| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
user interface and documentation, and update __cplusplus for C++20.
WG21 considers the C++20 standard to be finished (even though it still
has some more steps to pass through in the ISO process).
The old flag names are accepted for compatibility, as usual, and we
still have lots of references to C++2a in comments and identifiers;
those can be cleaned up separately.
(cherry picked from commit 24ad121582454e625bdad125c90d9ac0dae948c8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers, including ranking
reference bindings against non-reference bindings if they differ in
non-top-level qualification conversions.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
This reinstates commit de21704ba96fa80d3e9402f12c6505917a3885f4,
reverted in commit d8018233d1ea4234de68d5b4593abd773db79484, with
workarounds for some overload resolution ordering problems introduced by
CWG2352.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
explicit functions that are not candidates.
It's not always obvious that the reason a conversion was not possible is
because the function you wanted to call is 'explicit', so explicitly say
if that's the case.
It would be nice to rank the explicit candidates higher in the
diagnostic if an implicit conversion sequence exists for their
arguments, but unfortunately we can't determine that without potentially
triggering non-immediate-context errors that we're not permitted to
produce.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pack expansion.
Previously, if all parameter / argument pairs for a pack expansion
deduction were non-deduced contexts, we would not deduce the arity of
the pack, and could end up deducing a different arity (leading to
failures during substitution) or defaulting to an arity of 0 (leading to
bad diagnostics about passing the wrong number of arguments to a
variadic function). Instead, we now always deduce the arity for all
involved packs any time we deduce a pack expansion.
This will result in less substitution happening in some cases, which
could avoid non-SFINAEable errors, and should generally improve the
quality of diagnostics when passing initializer lists to variadic
functions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit de21704ba96fa80d3e9402f12c6505917a3885f4.
Regressed/causes this to error due to ambiguity:
void f(const int * const &);
void f(int *);
int main() {
int * x;
f(x);
}
(in case it's important - the original case where this turned up was a
member function overload in a class template with, essentially:
f(const T1&)
f(T2*)
(where T1 == X const *, T2 == X))
It's not super clear to me if this ^ is expected behavior, in which case
I'm sorry about the revert & happy to look into ways to fix the original
code.
|
|
|
|
|
|
|
|
|
|
|
| |
>>, .*, ->*, =, op=
Implement the C++17 sequencing rules for the built-in operators <<, >>, .*,
->*, = and op=.
Differential Revision: https://reviews.llvm.org/D58297
Reviewed By: rsmith
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The language wording change forgot to update overload resolution to rank
implicit conversion sequences based on qualification conversions in
reference bindings. The anticipated resolution for that oversight is
implemented here -- we order candidates based on qualification
conversion, not only on top-level cv-qualifiers.
For OpenCL/C++, this allows reference binding between pointers with
differing (nested) address spaces. This makes the behavior of reference
binding consistent with that of implicit pointer conversions, as is the
purpose of this change, but that pre-existing behavior for pointer
conversions is itself probably not correct. In any case, it's now
consistently the same behavior and implemented in only one place.
|
|
|
|
| |
to the ambiguity, rather than noting all viable candidates.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The overload resolution for enums with a fixed underlying type has changed in the C++14 standard. This patch implements the new rule.
Patch by Mark de Wever!
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65695
llvm-svn: 373866
|
|
|
|
|
|
|
|
|
|
|
| |
appropriate during constant evaluation.
Note that the evaluator is sometimes invoked on incomplete expressions.
In such cases, if an object is constructed but we never reach the point
where it would be destroyed (and it has non-trivial destruction), we
treat the expression as having an unmodeled side-effect.
llvm-svn: 372538
|
|
|
|
|
|
| |
constant evaluation.
llvm-svn: 372237
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Microsoft seems to do this regardless of the language mode, so we must
also do it in order to be ABI compatible.
