summaryrefslogtreecommitdiffstats
path: root/polly/lib/External/isl/isl_convex_hull.c
diff options
context:
space:
mode:
Diffstat (limited to 'polly/lib/External/isl/isl_convex_hull.c')
-rw-r--r--polly/lib/External/isl/isl_convex_hull.c2829
1 files changed, 2829 insertions, 0 deletions
diff --git a/polly/lib/External/isl/isl_convex_hull.c b/polly/lib/External/isl/isl_convex_hull.c
new file mode 100644
index 00000000000..b1254be1783
--- /dev/null
+++ b/polly/lib/External/isl/isl_convex_hull.c
@@ -0,0 +1,2829 @@
+/*
+ * Copyright 2008-2009 Katholieke Universiteit Leuven
+ * Copyright 2014 INRIA Rocquencourt
+ *
+ * Use of this software is governed by the MIT license
+ *
+ * Written by Sven Verdoolaege, K.U.Leuven, Departement
+ * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
+ * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
+ * B.P. 105 - 78153 Le Chesnay, France
+ */
+
+#include <isl_ctx_private.h>
+#include <isl_map_private.h>
+#include <isl_lp_private.h>
+#include <isl/map.h>
+#include <isl_mat_private.h>
+#include <isl_vec_private.h>
+#include <isl/set.h>
+#include <isl_seq.h>
+#include <isl_options_private.h>
+#include "isl_equalities.h"
+#include "isl_tab.h"
+#include <isl_sort.h>
+
+static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
+
+/* Return 1 if constraint c is redundant with respect to the constraints
+ * in bmap. If c is a lower [upper] bound in some variable and bmap
+ * does not have a lower [upper] bound in that variable, then c cannot
+ * be redundant and we do not need solve any lp.
+ */
+int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
+ isl_int *c, isl_int *opt_n, isl_int *opt_d)
+{
+ enum isl_lp_result res;
+ unsigned total;
+ int i, j;
+
+ if (!bmap)
+ return -1;
+
+ total = isl_basic_map_total_dim(*bmap);
+ for (i = 0; i < total; ++i) {
+ int sign;
+ if (isl_int_is_zero(c[1+i]))
+ continue;
+ sign = isl_int_sgn(c[1+i]);
+ for (j = 0; j < (*bmap)->n_ineq; ++j)
+ if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
+ break;
+ if (j == (*bmap)->n_ineq)
+ break;
+ }
+ if (i < total)
+ return 0;
+
+ res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
+ opt_n, opt_d, NULL);
+ if (res == isl_lp_unbounded)
+ return 0;
+ if (res == isl_lp_error)
+ return -1;
+ if (res == isl_lp_empty) {
+ *bmap = isl_basic_map_set_to_empty(*bmap);
+ return 0;
+ }
+ return !isl_int_is_neg(*opt_n);
+}
+
+int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
+ isl_int *c, isl_int *opt_n, isl_int *opt_d)
+{
+ return isl_basic_map_constraint_is_redundant(
+ (struct isl_basic_map **)bset, c, opt_n, opt_d);
+}
+
+/* Remove redundant
+ * constraints. If the minimal value along the normal of a constraint
+ * is the same if the constraint is removed, then the constraint is redundant.
+ *
+ * Alternatively, we could have intersected the basic map with the
+ * corresponding equality and the checked if the dimension was that
+ * of a facet.
+ */
+__isl_give isl_basic_map *isl_basic_map_remove_redundancies(
+ __isl_take isl_basic_map *bmap)
+{
+ struct isl_tab *tab;
+
+ if (!bmap)
+ return NULL;
+
+ bmap = isl_basic_map_gauss(bmap, NULL);
+ if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
+ return bmap;
+ if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
+ return bmap;
+ if (bmap->n_ineq <= 1)
+ return bmap;
+
+ tab = isl_tab_from_basic_map(bmap, 0);
+ if (isl_tab_detect_implicit_equalities(tab) < 0)
+ goto error;
+ if (isl_tab_detect_redundant(tab) < 0)
+ goto error;
+ bmap = isl_basic_map_update_from_tab(bmap, tab);
+ isl_tab_free(tab);
+ ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
+ ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
+ return bmap;
+error:
+ isl_tab_free(tab);
+ isl_basic_map_free(bmap);
+ return NULL;
+}
+
+__isl_give isl_basic_set *isl_basic_set_remove_redundancies(
+ __isl_take isl_basic_set *bset)
+{
+ return (struct isl_basic_set *)
+ isl_basic_map_remove_redundancies((struct isl_basic_map *)bset);
+}
+
+/* Remove redundant constraints in each of the basic maps.
+ */
+__isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map)
+{
+ return isl_map_inline_foreach_basic_map(map,
+ &isl_basic_map_remove_redundancies);
+}
+
+__isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set)
+{
+ return isl_map_remove_redundancies(set);
+}
+
+/* Check if the set set is bound in the direction of the affine
+ * constraint c and if so, set the constant term such that the
+ * resulting constraint is a bounding constraint for the set.
+ */
+static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
+{
+ int first;
+ int j;
+ isl_int opt;
+ isl_int opt_denom;
+
+ isl_int_init(opt);
+ isl_int_init(opt_denom);
+ first = 1;
+ for (j = 0; j < set->n; ++j) {
+ enum isl_lp_result res;
+
+ if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
+ continue;
+
+ res = isl_basic_set_solve_lp(set->p[j],
+ 0, c, set->ctx->one, &opt, &opt_denom, NULL);
+ if (res == isl_lp_unbounded)
+ break;
+ if (res == isl_lp_error)
+ goto error;
+ if (res == isl_lp_empty) {
+ set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
+ if (!set->p[j])
+ goto error;
+ continue;
+ }
+ if (first || isl_int_is_neg(opt)) {
+ if (!isl_int_is_one(opt_denom))
+ isl_seq_scale(c, c, opt_denom, len);
+ isl_int_sub(c[0], c[0], opt);
+ }
+ first = 0;
+ }
+ isl_int_clear(opt);
+ isl_int_clear(opt_denom);
+ return j >= set->n;
+error:
+ isl_int_clear(opt);
+ isl_int_clear(opt_denom);
+ return -1;
+}
+
+__isl_give isl_basic_map *isl_basic_map_set_rational(
+ __isl_take isl_basic_set *bmap)
+{
+ if (!bmap)
+ return NULL;
+
+ if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
+ return bmap;
+
+ bmap = isl_basic_map_cow(bmap);
+ if (!bmap)
+ return NULL;
+
+ ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
+
+ return isl_basic_map_finalize(bmap);
+}
+
+__isl_give isl_basic_set *isl_basic_set_set_rational(
+ __isl_take isl_basic_set *bset)
+{
+ return isl_basic_map_set_rational(bset);
+}
+
+__isl_give isl_map *isl_map_set_rational(__isl_take isl_map *map)
+{
+ int i;
+
+ map = isl_map_cow(map);
+ if (!map)
+ return NULL;
+ for (i = 0; i < map->n; ++i) {
+ map->p[i] = isl_basic_map_set_rational(map->p[i]);
+ if (!map->p[i])
+ goto error;
+ }
+ return map;
+error:
+ isl_map_free(map);
+ return NULL;
+}
+
+__isl_give isl_set *isl_set_set_rational(__isl_take isl_set *set)
+{
+ return isl_map_set_rational(set);
+}
+
+static struct isl_basic_set *isl_basic_set_add_equality(
+ struct isl_basic_set *bset, isl_int *c)
+{
+ int i;
+ unsigned dim;
+
+ if (!bset)
+ return NULL;
+
+ if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
+ return bset;
+
+ isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
+ isl_assert(bset->ctx, bset->n_div == 0, goto error);
+ dim = isl_basic_set_n_dim(bset);
+ bset = isl_basic_set_cow(bset);
+ bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
+ i = isl_basic_set_alloc_equality(bset);
+ if (i < 0)
+ goto error;
+ isl_seq_cpy(bset->eq[i], c, 1 + dim);
+ return bset;
+error:
+ isl_basic_set_free(bset);
+ return NULL;
+}
+
+static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
+{
+ int i;
+
+ set = isl_set_cow(set);
+ if (!set)
+ return NULL;
+ for (i = 0; i < set->n; ++i) {
+ set->p[i] = isl_basic_set_add_equality(set->p[i], c);
+ if (!set->p[i])
+ goto error;
+ }
+ return set;
+error:
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Given a union of basic sets, construct the constraints for wrapping
+ * a facet around one of its ridges.
