| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ELF for the ARM architecture requires linkers to provide
interworking for symbols that are of type STT_FUNC. Interworking for
other symbols must be encoded directly in the object file. LLD was always
providing interworking, regardless of the symbol type, this breaks some
programs that have branches from Thumb state targeting STT_NOTYPE symbols
that have bit 0 clear, but they are in fact internal labels in a Thumb
function. LLD treats these symbols as ARM and inserts a transition to Arm.
This fixes the problem for in range branches, R_ARM_JUMP24,
R_ARM_THM_JUMP24 and R_ARM_THM_JUMP19. This is expected to be the vast
majority of problem cases as branching to an internal label close to the
function.
There is at least one follow up patch required.
- R_ARM_CALL and R_ARM_THM_CALL may do interworking via BL/BLX
substitution.
In theory range-extension thunks can be altered to not change state when
the symbol type is not STT_FUNC. I will need to check with ld.bfd to see if
this is the case in practice.
Fixes (part of) https://github.com/ClangBuiltLinux/linux/issues/773
Differential Revision: https://reviews.llvm.org/D73474
(cherry picked from commit 4f38ab250ff4680375c4c01db0a88c157093c665)
|
|
|
|
|
|
|
|
|
|
|
| |
* Generalize the code added in D70637 and D70937. We should eventually remove the EM_MIPS special case.
* Handle R_PPC_LOCAL24PC the same way as R_PPC_REL24.
Reviewed By: Bdragon28
Differential Revision: https://reviews.llvm.org/D73424
(cherry picked from commit 70389be7a029bec3c45991a60b627445ef996120)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
-fno-pie produces a pair of non-GOT-non-PLT relocations R_PPC_ADDR16_{HA,LO} (R_ABS) referencing external
functions.
```
lis 3, func@ha
la 3, func@l(3)
```
In a -no-pie/-pie link, if func is not defined in the executable, a canonical PLT entry (st_value>0, st_shndx=0) will be needed.
References to func in shared objects will be resolved to this address.
-fno-pie -pie should fail with "can't create dynamic relocation ... against ...", so we just need to think about -no-pie.
On x86, the PLT entry passes the JMP_SLOT offset to the rtld PLT resolver.
On x86-64: the PLT entry passes the JUMP_SLOT index to the rtld PLT resolver.
On ARM/AArch64: the PLT entry passes &.got.plt[n]. The PLT header passes &.got.plt[fixed-index]. The rtld PLT resolver can compute the JUMP_SLOT index from the two addresses.
For these targets, the canonical PLT entry can just reuse the regular PLT entry (in PltSection).
On PPC32: PltSection (.glink) consists of `b PLTresolve` instructions and `PLTresolve`. The rtld PLT resolver depends on r11 having been set up to the .plt (GotPltSection) entry.
On PPC64 ELFv2: PltSection (.glink) consists of `__glink_PLTresolve` and `bl __glink_PLTresolve`. The rtld PLT resolver depends on r12 having been set up to the .plt (GotPltSection) entry.
We cannot reuse a `b PLTresolve`/`bl __glink_PLTresolve` in PltSection as a canonical PLT entry. PPC64 ELFv2 avoids the problem by using TOC for any external reference, even in non-pic code, so the canonical PLT entry scenario should not happen in the first place.
For PPC32, we have to create a PLT call stub as the canonical PLT entry. The code sequence sets up r11.
Reviewed By: Bdragon28
Differential Revision: https://reviews.llvm.org/D73399
(cherry picked from commit 837e8a9c0cd097034e023dfba146d17ce132998c)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Unlike R_RISCV_RELAX, which is a linker hint, R_RISCV_ALIGN requires the
support of the linker even when ignoring all R_RISCV_RELAX relocations.
This is because the compiler emits as many NOPs as may be required for
the requested alignment, more than may be required pre-relaxation, to
allow for the target becoming more unaligned after relaxing earlier
sequences. This means that the target is often not initially aligned in
the object files, and so the R_RISCV_ALIGN relocations cannot just be
ignored. Since we do not support linker relaxation, we must turn these
into errors.
Reviewers: ruiu, MaskRay, espindola
Reviewed By: MaskRay
Subscribers: grimar, Jim, emaste, arichardson, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71820
(cherry picked from commit d1da63664f4e42191daf2e6a9fa682ca9f75ef5e)
|
|
|
|
|
|
|
|
| |
Reviewed By: Bdragon28, jhenderson, grimar, sfertile
Differential Revision: https://reviews.llvm.org/D73255
(cherry picked from commit f1dab29908d25a4044abff6ffc120c48b20f034d)
|
|
|
|
|
|
|
| |
R_HINT is ignored like R_NONE. There are no strong reasons to keep
R_HINT. The largest RelExpr member R_RISCV_PC_INDIRECT is 60 now.
