| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a dependent context.
This matches the GCC behavior.
We track the enclosing template depth when determining whether a
statement expression is within a dependent context; there doesn't appear
to be any other reliable way to determine this.
We previously assumed they were neither value- nor
instantiation-dependent under any circumstances, which would lead to
crashes and other misbehavior.
(cherry picked from commit 5c845c1c50ac89a6f12557d1571678f3d1432478)
|
|
|
|
|
|
| |
FoundDecl was missing from ConceptSpecializationExpr serialization - add it.
(cherry picked from commit f9e63891597630405a4655298f06b193e4ceb384)
|
|
|
|
|
|
|
|
|
|
| |
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
(cherry picked from commit a0f50d731639350c7a79f140f026c27a18215531)
|
|
|
|
|
|
|
| |
Add support for type-constraints in template type parameters.
Also add support for template type parameters as pack expansions (where the type constraint can now contain an unexpanded parameter pack).
Differential Revision: https://reviews.llvm.org/D44352
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AbstractBasicReader.h has quite a few dependencies already,
and that's only likely to increase. Meanwhile, ASTRecordReader
is really an implementation detail of the ASTReader that is only
used in a small number of places.
I've kept it in a public header for the use of projects like Swift
that might want to plug in to Clang's serialization framework.
I've also moved OMPClauseReader into an implementation file,
although it can't be made private because of friendship.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are three significant changes here:
- Most of the methods to read various embedded structures (`APInt`,
`NestedNameSpecifier`, `DeclarationName`, etc.) have been moved
from `ASTReader` to `ASTRecordReader`. This cleans up quite a
bit of code which was passing around `(F, Record, Idx)` arguments
everywhere or doing explicit indexing, and it nicely parallels
how it works on the writer side. It also sets us up to then move
most of these methods into the `BasicReader`s that I'm introducing
as part of abstract serialization.
As part of this, several of the top-level reader methods (e.g.
`readTypeRecord`) have been converted to use `ASTRecordReader`
internally, which is a nice readability improvement.
- I've standardized most of these method names on `readFoo` rather
than `ReadFoo` (used in some of the helper structures) or `GetFoo`
(used for some specific types for no apparent reason).
- I've changed a few of these methods to return their result instead
of reading into an argument passed by reference. This is partly
for general consistency and partly because it will make the
metaprogramming easier with abstract serialization.
|
|
|
|
|
|
|
|
|
| |
Part of the C++20 concepts implementation effort.
- Associated constraints (requires clauses, currently) are now enforced when instantiating/specializing templates and when considering partial specializations and function overloads.
- Elaborated diagnostics give helpful insight as to why the constraints were not satisfied.
Phabricator: D41569
Re-commit, after fixing some memory bugs.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: ABataev, jdoerfert
Reviewed By: ABataev
Subscribers: rnk, jholewinski, guansong, arphaman, jfb, cfe-commits, sandoval, dreachem
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70726
|
|
|
|
|
|
| |
This reverts commit 713dab21e27c987b9114547ce7136bac2e775de9.
Tests do not pass on Windows.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: ABataev, jdoerfert
Reviewed By: ABataev
Subscribers: jholewinski, guansong, arphaman, jfb, cfe-commits, sandoval, dreachem
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70726
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
this patch refactor representation of materialized temporaries to prevent an issue raised by rsmith in https://reviews.llvm.org/D63640#inline-612718
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: thakis, sammccall, ilya-biryukov, rnkovacs, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69360
|
|
|
|
|
|
| |
This reverts commit 08ea1ee2db5f9d6460fef1d79d0d1d1a5eb78982.
It broke ./ClangdTests/FindExplicitReferencesTest.All
on the bots, see comments on https://reviews.llvm.org/D69360
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
this patch refactor representation of materialized temporaries to prevent an issue raised by rsmith in https://reviews.llvm.org/D63640#inline-612718
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: rnkovacs, arphaman, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69360
|
|
|
|
| |
Added full support for parallel master taskloop simd directive.
|
|
|
|
|
| |
This reverts commit ffa214ef22892d75340dc6720271863901dc2c90, it was
causing ASAN test failures on sanitizer-x86_64-linux-bootstrap.
|
|
|
|
|
|
| |
Part of the C++20 concepts implementation effort.