+ * In particular, if each of n the d-dimensional basic sets i in "set"
+ * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
+ * and is defined by the constraints
+ * [ 1 ]
+ * A_i [ x ] >= 0
+ *
+ * then the resulting set is of dimension n*(1+d) and has as constraints
+ *
+ * [ a_i ]
+ * A_i [ x_i ] >= 0
+ *
+ * a_i >= 0
+ *
+ * \sum_i x_{i,1} = 1
+ */
+static struct isl_basic_set *wrap_constraints(struct isl_set *set)
+{
+ struct isl_basic_set *lp;
+ unsigned n_eq;
+ unsigned n_ineq;
+ int i, j, k;
+ unsigned dim, lp_dim;
+
+ if (!set)
+ return NULL;
+
+ dim = 1 + isl_set_n_dim(set);
+ n_eq = 1;
+ n_ineq = set->n;
+ for (i = 0; i < set->n; ++i) {
+ n_eq += set->p[i]->n_eq;
+ n_ineq += set->p[i]->n_ineq;
+ }
+ lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
+ lp = isl_basic_set_set_rational(lp);
+ if (!lp)
+ return NULL;
+ lp_dim = isl_basic_set_n_dim(lp);
+ k = isl_basic_set_alloc_equality(lp);
+ isl_int_set_si(lp->eq[k][0], -1);
+ for (i = 0; i < set->n; ++i) {
+ isl_int_set_si(lp->eq[k][1+dim*i], 0);
+ isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
+ isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
+ }
+ for (i = 0; i < set->n; ++i) {
+ k = isl_basic_set_alloc_inequality(lp);
+ isl_seq_clr(lp->ineq[k], 1+lp_dim);
+ isl_int_set_si(lp->ineq[k][1+dim*i], 1);
+
+ for (j = 0; j < set->p[i]->n_eq; ++j) {
+ k = isl_basic_set_alloc_equality(lp);
+ isl_seq_clr(lp->eq[k], 1+dim*i);
+ isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
+ isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
+ }
+
+ for (j = 0; j < set->p[i]->n_ineq; ++j) {
+ k = isl_basic_set_alloc_inequality(lp);
+ isl_seq_clr(lp->ineq[k], 1+dim*i);
+ isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
+ isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
+ }
+ }
+ return lp;
+}
+
+/* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
+ * of that facet, compute the other facet of the convex hull that contains
+ * the ridge.
+ *
+ * We first transform the set such that the facet constraint becomes
+ *
+ * x_1 >= 0
+ *
+ * I.e., the facet lies in
+ *
+ * x_1 = 0
+ *
+ * and on that facet, the constraint that defines the ridge is
+ *
+ * x_2 >= 0
+ *
+ * (This transformation is not strictly needed, all that is needed is
+ * that the ridge contains the origin.)
+ *
+ * Since the ridge contains the origin, the cone of the convex hull
+ * will be of the form
+ *
+ * x_1 >= 0
+ * x_2 >= a x_1
+ *
+ * with this second constraint defining the new facet.
+ * The constant a is obtained by settting x_1 in the cone of the
+ * convex hull to 1 and minimizing x_2.
+ * Now, each element in the cone of the convex hull is the sum
+ * of elements in the cones of the basic sets.
+ * If a_i is the dilation factor of basic set i, then the problem
+ * we need to solve is
+ *
+ * min \sum_i x_{i,2}
+ * st
+ * \sum_i x_{i,1} = 1
+ * a_i >= 0
+ * [ a_i ]
+ * A [ x_i ] >= 0
+ *
+ * with
+ * [ 1 ]
+ * A_i [ x_i ] >= 0
+ *
+ * the constraints of each (transformed) basic set.
+ * If a = n/d, then the constraint defining the new facet (in the transformed
+ * space) is
+ *
+ * -n x_1 + d x_2 >= 0
+ *
+ * In the original space, we need to take the same combination of the
+ * corresponding constraints "facet" and "ridge".
+ *
+ * If a = -infty = "-1/0", then we just return the original facet constraint.
+ * This means that the facet is unbounded, but has a bounded intersection
+ * with the union of sets.
+ */
+isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
+ isl_int *facet, isl_int *ridge)
+{
+ int i;
+ isl_ctx *ctx;
+ struct isl_mat *T = NULL;
+ struct isl_basic_set *lp = NULL;
+ struct isl_vec *obj;
+ enum isl_lp_result res;
+ isl_int num, den;
+ unsigned dim;
+
+ if (!set)
+ return NULL;
+ ctx = set->ctx;
+ set = isl_set_copy(set);
+ set = isl_set_set_rational(set);
+
+ dim = 1 + isl_set_n_dim(set);
+ T = isl_mat_alloc(ctx, 3, dim);
+ if (!T)
+ goto error;
+ isl_int_set_si(T->row[0][0], 1);
+ isl_seq_clr(T->row[0]+1, dim - 1);
+ isl_seq_cpy(T->row[1], facet, dim);
+ isl_seq_cpy(T->row[2], ridge, dim);
+ T = isl_mat_right_inverse(T);
+ set = isl_set_preimage(set, T);
+ T = NULL;
+ if (!set)
+ goto error;
+ lp = wrap_constraints(set);
+ obj = isl_vec_alloc(ctx, 1 + dim*set->n);
+ if (!obj)
+ goto error;
+ isl_int_set_si(obj->block.data[0], 0);
+ for (i = 0; i < set->n; ++i) {
+ isl_seq_clr(obj->block.data + 1 + dim*i, 2);
+ isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
+ isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
+ }
+ isl_int_init(num);
+ isl_int_init(den);
+ res = isl_basic_set_solve_lp(lp, 0,
+ obj->block.data, ctx->one, &num, &den, NULL);
+ if (res == isl_lp_ok) {
+ isl_int_neg(num, num);
+ isl_seq_combine(facet, num, facet, den, ridge, dim);
+ isl_seq_normalize(ctx, facet, dim);
+ }
+ isl_int_clear(num);
+ isl_int_clear(den);
+ isl_vec_free(obj);
+ isl_basic_set_free(lp);
+ isl_set_free(set);
+ if (res == isl_lp_error)
+ return NULL;
+ isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
+ return NULL);
+ return facet;
+error:
+ isl_basic_set_free(lp);
+ isl_mat_free(T);
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Compute the constraint of a facet of "set".
+ *
+ * We first compute the intersection with a bounding constraint
+ * that is orthogonal to one of the coordinate axes.
+ * If the affine hull of this intersection has only one equality,
+ * we have found a facet.
+ * Otherwise, we wrap the current bounding constraint around
+ * one of the equalities of the face (one that is not equal to
+ * the current bounding constraint).
+ * This process continues until we have found a facet.
+ * The dimension of the intersection increases by at least
+ * one on each iteration, so termination is guaranteed.
+ */
+static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
+{
+ struct isl_set *slice = NULL;
+ struct isl_basic_set *face = NULL;
+ int i;
+ unsigned dim = isl_set_n_dim(set);
+ int is_bound;
+ isl_mat *bounds = NULL;
+
+ isl_assert(set->ctx, set->n > 0, goto error);
+ bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
+ if (!bounds)
+ return NULL;
+
+ isl_seq_clr(bounds->row[0], dim);
+ isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
+ is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
+ if (is_bound < 0)
+ goto error;
+ isl_assert(set->ctx, is_bound, goto error);
+ isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
+ bounds->n_row = 1;
+
+ for (;;) {
+ slice = isl_set_copy(set);
+ slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
+ face = isl_set_affine_hull(slice);
+ if (!face)
+ goto error;
+ if (face->n_eq == 1) {
+ isl_basic_set_free(face);
+ break;
+ }
+ for (i = 0; i < face->n_eq; ++i)
+ if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
+ !isl_seq_is_neg(bounds->row[0],
+ face->eq[i], 1 + dim))
+ break;
+ isl_assert(set->ctx, i < face->n_eq, goto error);
+ if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
+ goto error;
+ isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
+ isl_basic_set_free(face);
+ }
+
+ return bounds;
+error:
+ isl_basic_set_free(face);
+ isl_mat_free(bounds);
+ return NULL;
+}
+
+/* Given the bounding constraint "c" of a facet of the convex hull of "set",
+ * compute a hyperplane description of the facet, i.e., compute the facets
+ * of the facet.
+ *
+ * We compute an affine transformation that transforms the constraint
+ *
+ * [ 1 ]
+ * c [ x ] = 0
+ *
+ * to the constraint
+ *
+ * z_1 = 0
+ *
+ * by computing the right inverse U of a matrix that starts with the rows
+ *
+ * [ 1 0 ]
+ * [ c ]
+ *
+ * Then
+ * [ 1 ] [ 1 ]
+ * [ x ] = U [ z ]
+ * and
+ * [ 1 ] [ 1 ]
+ * [ z ] = Q [ x ]
+ *
+ * with Q = U^{-1}
+ * Since z_1 is zero, we can drop this variable as well as the corresponding
+ * column of U to obtain
+ *
+ * [ 1 ] [ 1 ]
+ * [ x ] = U' [ z' ]
+ * and
+ * [ 1 ] [ 1 ]
+ * [ z' ] = Q' [ x ]
+ *
+ * with Q' equal to Q, but without the corresponding row.
+ * After computing the facets of the facet in the z' space,
+ * we convert them back to the x space through Q.
+ */
+static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
+{
+ struct isl_mat *m, *U, *Q;
+ struct isl_basic_set *facet = NULL;
+ struct isl_ctx *ctx;
+ unsigned dim;
+
+ ctx = set->ctx;
+ set = isl_set_copy(set);
+ dim = isl_set_n_dim(set);
+ m = isl_mat_alloc(set->ctx, 2, 1 + dim);
+ if (!m)
+ goto error;
+ isl_int_set_si(m->row[0][0], 1);
+ isl_seq_clr(m->row[0]+1, dim);
+ isl_seq_cpy(m->row[1], c, 1+dim);
+ U = isl_mat_right_inverse(m);
+ Q = isl_mat_right_inverse(isl_mat_copy(U));
+ U = isl_mat_drop_cols(U, 1, 1);
+ Q = isl_mat_drop_rows(Q, 1, 1);
+ set = isl_set_preimage(set, U);
+ facet = uset_convex_hull_wrap_bounded(set);
+ facet = isl_basic_set_preimage(facet, Q);
+ if (facet)
+ isl_assert(ctx, facet->n_eq == 0, goto error);
+ return facet;
+error:
+ isl_basic_set_free(facet);
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Given an initial facet constraint, compute the remaining facets.
