| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
llvm-svn: 170171
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixed the DisassemblerLLVMC disassembler to parse more efficiently instead of parsing opcodes over and over. The InstructionLLVMC class now only reads the opcode in the InstructionLLVMC::Decode function. This can be done very efficiently for ARM and architectures that have fixed opcode sizes. For x64 it still calls the disassembler to get the byte size.
Moved the lldb_private::Instruction::Dump(...) function up into the lldb_private::Instruction class and it now uses the function that gets the mnemonic, operandes and comments so that all disassembly is using the same code.
Added StreamString::FillLastLineToColumn() to allow filling a line up to a column with a character (which is used by the lldb_private::Instruction::Dump(...) function).
Modified the Opcode::GetData() fucntion to "do the right thing" for thumb instructions.
llvm-svn: 156532
|
|
|
|
|
|
| |
clients can tell the difference between ARM/Thumb opcodes when disassembling ARM.
llvm-svn: 154633
|
|
|
|
|
|
|
|
|
|
| |
be fetched too many times and the DisassemblerLLVM was appending to strings
when the opcode, mnemonic and comment accessors were called multiple times
and if any of the strings were empty.
Also fixed the test suite failures from recent Objective C modifications.
llvm-svn: 148460
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
const char *
SBInstruction::GetMnemonic()
const char *
SBInstruction::GetOperands()
const char *
SBInstruction::GetComment()
Fixed the symbolicate example script and the internals.
llvm-svn: 140591
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
symbolication. Also improved the SBInstruction API to allow
access to the instruction opcode name, mnemonics, comment and
instruction data.
Added the ability to edit SBLineEntry objects (change the file,
line and column), and also allow SBSymbolContext objects to be
modified (set module, comp unit, function, block, line entry
or symbol).
The SymbolContext and SBSymbolContext can now generate inlined
call stack infomration for symbolication much easier using the
SymbolContext::GetParentInlinedFrameInfo(...) and
SBSymbolContext::GetParentInlinedFrameInfo(...) methods.
llvm-svn: 140518
|
|
|
|
|
|
|
|
|
| |
of the current instruction plus 8. And for Triple::thumb, it is plus 4.
rdar://problem/9170971
lldb disassembly's symbol information not correct (off by 2?)
llvm-svn: 131256
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
threads, and stack frame down in the lldb_private::Process,
lldb_private::Thread, lldb_private::StackFrameList and the
lldb_private::StackFrame classes. We had some command line
commands that had duplicate versions of the process status
output ("thread list" and "process status" for example).
Removed the "file" command and placed it where it should
have been: "target create". Made an alias for "file" to
"target create" so we stay compatible with GDB commands.
We can now have multple usable targets in lldb at the
same time. This is nice for comparing two runs of a program
or debugging more than one binary at the same time. The
new command is "target select <target-idx>" and also to see
a list of the current targets you can use the new "target list"
command. The flow in a debug session can be:
(lldb) target create /path/to/exe/a.out
(lldb) breakpoint set --name main
(lldb) run
... hit breakpoint
(lldb) target create /bin/ls
(lldb) run /tmp
Process 36001 exited with status = 0 (0x00000000)
(lldb) target list
Current targets:
target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
* target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) target select 0
Current targets:
* target #0: /tmp/args/a.out ( arch=x86_64-apple-darwin, platform=localhost, pid=35999, state=stopped )
target #1: /bin/ls ( arch=x86_64-apple-darwin, platform=localhost, pid=36001, state=exited )
(lldb) bt
* thread #1: tid = 0x2d03, 0x0000000100000b9a a.out`main + 42 at main.c:16, stop reason = breakpoint 1.1
frame #0: 0x0000000100000b9a a.out`main + 42 at main.c:16
frame #1: 0x0000000100000b64 a.out`start + 52
Above we created a target for "a.out" and ran and hit a
breakpoint at "main". Then we created a new target for /bin/ls
and ran it. Then we listed the targest and selected our original
"a.out" program, so we showed two concurent debug sessions
going on at the same time.
llvm-svn: 129695
|
|
|
|
|
|
|
|
| |
Move InstructionLLVM out of DisassemblerLLVM class.
Add instruction emulation function calls to SBInstruction and SBInstructionList APIs.
llvm-svn: 128956
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
an architecture into ArchSpec:
uint32_t
ArchSpec::GetMinimumOpcodeByteSize() const;
uint32_t
ArchSpec::GetMaximumOpcodeByteSize() const;
Added an AddressClass to the Instruction class in Disassembler.h.
This allows decoded instructions to know know if they are code,
code with alternate ISA (thumb), or even data which can be mixed
into code. The instruction does have an address, but it is a good
idea to cache this value so we don't have to look it up more than
once.
Fixed an issue in Opcode::SetOpcodeBytes() where the length wasn't
getting set.
Changed:
bool
SymbolContextList::AppendIfUnique (const SymbolContext& sc);
To:
bool
SymbolContextList::AppendIfUnique (const SymbolContext& sc,
bool merge_symbol_into_function);
This function was typically being used when looking up functions
and symbols. Now if you lookup a function, then find the symbol,
they can be merged into the same symbol context and not cause
multiple symbol contexts to appear in a symbol context list that
describes the same function.
