diff options
Diffstat (limited to 'polly/lib/External/isl/isl_equalities.c')
-rw-r--r-- | polly/lib/External/isl/isl_equalities.c | 782 |
1 files changed, 782 insertions, 0 deletions
diff --git a/polly/lib/External/isl/isl_equalities.c b/polly/lib/External/isl/isl_equalities.c new file mode 100644 index 00000000000..e257f705f53 --- /dev/null +++ b/polly/lib/External/isl/isl_equalities.c @@ -0,0 +1,782 @@ +/* + * Copyright 2008-2009 Katholieke Universiteit Leuven + * Copyright 2010 INRIA Saclay + * + * Use of this software is governed by the MIT license + * + * Written by Sven Verdoolaege, K.U.Leuven, Departement + * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium + * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, + * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France + */ + +#include <isl_mat_private.h> +#include <isl_vec_private.h> +#include <isl_seq.h> +#include "isl_map_private.h" +#include "isl_equalities.h" +#include <isl_val_private.h> + +/* Given a set of modulo constraints + * + * c + A y = 0 mod d + * + * this function computes a particular solution y_0 + * + * The input is given as a matrix B = [ c A ] and a vector d. + * + * The output is matrix containing the solution y_0 or + * a zero-column matrix if the constraints admit no integer solution. + * + * The given set of constrains is equivalent to + * + * c + A y = -D x + * + * with D = diag d and x a fresh set of variables. + * Reducing both c and A modulo d does not change the + * value of y in the solution and may lead to smaller coefficients. + * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M. + * Then + * [ x ] + * M [ y ] = - c + * and so + * [ x ] + * [ H 0 ] U^{-1} [ y ] = - c + * Let + * [ A ] [ x ] + * [ B ] = U^{-1} [ y ] + * then + * H A + 0 B = -c + * + * so B may be chosen arbitrarily, e.g., B = 0, and then + * + * [ x ] = [ -c ] + * U^{-1} [ y ] = [ 0 ] + * or + * [ x ] [ -c ] + * [ y ] = U [ 0 ] + * specifically, + * + * y = U_{2,1} (-c) + * + * If any of the coordinates of this y are non-integer + * then the constraints admit no integer solution and + * a zero-column matrix is returned. + */ +static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) +{ + int i, j; + struct isl_mat *M = NULL; + struct isl_mat *C = NULL; + struct isl_mat *U = NULL; + struct isl_mat *H = NULL; + struct isl_mat *cst = NULL; + struct isl_mat *T = NULL; + + M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1); + C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1); + if (!M || !C) + goto error; + isl_int_set_si(C->row[0][0], 1); + for (i = 0; i < B->n_row; ++i) { + isl_seq_clr(M->row[i], B->n_row); + isl_int_set(M->row[i][i], d->block.data[i]); + isl_int_neg(C->row[1 + i][0], B->row[i][0]); + isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]); + for (j = 0; j < B->n_col - 1; ++j) + isl_int_fdiv_r(M->row[i][B->n_row + j], + B->row[i][1 + j], M->row[i][i]); + } + M = isl_mat_left_hermite(M, 0, &U, NULL); + if (!M || !U) + goto error; + H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row); + H = isl_mat_lin_to_aff(H); + C = isl_mat_inverse_product(H, C); + if (!C) + goto error; + for (i = 0; i < B->n_row; ++i) { + if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0])) + break; + isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]); + } + if (i < B->n_row) + cst = isl_mat_alloc(B->ctx, B->n_row, 0); + else + cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1); + T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row); + cst = isl_mat_product(T, cst); + isl_mat_free(M); + isl_mat_free(C); + isl_mat_free(U); + return cst; +error: + isl_mat_free(M); + isl_mat_free(C); + isl_mat_free(U); + return NULL; +} + +/* Compute and return the matrix + * + * U_1^{-1} diag(d_1, 1, ..., 1) + * + * with U_1 the unimodular completion of the first (and only) row of B. + * The columns of this matrix generate the lattice that satisfies + * the single (linear) modulo constraint. + */ +static struct isl_mat *parameter_compression_1( + struct isl_mat *B, struct isl_vec *d) +{ + struct isl_mat *U; + + U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1); + if (!U) + return NULL; + isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1); + U = isl_mat_unimodular_complete(U, 