+ * We do this by running through all facets found so far and computing
+ * the adjacent facets through wrapping, adding those facets that we
+ * hadn't already found before.
+ *
+ * For each facet we have found so far, we first compute its facets
+ * in the resulting convex hull. That is, we compute the ridges
+ * of the resulting convex hull contained in the facet.
+ * We also compute the corresponding facet in the current approximation
+ * of the convex hull. There is no need to wrap around the ridges
+ * in this facet since that would result in a facet that is already
+ * present in the current approximation.
+ *
+ * This function can still be significantly optimized by checking which of
+ * the facets of the basic sets are also facets of the convex hull and
+ * using all the facets so far to help in constructing the facets of the
+ * facets
+ * and/or
+ * using the technique in section "3.1 Ridge Generation" of
+ * "Extended Convex Hull" by Fukuda et al.
+ */
+static struct isl_basic_set *extend(struct isl_basic_set *hull,
+ struct isl_set *set)
+{
+ int i, j, f;
+ int k;
+ struct isl_basic_set *facet = NULL;
+ struct isl_basic_set *hull_facet = NULL;
+ unsigned dim;
+
+ if (!hull)
+ return NULL;
+
+ isl_assert(set->ctx, set->n > 0, goto error);
+
+ dim = isl_set_n_dim(set);
+
+ for (i = 0; i < hull->n_ineq; ++i) {
+ facet = compute_facet(set, hull->ineq[i]);
+ facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
+ facet = isl_basic_set_gauss(facet, NULL);
+ facet = isl_basic_set_normalize_constraints(facet);
+ hull_facet = isl_basic_set_copy(hull);
+ hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
+ hull_facet = isl_basic_set_gauss(hull_facet, NULL);
+ hull_facet = isl_basic_set_normalize_constraints(hull_facet);
+ if (!facet || !hull_facet)
+ goto error;
+ hull = isl_basic_set_cow(hull);
+ hull = isl_basic_set_extend_space(hull,
+ isl_space_copy(hull->dim), 0, 0, facet->n_ineq);
+ if (!hull)
+ goto error;
+ for (j = 0; j < facet->n_ineq; ++j) {
+ for (f = 0; f < hull_facet->n_ineq; ++f)
+ if (isl_seq_eq(facet->ineq[j],
+ hull_facet->ineq[f], 1 + dim))
+ break;
+ if (f < hull_facet->n_ineq)
+ continue;
+ k = isl_basic_set_alloc_inequality(hull);
+ if (k < 0)
+ goto error;
+ isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
+ if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
+ goto error;
+ }
+ isl_basic_set_free(hull_facet);
+ isl_basic_set_free(facet);
+ }
+ hull = isl_basic_set_simplify(hull);
+ hull = isl_basic_set_finalize(hull);
+ return hull;
+error:
+ isl_basic_set_free(hull_facet);
+ isl_basic_set_free(facet);
+ isl_basic_set_free(hull);
+ return NULL;
+}
+
+/* Special case for computing the convex hull of a one dimensional set.
+ * We simply collect the lower and upper bounds of each basic set
+ * and the biggest of those.
+ */
+static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
+{
+ struct isl_mat *c = NULL;
+ isl_int *lower = NULL;
+ isl_int *upper = NULL;
+ int i, j, k;
+ isl_int a, b;
+ struct isl_basic_set *hull;
+
+ for (i = 0; i < set->n; ++i) {
+ set->p[i] = isl_basic_set_simplify(set->p[i]);
+ if (!set->p[i])
+ goto error;
+ }
+ set = isl_set_remove_empty_parts(set);
+ if (!set)
+ goto error;
+ isl_assert(set->ctx, set->n > 0, goto error);
+ c = isl_mat_alloc(set->ctx, 2, 2);
+ if (!c)
+ goto error;
+
+ if (set->p[0]->n_eq > 0) {
+ isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
+ lower = c->row[0];
+ upper = c->row[1];
+ if (isl_int_is_pos(set->p[0]->eq[0][1])) {
+ isl_seq_cpy(lower, set->p[0]->eq[0], 2);
+ isl_seq_neg(upper, set->p[0]->eq[0], 2);
+ } else {
+ isl_seq_neg(lower, set->p[0]->eq[0], 2);
+ isl_seq_cpy(upper, set->p[0]->eq[0], 2);
+ }
+ } else {
+ for (j = 0; j < set->p[0]->n_ineq; ++j) {
+ if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
+ lower = c->row[0];
+ isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
+ } else {
+ upper = c->row[1];
+ isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
+ }
+ }
+ }
+
+ isl_int_init(a);
+ isl_int_init(b);
+ for (i = 0; i < set->n; ++i) {
+ struct isl_basic_set *bset = set->p[i];
+ int has_lower = 0;
+ int has_upper = 0;
+
+ for (j = 0; j < bset->n_eq; ++j) {
+ has_lower = 1;
+ has_upper = 1;
+ if (lower) {
+ isl_int_mul(a, lower[0], bset->eq[j][1]);
+ isl_int_mul(b, lower[1], bset->eq[j][0]);
+ if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
+ isl_seq_cpy(lower, bset->eq[j], 2);
+ if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
+ isl_seq_neg(lower, bset->eq[j], 2);
+ }
+ if (upper) {
+ isl_int_mul(a, upper[0], bset->eq[j][1]);
+ isl_int_mul(b, upper[1], bset->eq[j][0]);
+ if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
+ isl_seq_neg(upper, bset->eq[j], 2);
+ if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
+ isl_seq_cpy(upper, bset->eq[j], 2);
+ }
+ }
+ for (j = 0; j < bset->n_ineq; ++j) {
+ if (isl_int_is_pos(bset->ineq[j][1]))
+ has_lower = 1;
+ if (isl_int_is_neg(bset->ineq[j][1]))
+ has_upper = 1;
+ if (lower && isl_int_is_pos(bset->ineq[j][1])) {
+ isl_int_mul(a, lower[0], bset->ineq[j][1]);
+ isl_int_mul(b, lower[1], bset->ineq[j][0]);
+ if (isl_int_lt(a, b))
+ isl_seq_cpy(lower, bset->ineq[j], 2);
+ }
+ if (upper && isl_int_is_neg(bset->ineq[j][1])) {
+ isl_int_mul(a, upper[0], bset->ineq[j][1]);
+ isl_int_mul(b, upper[1], bset->ineq[j][0]);
+ if (isl_int_gt(a, b))
+ isl_seq_cpy(upper, bset->ineq[j], 2);
+ }
+ }
+ if (!has_lower)
+ lower = NULL;
+ if (!has_upper)
+ upper = NULL;
+ }
+ isl_int_clear(a);
+ isl_int_clear(b);
+
+ hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
+ hull = isl_basic_set_set_rational(hull);
+ if (!hull)
+ goto error;
+ if (lower) {
+ k = isl_basic_set_alloc_inequality(hull);
+ isl_seq_cpy(hull->ineq[k], lower, 2);
+ }
+ if (upper) {
+ k = isl_basic_set_alloc_inequality(hull);
+ isl_seq_cpy(hull->ineq[k], upper, 2);
+ }
+ hull = isl_basic_set_finalize(hull);
+ isl_set_free(set);
+ isl_mat_free(c);
+ return hull;
+error:
+ isl_set_free(set);
+ isl_mat_free(c);
+ return NULL;
+}
+
+static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
+{
+ struct isl_basic_set *convex_hull;
+
+ if (!set)
+ return NULL;
+
+ if (isl_set_is_empty(set))
+ convex_hull = isl_basic_set_empty(isl_space_copy(set->dim));
+ else
+ convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
+ isl_set_free(set);
+ return convex_hull;
+}
+
+/* Compute the convex hull of a pair of basic sets without any parameters or
+ * integer divisions using Fourier-Motzkin elimination.
+ * The convex hull is the set of all points that can be written as
+ * the sum of points from both basic sets (in homogeneous coordinates).
+ * We set up the constraints in a space with dimensions for each of
+ * the three sets and then project out the dimensions corresponding
+ * to the two original basic sets, retaining only those corresponding
+ * to the convex hull.
+ */
+static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
+ struct isl_basic_set *bset2)
+{
+ int i, j, k;
+ struct isl_basic_set *bset[2];
+ struct isl_basic_set *hull = NULL;
+ unsigned dim;
+
+ if (!bset1 || !bset2)
+ goto error;
+
+ dim = isl_basic_set_n_dim(bset1);
+ hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
+ 1 + dim + bset1->n_eq + bset2->n_eq,
+ 2 + bset1->n_ineq + bset2->n_ineq);
+ bset[0] = bset1;
+ bset[1] = bset2;
+ for (i = 0; i < 2; ++i) {
+ for (j = 0; j < bset[i]->n_eq; ++j) {
+ k = isl_basic_set_alloc_equality(hull);
+ if (k < 0)
+ goto error;
+ isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
+ isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
+ isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
+ 1+dim);
+ }
+ for (j = 0; j < bset[i]->n_ineq; ++j) {
+ k = isl_basic_set_alloc_inequality(hull);
+ if (k < 0)
+ goto error;
+ isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
+ isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
+ isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
+ bset[i]->ineq[j], 1+dim);
+ }
+ k = isl_basic_set_alloc_inequality(hull);
+ if (k < 0)
+ goto error;
+ isl_seq_clr(hull->ineq[k], 1+2+3*dim);
+ isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
+ }
+ for (j = 0; j < 1+dim; ++j) {
+ k = isl_basic_set_alloc_equality(hull);
+ if (k < 0)
+ goto error;
+ isl_seq_clr(hull->eq[k], 1+2+3*dim);
+ isl_int_set_si(hull->eq[k][j], -1);
+ isl_int_set_si(hull->eq[k][1+dim+j], 1);
+ isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
+ }
+ hull = isl_basic_set_set_rational(hull);
+ hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
+ hull = isl_basic_set_remove_redundancies(hull);
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return hull;
+error:
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ isl_basic_set_free(hull);
+ return NULL;
+}
+
+/* Is the set bounded for each value of the parameters?