Fixed the SymbolContext not equal operator which was causing mixed
mode disassembly to not work ("disassembler --mixed --name main").
Modified the disassembler classes to know about the fact we know,
for a given architecture, what the min and max opcode byte sizes
are. The InstructionList class was modified to return the max
opcode byte size for all of the instructions in its list.
These two fixes means when disassemble a list of instructions and dump
them and show the opcode bytes, we can format the output more
intelligently when showing opcode bytes. This affects any architectures
that have varying opcode byte sizes (x86_64 and i386). Knowing the max
opcode byte size also helps us to be able to disassemble N instructions
without having to re-read data if we didn't read enough bytes.
Added the ability to set the architecture for the disassemble command.
This means you can easily cross disassemble data for any supported
architecture. I also added the ability to specify "thumb" as an
architecture so that we can force disassembly into thumb mode when
needed. In GDB this was done using a hack of specifying an odd
address when disassembling. I don't want to repeat this hack in LLDB,
so the auto detection between ARM and thumb is failing, just specify
thumb when disassembling:
(lldb) disassemble --arch thumb --name main
You can also have data in say an x86_64 file executable and disassemble
data as any other supported architecture:
% lldb a.out
Current executable set to 'a.out' (x86_64).
(lldb) b main
(lldb) run
(lldb) disassemble --arch thumb --count 2 --start-address 0x0000000100001080 --bytes
0x100001080: 0xb580 push {r7, lr}
0x100001082: 0xaf00 add r7, sp, #0
Fixed Target::ReadMemory(...) to be able to deal with Address argument object
that isn't section offset. When an address object was supplied that was
out on the heap or stack, target read memory would fail. Disassembly uses
Target::ReadMemory(...), and the example above where we disassembler thumb
opcodes in an x86 binary was failing do to this bug.
llvm-svn: 128347
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
plugin by name on the command line for when there is more than one disassembler
plugin.
Taught the Opcode class to dump itself so that "disassembler -b" will dump
the bytes correctly for each opcode type. Modified all places that were passing
the opcode bytes buffer in so that the bytes could be displayed to just pass
in a bool that indicates if we should dump the opcode bytes since the opcode
now lives inside llvm_private::Instruction.
llvm-svn: 128290
|
|
|
|
|
|
|
|
|
|
|
| |
Modified the Disassembler::Instruction base class to contain an Opcode
instance so that we can know the bytes for an instruction without needing
to keep the data around.
Modified the DisassemblerLLVM's instruction class to correctly extract the
opcode bytes if all goes well.
llvm-svn: 128248
|
|
|
|
|
|
|
|
| |
first "n" instructions in a function.
Also added a "-p" flag that disassembles from the current pc.
llvm-svn: 128063
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
platform status -- gets status information for the selected platform
platform create <platform-name> -- creates a new instance of a remote platform
platform list -- list all available platforms
platform select -- select a platform instance as the current platform (not working yet)
When using "platform create" it will create a remote platform and make it the
selected platform. For instances for iPhone OS debugging on Mac OS X one can
do:
(lldb) platform create remote-ios --sdk-version=4.0
Remote platform: iOS platform
SDK version: 4.0
SDK path: "/Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0"
Not connected to a remote device.
(lldb) file ~/Documents/a.out
Current executable set to '~/Documents/a.out' (armv6).
(lldb) image list
[ 0] /Volumes/work/gclayton/Documents/devb/attach/a.out
[ 1] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/dyld
[ 2] /Developer/Platforms/iPhoneOS.platform/DeviceSupport/4.0/Symbols/usr/lib/libSystem.B.dylib
Note that this is all happening prior to running _or_ connecting to a remote
platform. Once connected to a remote platform the OS version might change which
means we will need to update our dependecies. Also once we run, we will need
to match up the actualy binaries with the actualy UUID's to files in the
SDK, or download and cache them locally.
This is just the start of the remote platforms, but this modification is the
first iteration in getting the platforms really doing something.
llvm-svn: 127934
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is
an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
should be selected. This helps the native x86 platform on MacOSX select the
correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
specific bundles (macosx uses .app bundles that contain files) and also
selecting the appropriate slice of universal files for a given platform.
So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx
This allows LLDB to be well setup to do remote debugging and also once
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>
The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.
llvm-svn: 127286
|
|
|
|
|
|
| |
Fixed how the LLDBDisassembler computes and uses a target triple.
llvm-svn: 125617
|
|
|
|
|
|
| |
symbol.
llvm-svn: 115734
|
|
|
|
| |
llvm-svn: 109016
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
source/Core/Disassembler.cpp.
Added the ability to read memory from the target's object files when we aren't
running, so disassembling works before you run!
Cleaned up the API to lldb_private::Target::ReadMemory().
Cleaned up the API to the Disassembler to use actual "lldb_private::Address"
objects instead of just an "addr_t". This is nice because the Address objects
when resolved carry along their section and module which can get us the
object file. This allows Target::ReadMemory to be used when we are not
running.
Added a new lldb_private::Address dump style: DumpStyleDetailedSymbolContext
This will show a full breakdown of what an address points to. To see some
sample output, execute a "image lookup --address <addr>".
Fixed SymbolContext::DumpStopContext(...) to not require a live process in
order to be able to print function and symbol offsets.
llvm-svn: 107350
|
|
llvm-svn: 105619
|