1); + U = isl_mat_right_inverse(U); + if (!U) + return NULL; + isl_mat_col_mul(U, 0, d->block.data[0], 0); + U = isl_mat_lin_to_aff(U); + return U; +} + +/* Compute a common lattice of solutions to the linear modulo + * constraints specified by B and d. + * See also the documentation of isl_mat_parameter_compression. + * We put the matrix + * + * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ] + * + * on a common denominator. This denominator D is the lcm of modulos d. + * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have + * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1). + * Putting this on the common denominator, we have + * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D). + */ +static struct isl_mat *parameter_compression_multi( + struct isl_mat *B, struct isl_vec *d) +{ + int i, j, k; + isl_int D; + struct isl_mat *A = NULL, *U = NULL; + struct isl_mat *T; + unsigned size; + + isl_int_init(D); + + isl_vec_lcm(d, &D); + + size = B->n_col - 1; + A = isl_mat_alloc(B->ctx, size, B->n_row * size); + U = isl_mat_alloc(B->ctx, size, size); + if (!U || !A) + goto error; + for (i = 0; i < B->n_row; ++i) { + isl_seq_cpy(U->row[0], B->row[i] + 1, size); + U = isl_mat_unimodular_complete(U, 1); + if (!U) + goto error; + isl_int_divexact(D, D, d->block.data[i]); + for (k = 0; k < U->n_col; ++k) + isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]); + isl_int_mul(D, D, d->block.data[i]); + for (j = 1; j < U->n_row; ++j) + for (k = 0; k < U->n_col; ++k) + isl_int_mul(A->row[k][i*size+j], + D, U->row[j][k]); + } + A = isl_mat_left_hermite(A, 0, NULL, NULL); + T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row); + T = isl_mat_lin_to_aff(T); + if (!T) + goto error; + isl_int_set(T->row[0][0], D); + T = isl_mat_right_inverse(T); + if (!T) + goto error; + isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error); + T = isl_mat_transpose(T); + isl_mat_free(A); + isl_mat_free(U); + + isl_int_clear(D); + return T; +error: + isl_mat_free(A); + isl_mat_free(U); + isl_int_clear(D); + return NULL; +} + +/* Given a set of modulo constraints + * + * c + A y = 0 mod d + * + * this function returns an affine transformation T, + * + * y = T y' + * + * that bijectively maps the integer vectors y' to integer + * vectors y that satisfy the modulo constraints. + * + * This function is inspired by Section 2.5.3 + * of B. Meister, "Stating and Manipulating Periodicity in the Polytope + * Model. Applications to Program Analysis and Optimization". + * However, the implementation only follows the algorithm of that + * section for computing a particular solution and not for computing + * a general homogeneous solution. The latter is incomplete and + * may remove some valid solutions. + * Instead, we use an adaptation of the algorithm in Section 7 of + * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope + * Model: Bringing the Power of Quasi-Polynomials to the Masses". + * + * The input is given as a matrix B = [ c A ] and a vector d. + * Each element of the vector d corresponds to a row in B. + * The output is a lower triangular matrix. + * If no integer vector y satisfies the given constraints then + * a matrix with zero columns is returned. + * + * We first compute a particular solution y_0 to the given set of + * modulo constraints in particular_solution. If no such solution + * exists, then we return a zero-columned transformation matrix. + * Otherwise, we compute the generic solution to + * + * A y = 0 mod d + * + * That is we want to compute G such that + * + * y = G y'' + * + * with y'' integer, describes the set of solutions. + * + * We first remove the common factors of each row. + * In particular if gcd(A_i,d_i) != 1, then we divide the whole + * row i (including d_i) by this common factor. If afterwards gcd(A_i) != 1, + * then we divide this row of A by the common factor, unless gcd(A_i) = 0. + * In the later case, we simply drop the row (in both A and d). + * + * If there are no rows left in A, then G is the identity matrix. Otherwise, + * for each row i, we now determine the lattice of integer vectors + * that satisfies this row. Let U_i be the unimodular extension of the + * row A_i. This unimodular extension exists because