+ */
+int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
+{
+ struct isl_tab *tab;
+ int bounded;
+
+ if (!bset)
+ return -1;
+ if (isl_basic_set_plain_is_empty(bset))
+ return 1;
+
+ tab = isl_tab_from_recession_cone(bset, 1);
+ bounded = isl_tab_cone_is_bounded(tab);
+ isl_tab_free(tab);
+ return bounded;
+}
+
+/* Is the image bounded for each value of the parameters and
+ * the domain variables?
+ */
+int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
+{
+ unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param);
+ unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in);
+ int bounded;
+
+ bmap = isl_basic_map_copy(bmap);
+ bmap = isl_basic_map_cow(bmap);
+ bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
+ isl_dim_in, 0, n_in);
+ bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap);
+ isl_basic_map_free(bmap);
+
+ return bounded;
+}
+
+/* Is the set bounded for each value of the parameters?
+ */
+int isl_set_is_bounded(__isl_keep isl_set *set)
+{
+ int i;
+
+ if (!set)
+ return -1;
+
+ for (i = 0; i < set->n; ++i) {
+ int bounded = isl_basic_set_is_bounded(set->p[i]);
+ if (!bounded || bounded < 0)
+ return bounded;
+ }
+ return 1;
+}
+
+/* Compute the lineality space of the convex hull of bset1 and bset2.
+ *
+ * We first compute the intersection of the recession cone of bset1
+ * with the negative of the recession cone of bset2 and then compute
+ * the linear hull of the resulting cone.
+ */
+static struct isl_basic_set *induced_lineality_space(
+ struct isl_basic_set *bset1, struct isl_basic_set *bset2)
+{
+ int i, k;
+ struct isl_basic_set *lin = NULL;
+ unsigned dim;
+
+ if (!bset1 || !bset2)
+ goto error;
+
+ dim = isl_basic_set_total_dim(bset1);
+ lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0,
+ bset1->n_eq + bset2->n_eq,
+ bset1->n_ineq + bset2->n_ineq);
+ lin = isl_basic_set_set_rational(lin);
+ if (!lin)
+ goto error;
+ for (i = 0; i < bset1->n_eq; ++i) {
+ k = isl_basic_set_alloc_equality(lin);
+ if (k < 0)
+ goto error;
+ isl_int_set_si(lin->eq[k][0], 0);
+ isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
+ }
+ for (i = 0; i < bset1->n_ineq; ++i) {
+ k = isl_basic_set_alloc_inequality(lin);
+ if (k < 0)
+ goto error;
+ isl_int_set_si(lin->ineq[k][0], 0);
+ isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
+ }
+ for (i = 0; i < bset2->n_eq; ++i) {
+ k = isl_basic_set_alloc_equality(lin);
+ if (k < 0)
+ goto error;
+ isl_int_set_si(lin->eq[k][0], 0);
+ isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
+ }
+ for (i = 0; i < bset2->n_ineq; ++i) {
+ k = isl_basic_set_alloc_inequality(lin);
+ if (k < 0)
+ goto error;
+ isl_int_set_si(lin->ineq[k][0], 0);
+ isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
+ }
+
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return isl_basic_set_affine_hull(lin);
+error:
+ isl_basic_set_free(lin);
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return NULL;
+}
+
+static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
+
+/* Given a set and a linear space "lin" of dimension n > 0,
+ * project the linear space from the set, compute the convex hull
+ * and then map the set back to the original space.
+ *
+ * Let
+ *
+ * M x = 0
+ *
+ * describe the linear space. We first compute the Hermite normal
+ * form H = M U of M = H Q, to obtain
+ *
+ * H Q x = 0
+ *
+ * The last n rows of H will be zero, so the last n variables of x' = Q x
+ * are the one we want to project out. We do this by transforming each
+ * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
+ * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
+ * we transform the hull back to the original space as A' Q_1 x >= b',
+ * with Q_1 all but the last n rows of Q.
+ */
+static struct isl_basic_set *modulo_lineality(struct isl_set *set,
+ struct isl_basic_set *lin)
+{
+ unsigned total = isl_basic_set_total_dim(lin);
+ unsigned lin_dim;
+ struct isl_basic_set *hull;
+ struct isl_mat *M, *U, *Q;
+
+ if (!set || !lin)
+ goto error;
+ lin_dim = total - lin->n_eq;
+ M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
+ M = isl_mat_left_hermite(M, 0, &U, &Q);
+ if (!M)
+ goto error;
+ isl_mat_free(M);
+ isl_basic_set_free(lin);
+
+ Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
+
+ U = isl_mat_lin_to_aff(U);
+ Q = isl_mat_lin_to_aff(Q);
+
+ set = isl_set_preimage(set, U);
+ set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
+ hull = uset_convex_hull(set);
+ hull = isl_basic_set_preimage(hull, Q);
+
+ return hull;
+error:
+ isl_basic_set_free(lin);
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
+ * set up an LP for solving
+ *
+ * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
+ *
+ * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
+ * The next \alpha{ij} correspond to the equalities and come in pairs.
+ * The final \alpha{ij} correspond to the inequalities.
+ */
+static struct isl_basic_set *valid_direction_lp(
+ struct isl_basic_set *bset1, struct isl_basic_set *bset2)
+{
+ isl_space *dim;
+ struct isl_basic_set *lp;
+ unsigned d;
+ int n;
+ int i, j, k;
+
+ if (!bset1 || !bset2)
+ goto error;
+ d = 1 + isl_basic_set_total_dim(bset1);
+ n = 2 +
+ 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
+ dim = isl_space_set_alloc(bset1->ctx, 0, n);
+ lp = isl_basic_set_alloc_space(dim, 0, d, n);
+ if (!lp)
+ goto error;
+ for (i = 0; i < n; ++i) {
+ k = isl_basic_set_alloc_inequality(lp);
+ if (k < 0)
+ goto error;
+ isl_seq_clr(lp->ineq[k] + 1, n);
+ isl_int_set_si(lp->ineq[k][0], -1);
+ isl_int_set_si(lp->ineq[k][1 + i], 1);
+ }
+ for (i = 0; i < d; ++i) {
+ k = isl_basic_set_alloc_equality(lp);
+ if (k < 0)
+ goto error;
+ n = 0;
+ isl_int_set_si(lp->eq[k][n], 0); n++;
+ /* positivity constraint 1 >= 0 */
+ isl_int_set_si(lp->eq[k][n], i == 0); n++;
+ for (j = 0; j < bset1->n_eq; ++j) {
+ isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
+ isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
+ }
+ for (j = 0; j < bset1->n_ineq; ++j) {
+ isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
+ }
+ /* positivity constraint 1 >= 0 */
+ isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
+ for (j = 0; j < bset2->n_eq; ++j) {
+ isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
+ isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
+ }
+ for (j = 0; j < bset2->n_ineq; ++j) {
+ isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
+ }
+ }
+ lp = isl_basic_set_gauss(lp, NULL);
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return lp;
+error:
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return NULL;
+}
+
+/* Compute a vector s in the homogeneous space such that <s, r> > 0
+ * for all rays in the homogeneous space of the two cones that correspond
+ * to the input polyhedra bset1 and bset2.
+ *
+ * We compute s as a vector that satisfies
+ *
+ * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
+ *
+ * with h_{ij} the normals of the facets of polyhedron i
+ * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
+ * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
+ * We first set up an LP with as variables the \alpha{ij}.
+ * In this formulation, for each polyhedron i,
+ * the first constraint is the positivity constraint, followed by pairs
+ * of variables for the equalities, followed by variables for the inequalities.
+ * We then simply pick a feasible solution and compute s using (*).
+ *
+ * Note that we simply pick any valid direction and make no attempt
+ * to pick a "good" or even the "best" valid direction.
+ */
+static struct isl_vec *valid_direction(
+ struct isl_basic_set *bset1, struct isl_basic_set *bset2)
+{
+ struct isl_basic_set *lp;
+ struct isl_tab *tab;
+ struct isl_vec *sample = NULL;
+ struct isl_vec *dir;
+ unsigned d;
+ int i;
+ int n;
+
+ if (!bset1 || !bset2)
+ goto error;
+ lp = valid_direction_lp(isl_basic_set_copy(bset1),
+ isl_basic_set_copy(bset2));
+ tab = isl_tab_from_basic_set(lp, 0);
+ sample = isl_tab_get_sample_value(tab);
+ isl_tab_free(tab);
+ isl_basic_set_free(lp);
+ if (!sample)
+ goto error;
+ d = isl_basic_set_total_dim(bset1);
+ dir = isl_vec_alloc(bset1->ctx, 1 + d);
+ if (!dir)
+ goto error;
+ isl_seq_clr(dir->block.data + 1, dir->size - 1);
+ n = 1;
+ /* positivity constraint 1 >= 0 */
+ isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
+ for (i = 0; i < bset1->n_eq; ++i) {
+ isl_int_sub(sample->block.data[n],
+ sample->block.data[n], sample->block.data[n+1]);
+ isl_seq_combine(dir->block.data,
+ bset1->ctx->one, dir->block.data,
+ sample->block.data[n], bset1->eq[i], 1 + d);
+
+ n += 2;
+ }
+ for (i = 0; i < bset1->n_ineq; ++i)
+ isl_seq_combine(dir->block.data,
+ bset1->ctx->one, dir->block.data,
+ sample->block.data[n++], bset1->ineq[i], 1 + d);
+ isl_vec_free(sample);
+ isl_seq_normalize(bset1->ctx, dir->el, dir->size);
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return dir;
+error:
+ isl_vec_free(sample);
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return NULL;
+}
+
+/* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
+ * compute b_i' + A_i' x' >= 0, with
+ *
+ * [ b_i A_i ] [ y' ] [ y' ]
+ * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
+ *
+ * In particular, add the "positivity constraint" and then perform
+ * the mapping.