- Associated constraints (requires clauses, currently) are now enforced when instantiating/specializing templates and when considering partial specializations and function overloads.
- Elaborated diagnostics give helpful insight as to why the constraints were not satisfied.
Phabricator: D41569
|
|
|
|
|
|
|
|
| |
operator that is rewritten as a call to multiple other operators.
No functionality change yet: nothing creates these expressions.
llvm-svn: 375305
|
|
|
|
|
|
| |
Added trsing/semantics/codegen for combined construct master taskloop simd.
llvm-svn: 375255
|
|
|
|
|
|
|
|
|
|
| |
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is refe$
D41217 on Phabricator.
(recommit after fixing failing Parser test on windows)
llvm-svn: 374903
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit ec87b003823d63f3342cf648f55a134c1522e612.
The test fails on Windows, see e.g.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/11533/steps/stage%201%20check/logs/stdio
Also revert follow-up r374893.
llvm-svn: 374899
|
|
|
|
|
|
| |
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is referenced with arguments, and tests thereof.
llvm-svn: 374882
|
|
|
|
|
|
|
|
|
| |
Added parsing/sema/codegen support for 'parallel master taskloop'
constructs. Some of the clauses, like 'grainsize', 'num_tasks', 'final'
and 'priority' are not supported in full, only constant expressions can
be used currently in these clauses.
llvm-svn: 374791
|
|
|
|
|
|
| |
Added full support for master taskloop directive.
llvm-svn: 374437
|
|
|
|
|
|
|
|
| |
Added basic support for non-rectangular loops. It requires an additional
analysis of min/max boundaries for non-rectangular loops. Since only
linear dependency is allowed, we can do this analysis.
llvm-svn: 368903
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch applies clang-tidy's bugprone-argument-comment tool
to LLVM, clang and lld source trees. Here is how I created this
patch:
$ git clone https://github.com/llvm/llvm-project.git
$ cd llvm-project
$ mkdir build
$ cd build
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Debug \
-DLLVM_ENABLE_PROJECTS='clang;lld;clang-tools-extra' \
-DCMAKE_EXPORT_COMPILE_COMMANDS=On -DLLVM_ENABLE_LLD=On \
-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ../llvm
$ ninja
$ parallel clang-tidy -checks='-*,bugprone-argument-comment' \
-config='{CheckOptions: [{key: StrictMode, value: 1}]}' -fix \
::: ../llvm/lib/**/*.{cpp,h} ../clang/lib/**/*.{cpp,h} ../lld/**/*.{cpp,h}
llvm-svn: 366177
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This moves Bitcode/Bitstream*, Bitcode/BitCodes.h to Bitstream/.
This is needed to avoid a circular dependency when using the bitstream
code for parsing optimization remarks.
Since Bitcode uses Core for the IR part:
libLLVMRemarks -> Bitcode -> Core
and Core uses libLLVMRemarks to generate remarks (see
IR/RemarkStreamer.cpp):
Core -> libLLVMRemarks
we need to separate the Bitstream and Bitcode part.
For clang-doc, it seems that it doesn't need the whole bitcode layer, so
I updated the CMake to only use the bitstream part.
Differential Revision: https://reviews.llvm.org/D63899
llvm-svn: 365091
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds a new builtin, __builtin_bit_cast(T, v), which performs a
bit_cast from a value v to a type T. This expression can be evaluated at
compile time under specific circumstances.