gcd(A_i) = 1. + * The first component of + * + * y' = U_i y + * + * needs to be a multiple of d_i. Let y' = diag(d_i, 1, ..., 1) y''. + * Then, + * + * y = U_i^{-1} diag(d_i, 1, ..., 1) y'' + * + * for arbitrary integer vectors y''. That is, y belongs to the lattice + * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1). + * If there is only one row, then G = L_1. + * + * If there is more than one row left, we need to compute the intersection + * of the lattices. That is, we need to compute an L such that + * + * L = L_i L_i' for all i + * + * with L_i' some integer matrices. Let A be constructed as follows + * + * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ] + * + * and computed the Hermite Normal Form of A = [ H 0 ] U + * Then, + * + * L_i^{-T} = H U_{1,i} + * + * or + * + * H^{-T} = L_i U_{1,i}^T + * + * In other words G = L = H^{-T}. + * To ensure that G is lower triangular, we compute and use its Hermite + * normal form. + * + * The affine transformation matrix returned is then + * + * [ 1 0 ] + * [ y_0 G ] + * + * as any y = y_0 + G y' with y' integer is a solution to the original + * modulo constraints. + */ +struct isl_mat *isl_mat_parameter_compression( + struct isl_mat *B, struct isl_vec *d) +{ + int i; + struct isl_mat *cst = NULL; + struct isl_mat *T = NULL; + isl_int D; + + if (!B || !d) + goto error; + isl_assert(B->ctx, B->n_row == d->size, goto error); + cst = particular_solution(B, d); + if (!cst) + goto error; + if (cst->n_col == 0) { + T = isl_mat_alloc(B->ctx, B->n_col, 0); + isl_mat_free(cst); + isl_mat_free(B); + isl_vec_free(d); + return T; + } + isl_int_init(D); + /* Replace a*g*row = 0 mod g*m by row = 0 mod m */ + for (i = 0; i < B->n_row; ++i) { + isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D); + if (isl_int_is_one(D)) + continue; + if (isl_int_is_zero(D)) { + B = isl_mat_drop_rows(B, i, 1); + d = isl_vec_cow(d); + if (!B || !d) + goto error2; + isl_seq_cpy(d->block.data+i, d->block.data+i+1, + d->size - (i+1)); + d->size--; + i--; + continue; + } + B = isl_mat_cow(B); + if (!B) + goto error2; + isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1); + isl_int_gcd(D, D, d->block.data[i]); + d = isl_vec_cow(d); + if (!d) + goto error2; + isl_int_divexact(d->block.data[i], d->block.data[i], D); + } + isl_int_clear(D); + if (B->n_row == 0) + T = isl_mat_identity(B->ctx, B->n_col); + else if (B->n_row == 1) + T = parameter_compression_1(B, d); + else + T = parameter_compression_multi(B, d); + T = isl_mat_left_hermite(T, 0, NULL, NULL); + if (!T) + goto error; + isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1); + isl_mat_free(cst); + isl_mat_free(B); + isl_vec_free(d); + return T; +error2: + isl_int_clear(D); +error: + isl_mat_free(cst); + isl_mat_free(B); + isl_vec_free(d); + return NULL; +} + +/* Given a set of equalities + * + * B(y) + A x = 0 (*) + * + * compute and return an affine transformation T, + * + * y = T y' + * + * that bijectively maps the integer vectors y' to integer + * vectors y that satisfy the modulo constraints for some value of x. + * + * Let [H 0] be the Hermite Normal Form of A, i.e., + * + * A = [H 0] Q + * + * Then y is a solution of (*) iff + * + * H^-1 B(y) (= - [I 0] Q x) + * + * is an integer vector. Let d be the common denominator of H^-1. + * We impose + * + * d H^-1 B(y) = 0 mod d + * + * and compute the solution using isl_mat_parameter_compression. + */ +__isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B, + __isl_take isl_mat *A) +{ + isl_ctx *ctx; + isl_vec *d; + int n_row, n_col; + + if (!A) + return isl_mat_free(B); + + ctx = isl_mat_get_ctx(A); + n_row = A->n_row; + n_col = A->n_col; + A = isl_mat_left_hermite(A, 0, NULL, NULL); + A = isl_mat_drop_cols(A, n_row, n_col - n_row); + A = isl_mat_lin_to_aff(A); + A = isl_mat_right_inverse(A); + d = isl_vec_alloc(ctx, n_row); + if (A) + d = isl_vec_set(d, A->row[0][0]); + A = isl_mat_drop_rows(A, 0, 1); + A = isl_mat_drop_cols(A, 0, 1); + B = isl_mat_product(A, B); + + return isl_mat_parameter_compression(B, d); +} + +/* Given a set of equalities + * + * M x - c = 0 + * + * this function computes a unimodular transformation from a lower-dimensional + * space to the original space that bijectively maps the integer