+ */
+static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
+ struct isl_mat *T)
+{
+ int k;
+
+ if (!bset)
+ goto error;
+ bset = isl_basic_set_extend_constraints(bset, 0, 1);
+ k = isl_basic_set_alloc_inequality(bset);
+ if (k < 0)
+ goto error;
+ isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
+ isl_int_set_si(bset->ineq[k][0], 1);
+ bset = isl_basic_set_preimage(bset, T);
+ return bset;
+error:
+ isl_mat_free(T);
+ isl_basic_set_free(bset);
+ return NULL;
+}
+
+/* Compute the convex hull of a pair of basic sets without any parameters or
+ * integer divisions, where the convex hull is known to be pointed,
+ * but the basic sets may be unbounded.
+ *
+ * We turn this problem into the computation of a convex hull of a pair
+ * _bounded_ polyhedra by "changing the direction of the homogeneous
+ * dimension". This idea is due to Matthias Koeppe.
+ *
+ * Consider the cones in homogeneous space that correspond to the
+ * input polyhedra. The rays of these cones are also rays of the
+ * polyhedra if the coordinate that corresponds to the homogeneous
+ * dimension is zero. That is, if the inner product of the rays
+ * with the homogeneous direction is zero.
+ * The cones in the homogeneous space can also be considered to
+ * correspond to other pairs of polyhedra by chosing a different
+ * homogeneous direction. To ensure that both of these polyhedra
+ * are bounded, we need to make sure that all rays of the cones
+ * correspond to vertices and not to rays.
+ * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
+ * Then using s as a homogeneous direction, we obtain a pair of polytopes.
+ * The vector s is computed in valid_direction.
+ *
+ * Note that we need to consider _all_ rays of the cones and not just
+ * the rays that correspond to rays in the polyhedra. If we were to
+ * only consider those rays and turn them into vertices, then we
+ * may inadvertently turn some vertices into rays.
+ *
+ * The standard homogeneous direction is the unit vector in the 0th coordinate.
+ * We therefore transform the two polyhedra such that the selected
+ * direction is mapped onto this standard direction and then proceed
+ * with the normal computation.
+ * Let S be a non-singular square matrix with s as its first row,
+ * then we want to map the polyhedra to the space
+ *
+ * [ y' ] [ y ] [ y ] [ y' ]
+ * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
+ *
+ * We take S to be the unimodular completion of s to limit the growth
+ * of the coefficients in the following computations.
+ *
+ * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
+ * We first move to the homogeneous dimension
+ *
+ * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
+ * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
+ *
+ * Then we change directoin
+ *
+ * [ b_i A_i ] [ y' ] [ y' ]
+ * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
+ *
+ * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
+ * resulting in b' + A' x' >= 0, which we then convert back
+ *
+ * [ y ] [ y ]
+ * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
+ *
+ * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
+ */
+static struct isl_basic_set *convex_hull_pair_pointed(
+ struct isl_basic_set *bset1, struct isl_basic_set *bset2)
+{
+ struct isl_ctx *ctx = NULL;
+ struct isl_vec *dir = NULL;
+ struct isl_mat *T = NULL;
+ struct isl_mat *T2 = NULL;
+ struct isl_basic_set *hull;
+ struct isl_set *set;
+
+ if (!bset1 || !bset2)
+ goto error;
+ ctx = bset1->ctx;
+ dir = valid_direction(isl_basic_set_copy(bset1),
+ isl_basic_set_copy(bset2));
+ if (!dir)
+ goto error;
+ T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
+ if (!T)
+ goto error;
+ isl_seq_cpy(T->row[0], dir->block.data, dir->size);
+ T = isl_mat_unimodular_complete(T, 1);
+ T2 = isl_mat_right_inverse(isl_mat_copy(T));
+
+ bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
+ bset2 = homogeneous_map(bset2, T2);
+ set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
+ set = isl_set_add_basic_set(set, bset1);
+ set = isl_set_add_basic_set(set, bset2);
+ hull = uset_convex_hull(set);
+ hull = isl_basic_set_preimage(hull, T);
+
+ isl_vec_free(dir);
+
+ return hull;
+error:
+ isl_vec_free(dir);
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return NULL;
+}
+
+static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
+static struct isl_basic_set *modulo_affine_hull(
+ struct isl_set *set, struct isl_basic_set *affine_hull);
+
+/* Compute the convex hull of a pair of basic sets without any parameters or
+ * integer divisions.
+ *
+ * This function is called from uset_convex_hull_unbounded, which
+ * means that the complete convex hull is unbounded. Some pairs
+ * of basic sets may still be bounded, though.
+ * They may even lie inside a lower dimensional space, in which
+ * case they need to be handled inside their affine hull since
+ * the main algorithm assumes that the result is full-dimensional.
+ *
+ * If the convex hull of the two basic sets would have a non-trivial
+ * lineality space, we first project out this lineality space.
+ */
+static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
+ struct isl_basic_set *bset2)
+{
+ isl_basic_set *lin, *aff;
+ int bounded1, bounded2;
+
+ if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM)
+ return convex_hull_pair_elim(bset1, bset2);
+
+ aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
+ isl_basic_set_copy(bset2)));
+ if (!aff)
+ goto error;
+ if (aff->n_eq != 0)
+ return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
+ isl_basic_set_free(aff);
+
+ bounded1 = isl_basic_set_is_bounded(bset1);
+ bounded2 = isl_basic_set_is_bounded(bset2);
+
+ if (bounded1 < 0 || bounded2 < 0)
+ goto error;
+
+ if (bounded1 && bounded2)
+ return uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
+
+ if (bounded1 || bounded2)
+ return convex_hull_pair_pointed(bset1, bset2);
+
+ lin = induced_lineality_space(isl_basic_set_copy(bset1),
+ isl_basic_set_copy(bset2));
+ if (!lin)
+ goto error;
+ if (isl_basic_set_is_universe(lin)) {
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return lin;
+ }
+ if (lin->n_eq < isl_basic_set_total_dim(lin)) {
+ struct isl_set *set;
+ set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
+ set = isl_set_add_basic_set(set, bset1);
+ set = isl_set_add_basic_set(set, bset2);
+ return modulo_lineality(set, lin);
+ }
+ isl_basic_set_free(lin);
+
+ return convex_hull_pair_pointed(bset1, bset2);
+error:
+ isl_basic_set_free(bset1);
+ isl_basic_set_free(bset2);
+ return NULL;
+}
+
+/* Compute the lineality space of a basic set.
+ * We currently do not allow the basic set to have any divs.
+ * We basically just drop the constants and turn every inequality
+ * into an equality.
+ */
+struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
+{
+ int i, k;
+ struct isl_basic_set *lin = NULL;
+ unsigned dim;
+
+ if (!bset)
+ goto error;
+ isl_assert(bset->ctx, bset->n_div == 0, goto error);
+ dim = isl_basic_set_total_dim(bset);
+
+ lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0);
+ if (!lin)
+ goto error;
+ for (i = 0; i < bset->n_eq; ++i) {
+ k = isl_basic_set_alloc_equality(lin);
+ if (k < 0)
+ goto error;
+ isl_int_set_si(lin->eq[k][0], 0);
+ isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
+ }
+ lin = isl_basic_set_gauss(lin, NULL);
+ if (!lin)
+ goto error;
+ for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
+ k = isl_basic_set_alloc_equality(lin);
+ if (k < 0)
+ goto error;
+ isl_int_set_si(lin->eq[k][0], 0);
+ isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
+ lin = isl_basic_set_gauss(lin, NULL);
+ if (!lin)
+ goto error;
+ }
+ isl_basic_set_free(bset);
+ return lin;
+error:
+ isl_basic_set_free(lin);
+ isl_basic_set_free(bset);
+ return NULL;
+}
+
+/* Compute the (linear) hull of the lineality spaces of the basic sets in the
+ * "underlying" set "set".
+ */
+static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
+{
+ int i;
+ struct isl_set *lin = NULL;
+
+ if (!set)
+ return NULL;
+ if (set->n == 0) {
+ isl_space *dim = isl_set_get_space(set);
+ isl_set_free(set);
+ return isl_basic_set_empty(dim);
+ }
+
+ lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0);
+ for (i = 0; i < set->n; ++i)
+ lin = isl_set_add_basic_set(lin,
+ isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
+ isl_set_free(set);
+ return isl_set_affine_hull(lin);
+}
+
+/* Compute the convex hull of a set without any parameters or
+ * integer divisions.
+ * In each step, we combined two basic sets until only one
+ * basic set is left.