Differential Revision: https://reviews.llvm.org/D71822
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Technology
This patch is a joint work by Rui Ueyama and me based on D58102 by Xiang Zhang.
It adds Intel CET (Control-flow Enforcement Technology) support to lld.
The implementation follows the draft version of psABI which you can
download from https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.
CET introduces a new restriction on indirect jump instructions so that
you can limit the places to which you can jump to using indirect jumps.
In order to use the feature, you need to compile source files with
-fcf-protection=full.
* IBT is enabled if all input files are compiled with the flag. To force enabling ibt, pass -z force-ibt.
* SHSTK is enabled if all input files are compiled with the flag, or if -z shstk is specified.
IBT-enabled executables/shared objects have two PLT sections, ".plt" and
".plt.sec". For the details as to why we have two sections, please read
the comments.
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D59780
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D71143
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In AArch64 a branch to an undefined weak symbol that does not have a PLT
entry should resolve to the next instruction. The thunk generation code
can prevent this from happening as a range extension thunk can be generated
if the branch is sufficiently far away from 0, the value of an undefined
weak symbol.
The fix is taken from the Arm implementation of needsThunk(), we prevent a
thunk from being generated to an undefined weak symbol.
fixes pr44451
Differential Revision: https://reviews.llvm.org/D72267
|
|
|
|
|
|
| |
Reviewed By: ruiu, MaskRay
Differential Revision: https://reviews.llvm.org/D72196
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D71069
|
|
|
|
| |
Like rLLD354040.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to D71509 (EM_PPC64), on EM_PPC, the IPLT code sequence should
be similar to a PLT call stub. Unlike EM_PPC64, EM_PPC -msecure-plt has
small/large PIC model differences.
* -fpic/-fpie: R_PPC_PLTREL24 r_addend=0. The call stub loads an address relative to `_GLOBAL_OFFSET_TABLE_`.
* -fPIC/-fPIE: R_PPC_PLTREL24 r_addend=0x8000. (A partial linked object
file may have an addend larger than 0x8000.) The call stub loads an address relative to .got2+0x8000.
Just assume large PIC model for now. This patch makes:
// clang -fuse-ld=lld -msecure-plt -fno-pie -no-pie a.c
// clang -fuse-ld=lld -msecure-plt -fPIE -pie a.c
#include <stdio.h>
static void impl(void) { puts("meow"); }
void thefunc(void) __attribute__((ifunc("resolver")));
void *resolver(void) { return &impl; }
int main(void) {
thefunc();
void (*theptr)(void) = &thefunc;
theptr();
}
work on Linux glibc. -fpie will crash because the compiler and the
linker do not agree on the value which r30 stores (_GLOBAL_OFFSET_TABLE_
vs .got2+0x8000).
Differential Revision: https://reviews.llvm.org/D71621
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If
there is a non-GOT non-PLT relocation, for pointer equality, we change
the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the
.glink entry.
On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence
loads the address from its associated .got.plt slot. An IPLT also has an
associated .got.plt slot and can use the same code sequence.
On EM_PPC64, the PLT code sequence is actually a bl instruction in
.glink . It jumps to `__glink_PLTresolve` (the PLT header). and
`__glink_PLTresolve` computes the .plt slot (relocated by
R_PPC64_JUMP_SLOT).
An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use
`bl` in .iplt . Instead, create a call stub which has a similar code
sequence as PPC64PltCallStub. We don't save the TOC pointer, so such
scenarios will not work: a function pointer to a non-preemptible ifunc,
which resolves to a function defined in another DSO. This is the
restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC
(though on many architectures it works in practice):
Requirement (a): Resolver must be defined in the same translation unit as the implementations.
If an ifunc is taken address but not called, technically we don't need
an entry for it, but we currently do that.
This patch makes
// clang -fuse-ld=lld -fno-pie -no-pie a.c
// clang -fuse-ld=lld -fPIE -pie a.c
#include <stdio.h>
static void impl(void) { puts("meow"); }
void thefunc(void) __attribute__((ifunc("resolver")));
void *resolver(void) { return &impl; }
int main(void) {
thefunc();
void (*theptr)(void) = &thefunc;
theptr();
}
work on Linux glibc and FreeBSD. Calling a function pointer pointing to
a Non-preemptible IFUNC never worked before.