Fixes PR36125
Reviewers: thakis
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47956
llvm-svn: 371642
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow implementations to provide complete definitions of
std::tuple_size<T>, but to omit the 'value' member to signal that T is
not tuple-like. The Microsoft standard library implements
std::tuple_size<const T> this way.
If the value member exists, clang still validates that it is an ICE, but
if it does not, then the type is considered to not be tuple-like.
Fixes PR33236
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D66040
llvm-svn: 369043
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When handling a member access into a non-class, non-ObjC-object type, we
would perform a lookup into the surrounding scope as if for an
unqualified lookup. If the member access was followed by a '<' and this
lookup (or the typo-correction for it) found a template name, we'd treat
the member access as naming that template.
Now we treat such accesses as never naming a template if the type of the
object expression is of vector type, so that vector component accesses
are never misinterpreted as naming something else. This is not entirely
correct, since it is in fact valid to name a template from the enclosing
scope in this context, when invoking a pseudo-destructor for the vector
type via an alias template, but that's very much a corner case, and this
change leaves that case only as broken as the corresponding case for
Objective-C types is.
This incidentally adds support for dr2292, which permits a 'template'
keyword at the start of a member access naming a pseudo-destructor.
llvm-svn: 368940
|
|
|
|
|
|
|
|
|
|
|
| |
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r363337, reverted in r363352.
llvm-svn: 363429
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
conversion applied to a member access or similar not-quite-trivial lvalue expression.
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
This reinstates r363295, reverted in r363352, with a fix for PR42276:
we now produce a proper name for a non-odr-use reference to a static
constexpr data member. The name <mangled-name>.const is used in that
case; such names are reserved to the implementation for cases such as
this and should demangle nicely.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363428
|
|
|
|
|
|
|
|
| |
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
|
|
|
|
|
|
|
|
|
|
|
|
| |
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
This reinstates r345562, reverted in r346065, now that CodeGen's
handling of non-odr-used variables has been fixed.
llvm-svn: 363337
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
conversion applied to a member access or similar not-quite-trivial lvalue expression.
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363295
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
This reinstates r360974, reverted in r360988, with a fix for a
static_assert failure on 32-bit builds: force Type base class to have
8-byte alignment like the rest of Clang's AST nodes.
llvm-svn: 360995
|
|
|
|
|
|
|
|
| |
type_info object rather than tracking the originating expression.
This reverts r360974 (git commit 7ee4307bd4450022c3c8777f43a40cc4f0ccc009)
llvm-svn: 360988
|
|
|
|
|
|
|
|
|
|
| |
object rather than tracking the originating expression.
This is groundwork for supporting polymorphic typeid expressions. (Note
that this somewhat regresses our support for DR1968, but it turns out
that that never actually worked anyway, at least in non-trivial cases.)
llvm-svn: 360974
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
evaluation.
This reinstates r360559, reverted in r360580, with a fix to avoid
crashing if evaluation-for-overflow mode encounters a virtual call on an
object of a class with a virtual base class, and to generally not try to
resolve virtual function calls to objects whose (notional) vptrs are not
readable. (The standard rules are unclear here, but this seems like a
reasonable approach.)
llvm-svn: 360635
|
|
|
|
|
|
|
|
|
| |
expression evaluation."
This caused Chromium builds to hit the new "can't handle virtual calls with
virtual bases" assert. Reduced repro coming up.
llvm-svn: 360580
|
|
|
|
|
|
| |
evaluation.
llvm-svn: 360559
|
|
|
|
|
|
|
|
| |
evaluation.
Not even in cases where we would not actually perform virtual dispatch.
llvm-svn: 360370
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
template name is not visible to unqualified lookup.
In order to support this without a severe degradation in our ability to
diagnose typos in template names, this change significantly restructures
the way we handle template-id-shaped syntax for which lookup of the
template name finds nothing.
Instead of eagerly diagnosing an undeclared template name, we now form a
placeholder template-name representing a name that is known to not find
any templates. When the parser sees such a name, it attempts to
disambiguate whether we have a less-than comparison or a template-id.