+ * The input basic sets are assumed not to have a non-trivial
+ * lineality space. If any of the intermediate results has
+ * a non-trivial lineality space, it is projected out.
+ */
+static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
+{
+ struct isl_basic_set *convex_hull = NULL;
+
+ convex_hull = isl_set_copy_basic_set(set);
+ set = isl_set_drop_basic_set(set, convex_hull);
+ if (!set)
+ goto error;
+ while (set->n > 0) {
+ struct isl_basic_set *t;
+ t = isl_set_copy_basic_set(set);
+ if (!t)
+ goto error;
+ set = isl_set_drop_basic_set(set, t);
+ if (!set)
+ goto error;
+ convex_hull = convex_hull_pair(convex_hull, t);
+ if (set->n == 0)
+ break;
+ t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
+ if (!t)
+ goto error;
+ if (isl_basic_set_is_universe(t)) {
+ isl_basic_set_free(convex_hull);
+ convex_hull = t;
+ break;
+ }
+ if (t->n_eq < isl_basic_set_total_dim(t)) {
+ set = isl_set_add_basic_set(set, convex_hull);
+ return modulo_lineality(set, t);
+ }
+ isl_basic_set_free(t);
+ }
+ isl_set_free(set);
+ return convex_hull;
+error:
+ isl_set_free(set);
+ isl_basic_set_free(convex_hull);
+ return NULL;
+}
+
+/* Compute an initial hull for wrapping containing a single initial
+ * facet.
+ * This function assumes that the given set is bounded.
+ */
+static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
+ struct isl_set *set)
+{
+ struct isl_mat *bounds = NULL;
+ unsigned dim;
+ int k;
+
+ if (!hull)
+ goto error;
+ bounds = initial_facet_constraint(set);
+ if (!bounds)
+ goto error;
+ k = isl_basic_set_alloc_inequality(hull);
+ if (k < 0)
+ goto error;
+ dim = isl_set_n_dim(set);
+ isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
+ isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
+ isl_mat_free(bounds);
+
+ return hull;
+error:
+ isl_basic_set_free(hull);
+ isl_mat_free(bounds);
+ return NULL;
+}
+
+struct max_constraint {
+ struct isl_mat *c;
+ int count;
+ int ineq;
+};
+
+static int max_constraint_equal(const void *entry, const void *val)
+{
+ struct max_constraint *a = (struct max_constraint *)entry;
+ isl_int *b = (isl_int *)val;
+
+ return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
+}
+
+static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
+ isl_int *con, unsigned len, int n, int ineq)
+{
+ struct isl_hash_table_entry *entry;
+ struct max_constraint *c;
+ uint32_t c_hash;
+
+ c_hash = isl_seq_get_hash(con + 1, len);
+ entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
+ con + 1, 0);
+ if (!entry)
+ return;
+ c = entry->data;
+ if (c->count < n) {
+ isl_hash_table_remove(ctx, table, entry);
+ return;
+ }
+ c->count++;
+ if (isl_int_gt(c->c->row[0][0], con[0]))
+ return;
+ if (isl_int_eq(c->c->row[0][0], con[0])) {
+ if (ineq)
+ c->ineq = ineq;
+ return;
+ }
+ c->c = isl_mat_cow(c->c);
+ isl_int_set(c->c->row[0][0], con[0]);
+ c->ineq = ineq;
+}
+
+/* Check whether the constraint hash table "table" constains the constraint
+ * "con".
+ */
+static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
+ isl_int *con, unsigned len, int n)
+{
+ struct isl_hash_table_entry *entry;
+ struct max_constraint *c;
+ uint32_t c_hash;
+
+ c_hash = isl_seq_get_hash(con + 1, len);
+ entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
+ con + 1, 0);
+ if (!entry)
+ return 0;
+ c = entry->data;
+ if (c->count < n)
+ return 0;
+ return isl_int_eq(c->c->row[0][0], con[0]);
+}
+
+/* Check for inequality constraints of a basic set without equalities
+ * such that the same or more stringent copies of the constraint appear
+ * in all of the basic sets. Such constraints are necessarily facet
+ * constraints of the convex hull.
+ *
+ * If the resulting basic set is by chance identical to one of
+ * the basic sets in "set", then we know that this basic set contains
+ * all other basic sets and is therefore the convex hull of set.
+ * In this case we set *is_hull to 1.
+ */
+static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
+ struct isl_set *set, int *is_hull)
+{
+ int i, j, s, n;
+ int min_constraints;
+ int best;
+ struct max_constraint *constraints = NULL;
+ struct isl_hash_table *table = NULL;
+ unsigned total;
+
+ *is_hull = 0;
+
+ for (i = 0; i < set->n; ++i)
+ if (set->p[i]->n_eq == 0)
+ break;
+ if (i >= set->n)
+ return hull;
+ min_constraints = set->p[i]->n_ineq;
+ best = i;
+ for (i = best + 1; i < set->n; ++i) {
+ if (set->p[i]->n_eq != 0)
+ continue;
+ if (set->p[i]->n_ineq >= min_constraints)
+ continue;
+ min_constraints = set->p[i]->n_ineq;
+ best = i;
+ }
+ constraints = isl_calloc_array(hull->ctx, struct max_constraint,
+ min_constraints);
+ if (!constraints)
+ return hull;
+ table = isl_alloc_type(hull->ctx, struct isl_hash_table);
+ if (isl_hash_table_init(hull->ctx, table, min_constraints))
+ goto error;
+
+ total = isl_space_dim(set->dim, isl_dim_all);
+ for (i = 0; i < set->p[best]->n_ineq; ++i) {
+ constraints[i].c = isl_mat_sub_alloc6(hull->ctx,
+ set->p[best]->ineq + i, 0, 1, 0, 1 + total);
+ if (!constraints[i].c)
+ goto error;
+ constraints[i].ineq = 1;
+ }
+ for (i = 0; i < min_constraints; ++i) {
+ struct isl_hash_table_entry *entry;
+ uint32_t c_hash;
+ c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
+ entry = isl_hash_table_find(hull->ctx, table, c_hash,
+ max_constraint_equal, constraints[i].c->row[0] + 1, 1);
+ if (!entry)
+ goto error;
+ isl_assert(hull->ctx, !entry->data, goto error);
+ entry->data = &constraints[i];
+ }
+
+ n = 0;
+ for (s = 0; s < set->n; ++s) {
+ if (s == best)
+ continue;
+
+ for (i = 0; i < set->p[s]->n_eq; ++i) {
+ isl_int *eq = set->p[s]->eq[i];
+ for (j = 0; j < 2; ++j) {
+ isl_seq_neg(eq, eq, 1 + total);
+ update_constraint(hull->ctx, table,
+ eq, total, n, 0);
+ }
+ }
+ for (i = 0; i < set->p[s]->n_ineq; ++i) {
+ isl_int *ineq = set->p[s]->ineq[i];
+ update_constraint(hull->ctx, table, ineq, total, n,
+ set->p[s]->n_eq == 0);
+ }
+ ++n;
+ }
+
+ for (i = 0; i < min_constraints; ++i) {
+ if (constraints[i].count < n)
+ continue;
+ if (!constraints[i].ineq)
+ continue;
+ j = isl_basic_set_alloc_inequality(hull);
+ if (j < 0)
+ goto error;
+ isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
+ }
+
+ for (s = 0; s < set->n; ++s) {
+ if (set->p[s]->n_eq)
+ continue;
+ if (set->p[s]->n_ineq != hull->n_ineq)
+ continue;
+ for (i = 0; i < set->p[s]->n_ineq; ++i) {
+ isl_int *ineq = set->p[s]->ineq[i];
+ if (!has_constraint(hull->ctx, table, ineq, total, n))
+ break;
+ }
+ if (i == set->p[s]->n_ineq)
+ *is_hull = 1;
+ }
+
+ isl_hash_table_clear(table);
+ for (i = 0; i < min_constraints; ++i)
+ isl_mat_free(constraints[i].c);
+ free(constraints);
+ free(table);
+ return hull;
+error:
+ isl_hash_table_clear(table);
+ free(table);
+ if (constraints)
+ for (i = 0; i < min_constraints; ++i)
+ isl_mat_free(constraints[i].c);
+ free(constraints);
+ return hull;
+}
+
+/* Create a template for the convex hull of "set" and fill it up
+ * obvious facet constraints, if any. If the result happens to
+ * be the convex hull of "set" then *is_hull is set to 1.
+ */
+static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
+{
+ struct isl_basic_set *hull;
+ unsigned n_ineq;
+ int i;
+
+ n_ineq = 1;
+ for (i = 0; i < set->n; ++i) {
+ n_ineq += set->p[i]->n_eq;
+ n_ineq += set->p[i]->n_ineq;
+ }
+ hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
+ hull = isl_basic_set_set_rational(hull);
+ if (!hull)
+ return NULL;
+ return common_constraints(hull, set, is_hull);
+}
+
+static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
+{
+ struct isl_basic_set *hull;
+ int is_hull;
+
+ hull = proto_hull(set, &is_hull);
+ if (hull && !is_hull) {
+ if (hull->n_ineq == 0)
+ hull = initial_hull(hull, set);
+ hull = extend(hull, set);
+ }
+ isl_set_free(set);
+
+ return hull;
+}
+
+/* Compute the convex hull of a set without any parameters or
+ * integer divisions. Depending on whether the set is bounded,
+ * we pass control to the wrapping based convex hull or
+ * the Fourier-Motzkin elimination based convex hull.