Differential Revision: https://reviews.llvm.org/D71509
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
If none of the input files are ELF object files (for example, when
generating an object file from a single binary input file via
"-b binary"), use a fallback value for the ELF header flags instead
of crashing with an assertion failure.
Reviewers: MaskRay, ruiu, espindola
Reviewed By: MaskRay, ruiu
Subscribers: kevans, grimar, emaste, arichardson, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits, jrtc27
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71101
|
|
|
|
|
|
|
|
|
|
| |
`const Symbol &`. NFC
PPC::writeIplt (IPLT code sequence, D71621) needs to access `Symbol`.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71631
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PltSection is used by both PLT and IPLT. The PLT section may have a
header while the IPLT section does not. Split off IpltSection from
PltSection to be clearer.
Unlike other targets, PPC64 cannot use the same code sequence for PLT
and IPLT. This helps make a future PPC64 patch (D71509) more isolated.
On EM_386 and EM_X86_64, when PLT is empty while IPLT is not, currently
we are inconsistent whether the PLT header is conceptually attached to
in.plt or in.iplt . Consistently attach the header to in.plt can make
the -z retpolineplt logic simpler. It also makes `jmp` point to an
aesthetically better place for non-retpolineplt cases.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71519
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change only affects EM_386. relOff can be computed from `index`
easily, so it is unnecessarily passed as a parameter.
Both in.plt and in.iplt entries are written by writePLT. For in.iplt,
the instruction `push reloc_offset` will change because `index` is now
different. Fortunately, this does not matter because `push; jmp` is only
used by PLT. IPLT does not need the code sequence.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71518
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes PPC64 part of PR40438
// clang -target ppc64le -c a.cc
// .text.unlikely may be placed in a separate output section (via -z keep-text-section-prefix)
// The distance between bar in .text.unlikely and foo in .text may be larger than 32MiB.
static void foo() {}
__attribute__((section(".text.unlikely"))) static int bar() { foo(); return 0; }
__attribute__((used)) static int dummy = bar();
This patch makes such thunks with addends work for PPC64.
AArch64: .text -> `__AArch64ADRPThunk_ (adrp x16, ...; add x16, x16, ...; br x16)` -> target
PPC64: .text -> `__long_branch_ (addis 12, 2, ...; ld 12, ...(12); mtctr 12; bctr)` -> target
AArch64 can leverage ADRP to jump to the target directly, but PPC64
needs to load an address from .branch_lt . Before Power ISA v3.0, the
PC-relative ADDPCIS was not available. .branch_lt was invented to work
around the limitation.
Symbol::ppc64BranchltIndex is replaced by
PPC64LongBranchTargetSection::entry_index which take addends into
consideration.
The tests are rewritten: ppc64-long-branch.s tests -no-pie and
ppc64-long-branch-pi.s tests -pie and -shared.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D70937
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
addends
Fixes AArch64 part of PR40438
The current range extension thunk framework does not handle a relocation
relative to a STT_SECTION symbol with a non-zero addend, which may be
used by jumps/calls to local functions on some RELA targets (AArch64,
powerpc ELFv1, powerpc64 ELFv2, etc). See PR40438 and the following
code for examples:
// clang -target $target a.cc
// .text.cold may be placed in a separate output section.
// The distance between bar in .text.cold and foo in .text may be larger than 128MiB.
static void foo() {}
__attribute__((section(".text.cold"))) static int bar() { foo(); return
0; }
__attribute__((used)) static int dummy = bar();
This patch makes such thunks with addends work for AArch64. The target
independent part can be reused by PPC in the future.
On REL targets (ARM, MIPS), jumps/calls are not represented as
STT_SECTION + non-zero addend (see
MCELFObjectTargetWriter::needsRelocateWithSymbol), so they don't need
this feature, but we need to make sure this patch does not affect them.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D70637
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Current versions of clang would erroneously emit this relocation not only
against functions (loaded from the GOT) but also against data symbols
(e.g. a table of function pointers). LLD was then changing this into a
branch-and-link instruction, causing the program to jump to the data
symbol at run time. I discovered this problem when attempting to boot
MIPS64 FreeBSD after updating the to the latest upstream master.
Reviewers: atanasyan, jrtc27, espindola
Reviewed By: atanasyan
Subscribers: emaste, sdardis, krytarowski, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70406
|
| |
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D68875
llvm-svn: 374891
|
|
|
|
|
|
|
|
| |
These are sometimes generated by tail call optimizations.
