindPlan_i386 interfaces.
There were sporadic crashes that were due to something leaking or being
destroyed when doing stack crawls. This patch should clear up these issues.
llvm-svn: 125541
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
bool RegisterContextLLDB::GetPC (addr_t& pc);
to:
bool RegisterContextLLDB::ReadPC (addr_t& pc);
To avoid confusion with the GetPC() function that is part of the
lldb_private::RegisterContext:
uint64_t RegisterContext::GetPC (uint64_t fail_value);
Bad things could happen if the two got intermixed and the wrong one got
called.
Fixed inifinite loop detection by watching for two frames where the
RegisterContextLLDB::CursorSP contains the same start_pc and cfa.
llvm-svn: 123673
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a method:
void RegisterContext::InvalidateIfNeeded (bool force);
Each time this function is called, when "force" is false, it will only call
the pure virtual "virtual void RegisterContext::InvalideAllRegisters()" if
the register context's stop ID doesn't match that of the process. When the
stop ID doesn't match, or "force" is true, the base class will clear its
cached registers and the RegisterContext will update its stop ID to match
that of the process. This helps make it easier to correctly flush the register
context (possibly from multiple locations depending on when and where new
registers are availabe) without inadvertently clearing the register cache
when it doesn't need to be.
Modified the ProcessGDBRemote plug-in to be much more efficient when it comes
to:
- caching the expedited registers in the stop reply packets (we were ignoring
these before and it was causing us to read at least three registers every
time we stopped that were already supplied in the stop reply packet).
- When a thread has no stop reason, don't keep asking for the thread stopped
info. Prior to this fix we would continually send a qThreadStopInfo packet
over and over when any thread stop info was requested. We now note the stop
ID that the stop info was requested for and avoid multiple requests.
Cleaned up some of the expression code to not look for ClangExpressionVariable
objects up by name since they are now shared pointers and we can just look for
the exact pointer match and avoid possible errors.
Fixed an bug in the ValueObject code that would cause children to not be
displayed.
llvm-svn: 123127
|
|
|
|
|
|
| |
Thanks Bruce!
llvm-svn: 123083
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
an issue with the way the UnwindLLDB was handing out RegisterContexts: it
was making shared pointers to register contexts and then handing out just
the pointers (which would get put into shared pointers in the thread and
stack frame classes) and cause double free issues. MallocScribble helped to
find these issues after I did some other cleanup. To help avoid any
RegisterContext issue in the future, all code that deals with them now
returns shared pointers to the register contexts so we don't end up with
multiple deletions. Also now that the RegisterContext class doesn't require
a stack frame, we patched a memory leak where a StackFrame object was being
created and leaked.
Made the RegisterContext class not have a pointer to a StackFrame object as
one register context class can be used for N inlined stack frames so there is
not a 1 - 1 mapping. Updates the ExecutionContextScope part of the
RegisterContext class to never return a stack frame to indicate this when it
is asked to recreate the execution context. Now register contexts point to the
concrete frame using a concrete frame index. Concrete frames are all of the
frames that are actually formed on the stack of a thread. These concrete frames
can be turned into one or more user visible frames due to inlining. Each
inlined stack frame has the exact same register context (shared via shared
pointers) as any parent inlined stack frames all the way up to the concrete
frame itself.
So now the stack frames and the register contexts should behave much better.
llvm-svn: 122976
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
needs to use the current pc and current offset in two ways: To
determine which function we are currently executing, and the decide
how much of that function has executed so far. For the former use,
we need to back up the saved pc value by one byte if we're going to
use the correct function's unwind information -- we may be executing
a CALL instruction at the end of a function and the following instruction
belongs to a new function, or we may be looking at unwind information
which only covers the call instruction and not the subsequent instruction.
But when we're talking about deciding which row of an UnwindPlan to
execute, we want to use the actual byte offset in the function, not the
byte offset - 1.
Right now RegisterContextLLDB is tracking both the "real" offset and
an "offset minus one" and different parts of the class have to know
which one to use and they need to be updated/set in tandem. I want
to revisit this at some point.
The second change made in looking up eh_frame information; it was
formerly done by looking for the start address of the function we
are currently executing. But it is possible to have unwind information
for a function which only covers a small section of the function's
address range. In which case looking up by the start pc value may not
find the eh_frame FDE.
The hand-written _sigtramp() unwind info on Mac OS X, which covers
exactly one instruction in the middle of the function, happens to
trigger both of these issues.
I still need to get the UnwindPlan runner to handle arbitrary dwarf
expressions in the FDE but there's a good chance it will be easy to
reuse the DWARFExpression class to do this.
llvm-svn: 118882
|
|
|
|
| |
llvm-svn: 118710
|
|
|
|
|
|
|
|
|
|
|
| |
I only did a tiny bit of testing; in the one case I tried changing the
contents of a radar in the middle of a stack and it was still current in
the live register context so it filtered down to frame 0 and was handed
over to the live register set RegisterContext. I need to test a case
where a register is saved on the stack in memory before I check this
one off.
llvm-svn: 118486
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
RegisterContextLLDB holds a reference to the SymbolContext
in the vector of Cursors that UnwindLLDB maintains. Switch
UnwindLLDB to hold a vector of shared pointers of Cursors
so this reference doesn't become invalid.
Correctly falling back from the "fast" UnwindPlan to the
"full" UnwindPlan when additional registers need to be
retrieved.
llvm-svn: 118218
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
loaded/parsed. Should add timers to this eventually.
Delay getting a full UnwindPlan if it's possible to unwind with
just a fast UnwindPlan. This keeps us from reading the eh_frame
section unless we hit something built -fomit-frame pointer or we
hit a frame with no symbol (read: no start address) available.
It doesn't look like it is correctly falling back to using the
full UnwindPlan to provide additional registers that the fast
UnwindPlan doesn't supply; e.g. go to the middle of a stack and
ask for r12 and it will show you the value of r12 in frame 0.
That's a bug for tomorrow.
llvm-svn: 117361
|
|
Not yet enabled as the default unwinder but there are no known
backtrace problems with the code at this point.
Added 'log enable lldb unwind' to help diagnose backtrace problems;
this output needs a little refining but it's a good first step.
eh_frame information is currently read unconditionally - the code
is structured to allow this to be delayed until it's actually needed.
There is a performance hit when you have to parse the eh_frame
information for any largeish executable/library so it's necessary
to avoid if possible.
It's confusing having both the UnwindPlan::RegisterLocation struct
and the RegisterConextLLDB::RegisterLocation struct, I need to rename
one of them.
The writing of registers isn't done in the RegisterConextLLDB subclass
yet; neither is the running of complex DWARF expressions from eh_frame
(e.g. used for _sigtramp on Mac OS X).
llvm-svn: 117256
|