+ * We also handle a few special cases before checking the boundedness.
+ */
+static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
+{
+ struct isl_basic_set *convex_hull = NULL;
+ struct isl_basic_set *lin;
+
+ if (isl_set_n_dim(set) == 0)
+ return convex_hull_0d(set);
+
+ set = isl_set_coalesce(set);
+ set = isl_set_set_rational(set);
+
+ if (!set)
+ goto error;
+ if (!set)
+ return NULL;
+ if (set->n == 1) {
+ convex_hull = isl_basic_set_copy(set->p[0]);
+ isl_set_free(set);
+ return convex_hull;
+ }
+ if (isl_set_n_dim(set) == 1)
+ return convex_hull_1d(set);
+
+ if (isl_set_is_bounded(set) &&
+ set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP)
+ return uset_convex_hull_wrap(set);
+
+ lin = uset_combined_lineality_space(isl_set_copy(set));
+ if (!lin)
+ goto error;
+ if (isl_basic_set_is_universe(lin)) {
+ isl_set_free(set);
+ return lin;
+ }
+ if (lin->n_eq < isl_basic_set_total_dim(lin))
+ return modulo_lineality(set, lin);
+ isl_basic_set_free(lin);
+
+ return uset_convex_hull_unbounded(set);
+error:
+ isl_set_free(set);
+ isl_basic_set_free(convex_hull);
+ return NULL;
+}
+
+/* This is the core procedure, where "set" is a "pure" set, i.e.,
+ * without parameters or divs and where the convex hull of set is
+ * known to be full-dimensional.
+ */
+static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
+{
+ struct isl_basic_set *convex_hull = NULL;
+
+ if (!set)
+ goto error;
+
+ if (isl_set_n_dim(set) == 0) {
+ convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
+ isl_set_free(set);
+ convex_hull = isl_basic_set_set_rational(convex_hull);
+ return convex_hull;
+ }
+
+ set = isl_set_set_rational(set);
+ set = isl_set_coalesce(set);
+ if (!set)
+ goto error;
+ if (set->n == 1) {
+ convex_hull = isl_basic_set_copy(set->p[0]);
+ isl_set_free(set);
+ convex_hull = isl_basic_map_remove_redundancies(convex_hull);
+ return convex_hull;
+ }
+ if (isl_set_n_dim(set) == 1)
+ return convex_hull_1d(set);
+
+ return uset_convex_hull_wrap(set);
+error:
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Compute the convex hull of set "set" with affine hull "affine_hull",
+ * We first remove the equalities (transforming the set), compute the
+ * convex hull of the transformed set and then add the equalities back
+ * (after performing the inverse transformation.
+ */
+static struct isl_basic_set *modulo_affine_hull(
+ struct isl_set *set, struct isl_basic_set *affine_hull)
+{
+ struct isl_mat *T;
+ struct isl_mat *T2;
+ struct isl_basic_set *dummy;
+ struct isl_basic_set *convex_hull;
+
+ dummy = isl_basic_set_remove_equalities(
+ isl_basic_set_copy(affine_hull), &T, &T2);
+ if (!dummy)
+ goto error;
+ isl_basic_set_free(dummy);
+ set = isl_set_preimage(set, T);
+ convex_hull = uset_convex_hull(set);
+ convex_hull = isl_basic_set_preimage(convex_hull, T2);
+ convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
+ return convex_hull;
+error:
+ isl_basic_set_free(affine_hull);
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Compute the convex hull of a map.
+ *
+ * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
+ * specifically, the wrapping of facets to obtain new facets.
+ */
+struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
+{
+ struct isl_basic_set *bset;
+ struct isl_basic_map *model = NULL;
+ struct isl_basic_set *affine_hull = NULL;
+ struct isl_basic_map *convex_hull = NULL;
+ struct isl_set *set = NULL;
+ struct isl_ctx *ctx;
+
+ map = isl_map_detect_equalities(map);
+ map = isl_map_align_divs(map);
+ if (!map)
+ goto error;
+
+ ctx = map->ctx;
+ if (map->n == 0) {
+ convex_hull = isl_basic_map_empty_like_map(map);
+ isl_map_free(map);
+ return convex_hull;
+ }
+
+ model = isl_basic_map_copy(map->p[0]);
+ set = isl_map_underlying_set(map);
+ if (!set)
+ goto error;
+
+ affine_hull = isl_set_affine_hull(isl_set_copy(set));
+ if (!affine_hull)
+ goto error;
+ if (affine_hull->n_eq != 0)
+ bset = modulo_affine_hull(set, affine_hull);
+ else {
+ isl_basic_set_free(affine_hull);
+ bset = uset_convex_hull(set);
+ }
+
+ convex_hull = isl_basic_map_overlying_set(bset, model);
+ if (!convex_hull)
+ return NULL;
+
+ ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
+ ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
+ ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
+ return convex_hull;
+error:
+ isl_set_free(set);
+ isl_basic_map_free(model);
+ return NULL;
+}
+
+struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
+{
+ return (struct isl_basic_set *)
+ isl_map_convex_hull((struct isl_map *)set);
+}
+
+__isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
+{
+ isl_basic_map *hull;
+
+ hull = isl_map_convex_hull(map);
+ return isl_basic_map_remove_divs(hull);
+}
+
+__isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
+{
+ return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set);
+}
+
+struct sh_data_entry {
+ struct isl_hash_table *table;
+ struct isl_tab *tab;
+};
+
+/* Holds the data needed during the simple hull computation.
+ * In particular,
+ * n the number of basic sets in the original set
+ * hull_table a hash table of already computed constraints
+ * in the simple hull
+ * p for each basic set,
+ * table a hash table of the constraints
+ * tab the tableau corresponding to the basic set
+ */
+struct sh_data {
+ struct isl_ctx *ctx;
+ unsigned n;
+ struct isl_hash_table *hull_table;
+ struct sh_data_entry p[1];
+};
+
+static void sh_data_free(struct sh_data *data)
+{
+ int i;
+
+ if (!data)
+ return;
+ isl_hash_table_free(data->ctx, data->hull_table);
+ for (i = 0; i < data->n; ++i) {
+ isl_hash_table_free(data->ctx, data->p[i].table);
+ isl_tab_free(data->p[i].tab);
+ }
+ free(data);
+}
+
+struct ineq_cmp_data {
+ unsigned len;
+ isl_int *p;
+};
+
+static int has_ineq(const void *entry, const void *val)
+{
+ isl_int *row = (isl_int *)entry;
+ struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
+
+ return isl_seq_eq(row + 1, v->p + 1, v->len) ||
+ isl_seq_is_neg(row + 1, v->p + 1, v->len);
+}
+
+static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
+ isl_int *ineq, unsigned len)
+{
+ uint32_t c_hash;
+ struct ineq_cmp_data v;
+ struct isl_hash_table_entry *entry;
+
+ v.len = len;
+ v.p = ineq;
+ c_hash = isl_seq_get_hash(ineq + 1, len);
+ entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
+ if (!entry)
+ return - 1;
+ entry->data = ineq;
+ return 0;
+}
+
+/* Fill hash table "table" with the constraints of "bset".
+ * Equalities are added as two inequalities.
+ * The value in the hash table is a pointer to the (in)equality of "bset".
+ */
+static int hash_basic_set(struct isl_hash_table *table,
+ struct isl_basic_set *bset)
+{
+ int i, j;
+ unsigned dim = isl_basic_set_total_dim(bset);
+
+ for (i = 0; i < bset->n_eq; ++i) {
+ for (j = 0; j < 2; ++j) {
+ isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
+ if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
+ return -1;
+ }
+ }
+ for (i = 0; i < bset->n_ineq; ++i) {
+ if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
+ return -1;
+ }
+ return 0;
+}
+
+static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
+{
+ struct sh_data *data;
+ int i;
+
+ data = isl_calloc(set->ctx, struct sh_data,
+ sizeof(struct sh_data) +
+ (set->n - 1) * sizeof(struct sh_data_entry));
+ if (!data)
+ return NULL;
+ data->ctx = set->ctx;
+ data->n = set->n;
+ data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
+ if (!data->hull_table)
+ goto error;
+ for (i = 0; i < set->n; ++i) {
+ data->p[i].table = isl_hash_table_alloc(set->ctx,
+ 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
+ if (!data->p[i].table)
+ goto error;
+ if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
+ goto error;
+ }
+ return data;
+error:
+ sh_data_free(data);
+ return NULL;
+}
+
+/* Check if inequality "ineq" is a bound for basic set "j" or if
+ * it can be relaxed (by increasing the constant term) to become
+ * a bound for that basic set. In the latter case, the constant
+ * term is updated.
+ * Relaxation of the constant term is only allowed if "shift" is set.
+ *
+ * Return 1 if "ineq" is a bound
+ * 0 if "ineq" may attain arbitrarily small values on basic set "j"
+ * -1 if some error occurred
+ */
+static int is_bound(struct sh_data *data, struct isl_set *set, int j,
+ isl_int *ineq, int shift)
+{
+ enum isl_lp_result res;
+ isl_int opt;
+
+ if (!data->p[j].tab) {
+ data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0);
+ if (!data->p[j].tab)
+ return -1;
+ }
+
+ isl_int_init(opt);
+
+ res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
+ &opt, NULL, 0);
+ if (res == isl_lp_ok && isl_int_is_neg(opt)) {
+ if (shift)
+ isl_int_sub(ineq[0], ineq[0], opt);
+ else
+ res = isl_lp_unbounded;
+ }
+
+ isl_int_clear(opt);
+
+ return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
+ res == isl_lp_unbounded ? 0 : -1;
+}
+
+/* Check if inequality "ineq" from basic set "i" is or can be relaxed to
+ * become a bound on the whole set. If so, add the (relaxed) inequality
+ * to "hull". Relaxation is only allowed if "shift" is set.