points x' + * in the lower-dimensional space to the integer points x in the original + * space that satisfy the equalities. + * + * The input is given as a matrix B = [ -c M ] and the output is a + * matrix that maps [1 x'] to [1 x]. + * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x']. + * + * First compute the (left) Hermite normal form of M, + * + * M [U1 U2] = M U = H = [H1 0] + * or + * M = H Q = [H1 0] [Q1] + * [Q2] + * + * with U, Q unimodular, Q = U^{-1} (and H lower triangular). + * Define the transformed variables as + * + * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x + * [ x2' ] [Q2] + * + * The equalities then become + * + * H1 x1' - c = 0 or x1' = H1^{-1} c = c' + * + * If any of the c' is non-integer, then the original set has no + * integer solutions (since the x' are a unimodular transformation + * of the x) and a zero-column matrix is returned. + * Otherwise, the transformation is given by + * + * x = U1 H1^{-1} c + U2 x2' + * + * The inverse transformation is simply + * + * x2' = Q2 x + */ +__isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B, + __isl_give isl_mat **T2) +{ + int i; + struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC; + unsigned dim; + + if (T2) + *T2 = NULL; + if (!B) + goto error; + + dim = B->n_col - 1; + H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim); + H = isl_mat_left_hermite(H, 0, &U, T2); + if (!H || !U || (T2 && !*T2)) + goto error; + if (T2) { + *T2 = isl_mat_drop_rows(*T2, 0, B->n_row); + *T2 = isl_mat_lin_to_aff(*T2); + if (!*T2) + goto error; + } + C = isl_mat_alloc(B->ctx, 1+B->n_row, 1); + if (!C) + goto error; + isl_int_set_si(C->row[0][0], 1); + isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_lin_to_aff(H1); + TC = isl_mat_inverse_product(H1, C); + if (!TC) + goto error; + isl_mat_free(H); + if (!isl_int_is_one(TC->row[0][0])) { + for (i = 0; i < B->n_row; ++i) { + if (!isl_int_is_divisible_by(TC->row[1+i][0], TC->row[0][0])) { + struct isl_ctx *ctx = B->ctx; + isl_mat_free(B); + isl_mat_free(TC); + isl_mat_free(U); + if (T2) { + isl_mat_free(*T2); + *T2 = NULL; + } + return isl_mat_alloc(ctx, 1 + dim, 0); + } + isl_seq_scale_down(TC->row[1+i], TC->row[1+i], TC->row[0][0], 1); + } + isl_int_set_si(TC->row[0][0], 1); + } + U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row); + U1 = isl_mat_lin_to_aff(U1); + U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row); + U2 = isl_mat_lin_to_aff(U2); + isl_mat_free(U); + TC = isl_mat_product(U1, TC); + TC = isl_mat_aff_direct_sum(TC, U2); + + isl_mat_free(B); + + return TC; +error: + isl_mat_free(B); + isl_mat_free(H); + isl_mat_free(U); + if (T2) { + isl_mat_free(*T2); + *T2 = NULL; + } + return NULL; +} + +/* Use the n equalities of bset to unimodularly transform the + * variables x such that n transformed variables x1' have a constant value + * and rewrite the constraints of bset in terms of the remaining + * transformed variables x2'. The matrix pointed to by T maps + * the new variables x2' back to the original variables x, while T2 + * maps the original variables to the new variables. + */ +static struct isl_basic_set *compress_variables( + struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2) +{ + struct isl_mat *B, *TC; + unsigned dim; + + if (T) + *T = NULL; + if (T2) + *T2 = NULL; + if (!bset) + goto error; + isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); + isl_assert(bset->ctx, bset->n_div == 0, goto error); + dim = isl_basic_set_n_dim(bset); + isl_assert(bset->ctx, bset->n_eq <= dim, goto error); + if (bset->n_eq == 0) + return bset; + + B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); + TC = isl_mat_variable_compression(B, T2); + if (!TC) + goto error; + if (TC->n_col == 0) { + isl_mat_free(TC); + if (T2) { + isl_mat_free(*T2); + *T2 = NULL; + } + return isl_basic_set_set_to_empty(bset); + } + + bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC); + if (T) + *T = TC; + return bset; +error: + isl_basic_set_free(bset); + return NULL; +} + +struct isl_basic_set *isl_basic_set_remove_equalities( + struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2) +{ + if (T) + *T = NULL; + if (T2) + *T2 = NULL; + if (!bset) + return NULL; + isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); + bset = isl_basic_set_gauss(bset, NULL); + if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) + return bset; + bset = compress_variables(bset, T, T2); + return bset; +error: + isl_basic_set_free(bset); + *T = NULL; + return NULL; +} + +/* Check if dimension dim belongs to a residue class + * i_dim \equiv r mod m + * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. + */ +int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, + int pos, isl_int *modulo, isl_int *residue) +{ + struct isl_ctx *ctx; + struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1; + unsigned total; + unsigned nparam; + + if (!bset || !modulo || !residue) + return -1; + + if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { + isl_int_set_si(*modulo, 0); + return 0; + } + + ctx = bset->ctx; + total = isl_basic_set_total_dim(bset); + nparam = isl_basic_set_n_param(bset); + H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, total); + H = isl_mat_left_hermite(H, 0, &U, NULL); + if (!H) + return -1; + + isl_seq_gcd(U->row[nparam + pos]+bset->n_eq, + total-bset->n_eq, modulo); + if (isl_int_is_zero(*modulo)) + isl_int_set_si(*modulo, 1); + if (isl_int_is_one(*modulo)) { + isl_int_set_si(*residue, 0); + isl_mat_free(H); + isl_mat_free(U); + return 0; + } + + C = isl_mat_alloc(bset->ctx, 1+bset->n_eq, 1); + if (!C) + goto error; + isl_int_set_si(C->row[0][0], 1); + isl_mat_sub_neg(C->ctx, C->row+1, bset->eq, bset->n_eq, 0, 0, 1); + H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); + H1 = isl_mat_lin_to_aff(H1); + C = isl_mat_inverse_product(H1, C); + isl_mat_free(H); + U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq); + U1 = isl_mat_lin_to_aff(U1); + isl_mat_free(U); + C = isl_mat_product(U1, C); + if (!C) + return -1; + if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) { + bset = isl_basic_set_copy(bset); + bset = isl_basic_set_set_to_empty(bset); + isl_basic_set_free(bset); + isl_int_set_si(*modulo, 1); + isl_int_set_si(*residue, 0); + return 0; + } + isl_int_divexact(*residue, C->row[1][0], C->row[0][0]); + isl_int_fdiv_r(*residue, *residue, *modulo); + isl_mat_free(C); + return 0; +error: + isl_mat_free(H); + isl_mat_free(U); + return -1; +} + +/* Check if dimension dim belongs to a residue class + * i_dim \equiv r mod m + * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. + */ +int isl_set_dim_residue_class(struct isl_set *set, + int pos, isl_int *modulo, isl_int *residue) +{ + isl_int m; + isl_int r; + int i; + + if (!set || !modulo || !residue) + return -1; + + if (set->n == 0) { + isl_int_set_si(*modulo, 0); + isl_int_set_si(*residue, 0); + return 0; + } + + if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0) + return -1; + + if (set->n == 1) + return 0; + + if (isl_int_is_one(*modulo)) + return 0; + + isl_int_init(m); + isl_int_init(r); + + for (i = 1; i < set->n; ++i) { + if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) + goto error; + isl_int_gcd(*modulo, *modulo, m); + isl_int_sub(m, *residue, r); + isl_int_gcd(*modulo, *modulo, m); + if (!isl_int_is_zero(*modulo)) + isl_int_fdiv_r(*residue, *residue, *modulo); + if (isl_int_is_one(*modulo)) + break; + } + + isl_int_clear(m); + isl_int_clear(r); + + return 0; +error: + isl_int_clear(m); + isl_int_clear(r); + return -1; +} + +/* Check if dimension "dim" belongs to a residue class + * i_dim \equiv r mod m + * with m != 1 and if so return m in *modulo and r in *residue. + * As a special case, when i_dim has a fixed value v, then + * *modulo is set to 0 and *residue to v. + * + * If i_dim does not belong to such a residue class, then *modulo + * is set to 1 and *residue is set to 0. + */ +int isl_set_dim_residue_class_val(__isl_keep isl_set *set, + int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue) +{ + *modulo = NULL; + *residue = NULL; + if (!set) + return -1; + *modulo = isl_val_alloc(isl_set_get_ctx(set)); + *residue = isl_val_alloc(isl_set_get_ctx(set)); + if (!*modulo || !*residue) + goto error; + if (isl_set_dim_residue_class(set, pos, + &(*modulo)->n, &(*residue)->n) < 0) + goto error; + isl_int_set_si((*modulo)->d, 1); + isl_int_set_si((*residue)->d, 1); + return 0; +error: + isl_val_free(*modulo); + isl_val_free(*residue); + return -1; +} |