The compile time evaluation currently doesn't support bit-fields, but I'm
planning on fixing this in a follow up (some of the logic for figuring this out
is in CodeGen). I'm also planning follow-ups for supporting some more esoteric
types that the constexpr evaluator supports, as well as extending
__builtin_memcpy constexpr evaluation to use the same infrastructure.
rdar://44987528
Differential revision: https://reviews.llvm.org/D62825
llvm-svn: 364954
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The bitstream reader handles errors poorly. This has two effects:
* Bugs in file handling (especially modules) manifest as an "unexpected end of
file" crash
* Users of clang as a library end up aborting because the code unconditionally
calls `report_fatal_error`
The bitstream reader should be more resilient and return Expected / Error as
soon as an error is encountered, not way late like it does now. This patch
starts doing so and adopting the error handling where I think it makes sense.
There's plenty more to do: this patch propagates errors to be minimally useful,
and follow-ups will propagate them further and improve diagnostics.
https://bugs.llvm.org/show_bug.cgi?id=42311
<rdar://problem/33159405>
Differential Revision: https://reviews.llvm.org/D63518
llvm-svn: 364464
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
When using ConstantExpr we often need the result of the expression to be kept in the AST. Currently this is done on a by the node that needs the result and has been done multiple times for enumerator, for constexpr variables... . This patch adds to ConstantExpr the ability to store the result of evaluating the expression. no functional changes expected.
Changes:
- Add trailling object to ConstantExpr that can hold an APValue or an uint64_t. the uint64_t is here because most ConstantExpr yield integral values so there is an optimized layout for integral values.
- Add basic* serialization support for the trailing result.
- Move conversion functions from an enum to a fltSemantics from clang::FloatingLiteral to llvm::APFloatBase. this change is to make it usable for serializing APValues.
- Add basic* Import support for the trailing result.
- ConstantExpr created in CheckConvertedConstantExpression now stores the result in the ConstantExpr Node.
- Adapt AST dump to print the result when present.
basic* : None, Indeterminate, Int, Float, FixedPoint, ComplexInt, ComplexFloat,
the result is not yet used anywhere but for -ast-dump.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: rnkovacs, hiraditya, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62399
llvm-svn: 363493
|
|
|
|
| |
llvm-svn: 363087
|
|
|
|
|
|
|
| |
Begin restructuring to support the forms of non-odr-use reference
permitted by DR712.
llvm-svn: 363086
|
|
|
|
|
|
|
|
|
|
| |
most / all other Expr subclasses.
This reinstates r362551, reverted in r362597, with a fix to a bug that
caused MemberExprs to sometimes have a null FoundDecl after a round-trip
through an AST file.
llvm-svn: 362756
|
|
|
|
|
|
|
|
| |
"Convert MemberExpr creation and serialization to work the same way as"
This reverts commits r362551 and r362563. Crashes during modules selfhost.
llvm-svn: 362597
|
|
|
|
|
|
| |
most / all other Expr subclasses.
llvm-svn: 362551
|
|
|
|
| |
llvm-svn: 362410
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 954ec09aed4f2be04bb5f4e10dbb4ea8bd19ef9a.
Reverting due to test failures as requested by Jennifer Yu.
Conflicts:
clang/test/CodeGen/asm-goto.c
llvm-svn: 362106
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Syntax:
asm [volatile] goto ( AssemblerTemplate
:
: InputOperands
: Clobbers
: GotoLabels)
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
New llvm IR is "callbr" for inline asm goto instead "call" for inline asm
For:
asm goto("testl %0, %0; jne %l1;" :: "r"(cond)::label_true, loop);
IR:
callbr void asm sideeffect "testl $0, $0; jne ${1:l};", "r,X,X,~{dirflag},~{fpsr},~{flags}"(i32 %0, i8* blockaddress(@foo, %label_true), i8* blockaddress(@foo, %loop)) #1
to label %asm.fallthrough [label %label_true, label %loop], !srcloc !3
asm.fallthrough:
Compiler need to generate:
1> a dummy constarint 'X' for each label.
2> an unique fallthrough label for each asm goto stmt " asm.fallthrough%number".
Diagnostic
1> duplicate asm operand name are used in output, input and label.