Differential Revision: https://reviews.llvm.org/D66542
llvm-svn: 374052
|
|
|
|
|
|
| |
Depends on D68561.
llvm-svn: 373886
|
|
|
|
|
|
|
|
|
|
|
| |
This makes it clear `ELF/**/*.cpp` files define things in the `lld::elf`
namespace and simplifies `elf::foo` to `foo`.
Reviewed By: atanasyan, grimar, ruiu
Differential Revision: https://reviews.llvm.org/D68323
llvm-svn: 373885
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
llvm::support::endian::{read,write}*
This allows us to delete `using namespace llvm::support::endian` and
simplify D68323. This change adds runtime config->endianness check but
the overhead should be negligible.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D68561
llvm-svn: 373884
|
|
|
|
|
|
|
|
|
|
|
| |
The R_MIPS_JALR relocation denotes jalr/jr instructions in position
independent code. Both these instructions take a target's address from
the $25 register. If offset to the target symbol fits into the 18-bits,
it's more efficient to replace jalr/jr by bal/b instructions.
Differential Revision: https://reviews.llvm.org/D68057
llvm-svn: 372951
|
|
|
|
|
|
| |
It was requested in a post-commit comment for r372570.
llvm-svn: 372747
|
|
|
|
|
|
| |
A straightforward simplification.
llvm-svn: 372570
|
|
|
|
|
|
|
|
|
| |
In case of linking binary blobs which do not have any ELF headers, we can
deduce MIPS ABI ELF header flags from an `emulation` option.
Patch by Kyle Evans.
llvm-svn: 372513
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like rLLD354040
Previously, for unknown relocation types, in -no-pie/-pie mode, we got something like:
foo.o: unrecognized relocation ...
In -shared mode:
error: can't create dynamic relocation ... against symbol: yyy in readonly segment
Delete the default case from Hexagon::getRelExpr and add the error there. We will get consistent error message like `error: unknown relocation (1024) against symbol foo`
Reviewed By: sidneym
Differential Revision: https://reviews.llvm.org/D66275
llvm-svn: 369260
|
|
|
|
|
|
|
|
| |
Add GOTREL relocation support. (S + A - GOT)
Differential Revision: https://reviews.llvm.org/D66260
llvm-svn: 369258
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes https://github.com/ClangBuiltLinux/linux/issues/640
R_PPC64_REL16_HI was incorrectly computed as an R_ABS relocation.
rLLD368964 made it a linker failure. Change it to use R_PC to fix the
failures.
Add ppc64-reloc-rel.s for these R_PPC64_REL* tests.
llvm-svn: 369184
|
|
|
|
|
|
|
|
|
|
|
| |
R_GOTPLT is relative to .got.plt since D59594. Since R_HEXAGON_GOT
relocations always have 0 r_addend, they can use R_GOTPLT instead.
Reviewed By: sidneym
Differential Revision: https://reviews.llvm.org/D66274
llvm-svn: 369128
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D66105
llvm-svn: 369121
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like rLLD354040.
Previously, for unrecognized relocation types, in -no-pie/-pie mode, we got something like:
foo.o: unrecognized relocation ...
In -shared mode:
error: can't create dynamic relocation ... against symbol: yyy in readonly segment
Delete the default case from AArch64::getRelExpr and add the error there.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D66277
llvm-svn: 368983
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like rLLD354040.
Previously, for unrecognized relocation types, in -no-pie mode:
foo.o: unrecognized reloc 256
In -pie/-shared mode:
error: can't create dynamic relocation R_PPC_xxx against symbol: yyy in readonly segment
llvm-svn: 368964
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
writable locations
Currently the following 3 relocation types do not trigger the creation
of a canonical PLT (which changes STT_GNU_IFUNC to STT_FUNC and
redirects all references):
1) GOT-generating (`needsGot`)
2) PLT-generating (`needsPlt`)
3) R_ABS with 0 addend in a writable location. This is used for
for ifunc function pointers in writable sections such as .data and .toc.
This patch deletes case 3) to simplify the R_*_IRELATIVE generating
logic added in D57371. Other advantages:
* It is guaranteed no more than 1 R_*_IRELATIVE is created for an ifunc.