Any diagnostics or typo-correction for the name are delayed until its
point of use.
The upshot should be a small improvement of our diagostic quality
overall: we now take more syntactic context into account when trying to
resolve an undeclared identifier on the left hand side of a '<'. In
fact, this works well enough that the backwards-compatible portion (for
an undeclared identifier rather than a lookup that finds functions but
no function templates) is enabled in all language modes.
llvm-svn: 360308
|
|
|
|
|
|
| |
defaulted special member matches the implicit exception specification.
llvm-svn: 360011
|
|
|
|
|
|
| |
specializations for variable templates.
llvm-svn: 359947
|
|
|
|
| |
llvm-svn: 359261
|
|
|
|
|
|
|
|
|
| |
const-qualified type is not implicitly given internal linkage. But a
variable template declared 'static' is.
This reinstates part of r359048, reverted in r359076.
llvm-svn: 359260
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
internal linkage entities.
Such constructs are ill-formed by [temp.explicit]p13. We make a special
exception to permit an invalid construct used by libc++ in some build
modes: its <valarray> header declares some functions with the
internal_linkage attribute and then (meaninglessly) provides explicit
instantiation declarations for them. Luckily, Clang happens to
effectively ignore the explicit instantiation declaration when
generating code in this case, and this change codifies that behavior.
This reinstates part of r359048, reverted in r359076. (The libc++ issue
triggering the rollback has been addressed.)
llvm-svn: 359259
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The change breaks libc++ with the follwing error:
In file included from valarray:4:
.../include/c++/v1/valarray:1062:60: error: explicit instantiation declaration of 'valarray<_Tp>' with internal linkage
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS valarray<size_t>::valarray(size_t))
^
.../include/c++/v1/valarray:1063:60: error: explicit instantiation declaration of '~valarray<_Tp>' with internal linkage
_LIBCPP_EXTERN_TEMPLATE(_LIBCPP_FUNC_VIS valarray<size_t>::~valarray())
llvm-svn: 359076
|
|
|
|
|
|
| |
introduce any names.
llvm-svn: 359051
|
|
|
|
|
|
|
| |
const-qualified type is not implicitly given internal linkage. But a
variable template declared 'static' is.
llvm-svn: 359048
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1691)
CWG 1691 changed the definition of the namespaces associated with a class
type or enumeration type.
For a class type, the associated namespaces are the innermost enclosing
namespaces of the associated classes. For an enumeration type, the associated
namespace is the innermost enclosing namespace of its declaration.
This also fixes CWG 1690 and CWG 1692.
Differential Revision: https://reviews.llvm.org/D60573
Reviewed By: rjmccall, rsmith
llvm-svn: 358882
|
|
|
|
|
|
|
|
| |
disambiguation)
It has been supported since at least clang 3.1 so just mark it as done.
llvm-svn: 358679
|
|
|
|
|
|
|
|
| |
parentheses) as done
It was supported since at least clang 3 so just mark it as done.
llvm-svn: 358678
|
|
|
|
|
|
| |
This implements CWG DR 1722 and fixes PR40309. Patch by Ignat Loskutov.
llvm-svn: 351750
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
member enum and then its enclosing class.
There are situations where ADL will collect a class but not the complete
set of associated classes / namespaces of that class. When that
happened, and we later tried to collect those associated classes /
namespaces, we would previously short-circuit the lookup and not find
them. Eg, for:
struct A : B { enum E; };
if we first looked for associated classes/namespaces of A::E, we'd find
only A. But if we then tried to also collect associated
classes/namespaces of A (which should include the base class B), we
would not add B because we had already visited A.
This also fixes a minor issue where we would fail to collect associated
classes from an overloaded class member access expression naming a
static member function.
llvm-svn: 351382
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
template specialization if there is no matching non-template function.