2> goto out of scope.
llvm-svn: 362045
|
|
|
|
|
|
|
| |
The assertion in setConfig read from the (uninitialized) CONFIG
expression.
llvm-svn: 361680
|
|
|
|
|
|
|
|
|
|
|
| |
This permits an init-capture to introduce a new pack:
template<typename ...T> auto x = [...a = T()] { /* a is a pack */ };
To support this, the mechanism for allowing ParmVarDecls to be packs has
been extended to support arbitrary local VarDecls.
llvm-svn: 361300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements the source location builtins `__builtin_LINE(), `__builtin_FUNCTION()`, `__builtin_FILE()` and `__builtin_COLUMN()`. These builtins are needed to implement [`std::experimental::source_location`](https://rawgit.com/cplusplus/fundamentals-ts/v2/main.html#reflection.src_loc.creation).
With the exception of `__builtin_COLUMN`, GCC also implements these builtins, and Clangs behavior is intended to match as closely as possible.
Reviewers: rsmith, joerg, aaron.ballman, bogner, majnemer, shafik, martong
Reviewed By: rsmith
Subscribers: rnkovacs, loskutov, riccibruno, mgorny, kunitoki, alexr, majnemer, hfinkel, cfe-commits
Differential Revision: https://reviews.llvm.org/D37035
llvm-svn: 360937
|
|
|
|
|
|
| |
in fold expressions rather than crashing.
llvm-svn: 360563
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
These ObjC AST classes inherit from Stmt, but don't call `VisitStmt(S);`.
Some were founded with help of existing tests (with `NumStmtFields` bumped to `1`),
but some of them don't even have PCH test coverage. :/
Reviewers: arphaman, sammccall, smeenai, aprantl, rsmith, jordan_rose
Reviewed By: jordan_rose
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59197
llvm-svn: 355987
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Store the controlling expression, the association expressions and the
corresponding TypeSourceInfos as trailing objects.
Additionally use the bit-fields of Stmt to store one SourceLocation,
saving one additional pointer. This saves 3 pointers in total per
GenericSelectionExpr.
Differential Revision: https://reviews.llvm.org/D57104
Reviewed By: aaron.ballman
Reviewers: aaron.ballman, steveire
llvm-svn: 352276
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various cleanups to GenericSelectionExpr factored out of D57104. In particular:
1. Move the friend declaration to the top.
2. Introduce a constant ResultDependentIndex instead of the magic "-1".
3. clang-format
4. Group the member function together so that they can be removed as one block
by D57106.
NFC.
Differential Revision: https://reviews.llvm.org/D57238
Reviewed By: aaron.ballman
llvm-svn: 352275
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the newly available space in the bit-fields of Stmt to pack
OverloadExpr, UnresolvedLookupExpr and UnresolvedMemberExpr.
Additionally store the results in the overload set in a trailing array.
This saves 1 pointer + 8 bytes per UnresolvedLookupExpr and
UnresolvedMemberExpr.
Differential Revision: https://reviews.llvm.org/D56368
Reviewed By: rjmccall
llvm-svn: 350732
|
|
|
|
|
|
|
| |
Use the newly available space in the bit-fields of Stmt.
This saves one pointer per CXXScalarValueInitExpr. NFC.
llvm-svn: 350635
|
|
|
|
|
|
|
|
|
|
| |
Use the newly available space in the bit-fields of Stmt.
This saves one pointer per CXXNoexceptExpr/SubstNonTypeTemplateParmExpr.
Use this opportunity to run clang-format on these two classes and
fix some style issues. NFC overall.
llvm-svn: 350627
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the newly available space in the bit-fields of Stmt. Additionally store
FirstQualifierFoundInScope as a trailing object since it is most of the time
null (non-null for 2 of the 35446 CXXDependentScopeMemberExpr when parsing
all of Boost).
It would be possible to move the data for the nested-name-specifier to a
trailing object too to save another 2 pointers, however doing so did actually
regress the time taken to parse all of Boost slightly.
This saves 8 bytes + 1 pointer per CXXDependentScopeMemberExpr in the vast
majority of cases.
Differential Revision: https://reviews.llvm.org/D56367
Reviewed By: rjmccall
llvm-svn: 350625
|