* PPC64: no need to special case ifunc in toc-indirect to toc-relative relaxation. See D65755
The deleted elf::addIRelativeRelocs demonstrates that one-pass scan
through relocations makes several optimizations difficult. This is
something we can think about in the future.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D65995
llvm-svn: 368661
|
|
|
|
|
|
|
|
|
|
| |
New -> newSym or newFlags
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D66127
llvm-svn: 368651
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch Implements the R_AARCH64_TLSLE_MOVW_TPREL_G*[_NC]. These are
logically the same calculation as the existing TLSLE relocations with
the result written back to mov[nz] and movk instructions. A typical code
sequence is:
movz x0, #:tprel_g2:foo // bits [47:32] of R_TLS with overflow check
movk x0, #:tprel_g1_nc:foo // bits [31:16] of R_TLS with no overflow check
movk x0, #:tprel_g0_nc:foo // bits [15:0] of R_TLS with no overflow check
This type of code sequence is usually used with a large code model.
Differential Revision: https://reviews.llvm.org/D65882
Fixes: PR42853
llvm-svn: 368293
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes PR42759.
```
// If ifunc is taken address in -fPIC code, it may have a toc entry
.section .toc,"aw",@progbits
.quad ifunc
// ifunc may be defined as STT_GNU_IFUNC in another object file
.type ifunc, %gnu_indirect_function
```
If ifunc is non-preemptable (e.g. when linking an executable), the toc
entry will be relocated by R_PPC64_IRELATIVE.
R_*_IRELATIVE represents the symbolic value of a
non-preemptable ifunc (not associated with a canonical PLT) in a writable location. It has an unknown value at
link time, so we cannot apply toc-indirect to toc-relative relaxation.
Reviewed By: luporl, sfertile
Differential Revision: https://reviews.llvm.org/D65755
llvm-svn: 368057
|
|
|
|
|
|
|
|
| |
That allows to remove duplicated code which subtracts 0x7000 from the
R_MIPS_TLS_TPREL_XXX relocations values in the `MIPS::relocateOne`
function.
llvm-svn: 366888
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64685
llvm-svn: 366466
|
|
|
|
|
|
|
|
| |
Merge ppc64-dynamic-relocations.s into ppc64-plt-stub.s
Add ppc64-tls-ie.s: covers ppc64-initial-exec-tls.s and ppc64-tls-ie-le.s
Add ppc64-tls-gd.s: covers ppc64-general-dynamic-tls.s, ppc64-gd-to-ie.s, ppc64-tls-gd-le.s, and ppc64-tls-gd-le-small.s
llvm-svn: 366424
|
|
|
|
|
|
| |
Also fix some typos.
llvm-svn: 366181
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64456
llvm-svn: 365662
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
letter
This patch is mechanically generated by clang-llvm-rename tool that I wrote
using Clang Refactoring Engine just for creating this patch. You can see the
source code of the tool at https://reviews.llvm.org/D64123. There's no manual
post-processing; you can generate the same patch by re-running the tool against
lld's code base.
Here is the main discussion thread to change the LLVM coding style:
https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html
In the discussion thread, I proposed we use lld as a testbed for variable
naming scheme change, and this patch does that.
I chose to rename variables so that they are in camelCase, just because that
is a minimal change to make variables to start with a lowercase letter.
Note to downstream patch maintainers: if you are maintaining a downstream lld
repo, just rebasing ahead of this commit would cause massive merge conflicts
because this patch essentially changes every line in the lld subdirectory. But
there's a remedy.
clang-llvm-rename tool is a batch tool, so you can rename variables in your
downstream repo with the tool. Given that, here is how to rebase your repo to
a commit after the mass renaming:
1. rebase to the commit just before the mass variable renaming,
2. apply the tool to your downstream repo to mass-rename variables locally, and
3. rebase again to the head.
Most changes made by the tool should be identical for a downstream repo and
for the head, so at the step 3, almost all changes should be merged and
disappear. I'd expect that there would be some lines that you need to merge by
hand, but that shouldn't be too many.
Differential Revision: https://reviews.llvm.org/D64121
llvm-svn: 365595
|
|
|
|
|
|
|
|
|
| |
GCC emits warning on this line:
error: enumeral and non-enumeral type in conditional
expression [-Werror=extra]
Change-Id: I04969cc32e27e310968b88ebaa4e1c4894528d74
llvm-svn: 365434
|
|
|
|
|
|
|
|
|
|
|
|
| |
RISC-V psABI doesn't specify TLS relaxation. It can be handled the same
way as we handle ARM TLS. RISC-V TLS is even simpler because GD/LD use
the same relocation type.
Reviewed By: jrtc27, ruiu
Differential Revision: https://reviews.llvm.org/D63220
llvm-svn: 364813
|