This exposed a couple of related bugs:
- we would sometimes substitute into a friend template instead of a
suitable non-friend declaration; this would now crash because we'd
decide the specialization of the friend is a redeclaration of itself
- ADL failed to properly handle the case where an invisible local
extern declaration redeclares an invisible friend
Both are fixed herein: in particular, we now never make invisible
friends or local extern declarations visible to name lookup unless
they are the only declaration of the entity. (We already mostly did
this for local extern declarations.)
llvm-svn: 350505
|
|
|
|
|
|
|
|
|
|
|
| |
functions that are unavailable on Darwin are explicitly called or called
from deleting destructors.
rdar://problem/40736230
Differential Revision: https://reviews.llvm.org/D47757
llvm-svn: 349890
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement support for try-catch blocks in constexpr functions, as
proposed in http://wg21.link/P1002 and voted in San Diego for c++20.
The idea is that we can still never throw inside constexpr, so the catch
block is never entered. A try-catch block like this:
try { f(); } catch (...) { }
is then morally equivalent to just
{ f(); }
Same idea should apply for function/constructor try blocks.
rdar://problem/45530773
Differential Revision: https://reviews.llvm.org/D55097
llvm-svn: 348789
|
|
|
|
|
|
|
|
|
|
|
|
| |
glvalue of type"
This exposes a (known) CodeGen bug: it can't cope with emitting lvalue
expressions that denote non-odr-used but usable-in-constant-expression
variables. See PR39528 for a testcase.
Reverted for now until that issue can be fixed.
llvm-svn: 346065
|
|
|
|
|
|
|
|
|
| |
nullptr_t does not access memory.
We now reuse CK_NullToPointer to represent a conversion from a glvalue
of type nullptr_t to a prvalue of nullptr_t where necessary.
llvm-svn: 345562
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This change rejects the shadowing of a capture by a parameter in lambdas in C++17.
```
int main() {
int a;
auto f = [a](int a) { return a; };
}
```
results in:
```
main.cpp:3:20: error: a lambda parameter cannot shadow an explicitly captured entity
auto f = [a](int a) { return a; };
^
main.cpp:3:13: note: variable a is explicitly captured here
auto f = [a](int a) { return a; };
^
```
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: lebedev.ri, erik.pilkington, cfe-commits
Differential Revision: https://reviews.llvm.org/D53595
llvm-svn: 345308
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
render the function deleted instead of rendering the program ill-formed.
This change also adds an enabled-by-default warning for the case where
an explicitly-defaulted special member function of a non-template class
is implicitly deleted by the type checking rules. (This fires either due
to this language change or due to pre-C++20 reasons for the member being
implicitly deleted). I've tested this on a large codebase and found only
bugs (where the program means something that's clearly different from
what the programmer intended), so this is enabled by default, but we
should revisit this if there are problems with this being enabled by
default.
llvm-svn: 343285
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
destructors.
We previously tried to patch up the exception specification after
completing the class, which went wrong when the exception specification
was needed within the class body (in particular, by a friend
redeclaration of the destructor in a nested class). We now mark the
destructor as having a not-yet-computed exception specification
immediately after creating it.
This requires delaying various checks against the exception
specification (where we'd previously have just got the wrong exception
specification, and now find we have an exception specification that we
can't compute yet) when those checks fire while the class is being
defined.
This also exposed an issue that we were missing a CodeSynthesisContext
for computation of exception specifications (otherwise we'd fail to make
the module containing the definition of the class visible when computing
its members' exception specs). Adding that incidentally also gives us a
diagnostic quality improvement.
This has also exposed an pre-existing problem: making the exception
specification evaluation context a non-SFINAE context (as it should be)
results in a bootstrap failure; PR38850 filed for this.
llvm-svn: 341499
|
|
|
|
|
|
| |
non-lifetime-extended temporary object.
llvm-svn: 337790
|
|
|
|
|
|
| |
checking.
llvm-svn: 337743
|