+ *
+ * We first check if "hull" already contains a translate of the inequality.
+ * If so, we are done.
+ * Then, we check if any of the previous basic sets contains a translate
+ * of the inequality. If so, then we have already considered this
+ * inequality and we are done.
+ * Otherwise, for each basic set other than "i", we check if the inequality
+ * is a bound on the basic set.
+ * For previous basic sets, we know that they do not contain a translate
+ * of the inequality, so we directly call is_bound.
+ * For following basic sets, we first check if a translate of the
+ * inequality appears in its description and if so directly update
+ * the inequality accordingly.
+ */
+static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
+ struct sh_data *data, struct isl_set *set, int i, isl_int *ineq,
+ int shift)
+{
+ uint32_t c_hash;
+ struct ineq_cmp_data v;
+ struct isl_hash_table_entry *entry;
+ int j, k;
+
+ if (!hull)
+ return NULL;
+
+ v.len = isl_basic_set_total_dim(hull);
+ v.p = ineq;
+ c_hash = isl_seq_get_hash(ineq + 1, v.len);
+
+ entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
+ has_ineq, &v, 0);
+ if (entry)
+ return hull;
+
+ for (j = 0; j < i; ++j) {
+ entry = isl_hash_table_find(hull->ctx, data->p[j].table,
+ c_hash, has_ineq, &v, 0);
+ if (entry)
+ break;
+ }
+ if (j < i)
+ return hull;
+
+ k = isl_basic_set_alloc_inequality(hull);
+ if (k < 0)
+ goto error;
+ isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
+
+ for (j = 0; j < i; ++j) {
+ int bound;
+ bound = is_bound(data, set, j, hull->ineq[k], shift);
+ if (bound < 0)
+ goto error;
+ if (!bound)
+ break;
+ }
+ if (j < i) {
+ isl_basic_set_free_inequality(hull, 1);
+ return hull;
+ }
+
+ for (j = i + 1; j < set->n; ++j) {
+ int bound, neg;
+ isl_int *ineq_j;
+ entry = isl_hash_table_find(hull->ctx, data->p[j].table,
+ c_hash, has_ineq, &v, 0);
+ if (entry) {
+ ineq_j = entry->data;
+ neg = isl_seq_is_neg(ineq_j + 1,
+ hull->ineq[k] + 1, v.len);
+ if (neg)
+ isl_int_neg(ineq_j[0], ineq_j[0]);
+ if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
+ isl_int_set(hull->ineq[k][0], ineq_j[0]);
+ if (neg)
+ isl_int_neg(ineq_j[0], ineq_j[0]);
+ continue;
+ }
+ bound = is_bound(data, set, j, hull->ineq[k], shift);
+ if (bound < 0)
+ goto error;
+ if (!bound)
+ break;
+ }
+ if (j < set->n) {
+ isl_basic_set_free_inequality(hull, 1);
+ return hull;
+ }
+
+ entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
+ has_ineq, &v, 1);
+ if (!entry)
+ goto error;
+ entry->data = hull->ineq[k];
+
+ return hull;
+error:
+ isl_basic_set_free(hull);
+ return NULL;
+}
+
+/* Check if any inequality from basic set "i" is or can be relaxed to
+ * become a bound on the whole set. If so, add the (relaxed) inequality
+ * to "hull". Relaxation is only allowed if "shift" is set.
+ */
+static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
+ struct sh_data *data, struct isl_set *set, int i, int shift)
+{
+ int j, k;
+ unsigned dim = isl_basic_set_total_dim(bset);
+
+ for (j = 0; j < set->p[i]->n_eq; ++j) {
+ for (k = 0; k < 2; ++k) {
+ isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
+ bset = add_bound(bset, data, set, i, set->p[i]->eq[j],
+ shift);
+ }
+ }
+ for (j = 0; j < set->p[i]->n_ineq; ++j)
+ bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift);
+ return bset;
+}
+
+/* Compute a superset of the convex hull of set that is described
+ * by only (translates of) the constraints in the constituents of set.
+ * Translation is only allowed if "shift" is set.
+ */
+static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set,
+ int shift)
+{
+ struct sh_data *data = NULL;
+ struct isl_basic_set *hull = NULL;
+ unsigned n_ineq;
+ int i;
+
+ if (!set)
+ return NULL;
+
+ n_ineq = 0;
+ for (i = 0; i < set->n; ++i) {
+ if (!set->p[i])
+ goto error;
+ n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
+ }
+
+ hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
+ if (!hull)
+ goto error;
+
+ data = sh_data_alloc(set, n_ineq);
+ if (!data)
+ goto error;
+
+ for (i = 0; i < set->n; ++i)
+ hull = add_bounds(hull, data, set, i, shift);
+
+ sh_data_free(data);
+ isl_set_free(set);
+
+ return hull;
+error:
+ sh_data_free(data);
+ isl_basic_set_free(hull);
+ isl_set_free(set);
+ return NULL;
+}
+
+/* Compute a superset of the convex hull of map that is described
+ * by only (translates of) the constraints in the constituents of map.
+ * Translation is only allowed if "shift" is set.
+ */
+static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map,
+ int shift)
+{
+ struct isl_set *set = NULL;
+ struct isl_basic_map *model = NULL;
+ struct isl_basic_map *hull;
+ struct isl_basic_map *affine_hull;
+ struct isl_basic_set *bset = NULL;
+
+ if (!map)
+ return NULL;
+ if (map->n == 0) {
+ hull = isl_basic_map_empty_like_map(map);
+ isl_map_free(map);
+ return hull;
+ }
+ if (map->n == 1) {
+ hull = isl_basic_map_copy(map->p[0]);
+ isl_map_free(map);
+ return hull;
+ }
+
+ map = isl_map_detect_equalities(map);
+ affine_hull = isl_map_affine_hull(isl_map_copy(map));
+ map = isl_map_align_divs(map);
+ model = map ? isl_basic_map_copy(map->p[0]) : NULL;
+
+ set = isl_map_underlying_set(map);
+
+ bset = uset_simple_hull(set, shift);
+
+ hull = isl_basic_map_overlying_set(bset, model);
+
+ hull = isl_basic_map_intersect(hull, affine_hull);
+ hull = isl_basic_map_remove_redundancies(hull);
+
+ if (!hull)
+ return NULL;
+ ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
+ ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
+
+ hull = isl_basic_map_finalize(hull);
+
+ return hull;
+}
+
+/* Compute a superset of the convex hull of map that is described
+ * by only translates of the constraints in the constituents of map.
+ */
+__isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map)
+{
+ return map_simple_hull(map, 1);
+}
+
+struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
+{
+ return (struct isl_basic_set *)
+ isl_map_simple_hull((struct isl_map *)set);
+}
+
+/* Compute a superset of the convex hull of map that is described
+ * by only the constraints in the constituents of map.
+ */
+__isl_give isl_basic_map *isl_map_unshifted_simple_hull(
+ __isl_take isl_map *map)
+{
+ return map_simple_hull(map, 0);
+}
+
+__isl_give isl_basic_set *isl_set_unshifted_simple_hull(
+ __isl_take isl_set *set)
+{
+ return isl_map_unshifted_simple_hull(set);
+}
+
+/* Check if "ineq" is a bound on "set" and, if so, add it to "hull".
+ *
+ * For each basic set in "set", we first check if the basic set
+ * contains a translate of "ineq". If this translate is more relaxed,
+ * then we assume that "ineq" is not a bound on this basic set.
+ * Otherwise, we know that it is a bound.
+ * If the basic set does not contain a translate of "ineq", then
+ * we call is_bound to perform the test.
+ */
+static __isl_give isl_basic_set *add_bound_from_constraint(
+ __isl_take isl_basic_set *hull, struct sh_data *data,
+ __isl_keep isl_set *set, isl_int *ineq)
+{
+ int i, k;
+ isl_ctx *ctx;
+ uint32_t c_hash;
+ struct ineq_cmp_data v;
+
+ if (!hull || !set)
+ return isl_basic_set_free(hull);
+
+ v.len = isl_basic_set_total_dim(hull);
+ v.p = ineq;
+ c_hash = isl_seq_get_hash(ineq + 1, v.len);
+
+ ctx = isl_basic_set_get_ctx(hull);
+ for (i = 0; i < set->n; ++i) {
+ int bound;
+ struct isl_hash_table_entry *entry;
+
+ entry = isl_hash_table_find(ctx, data->p[i].table,
+ c_hash, &has_ineq, &v, 0);
+ if (entry) {
+ isl_int *ineq_i = entry->data;
+ int neg, more_relaxed;
+
+ neg = isl_seq_is_neg(ineq_i + 1, ineq + 1, v.len);
+ if (neg)
+ isl_int_neg(ineq_i[0], ineq_i[0]);
+ more_relaxed = isl_int_gt(ineq_i[0], ineq[0]);
+ if (neg)
+ isl_int_neg(ineq_i[0], ineq_i[0]);
+ if (more_relaxed)
+ break;
+ else
+ continue;
+ }
+ bound = is_bound(data, set, i, ineq, 0);
+ if (bound < 0)
+ return isl_basic_set_free(hull);
+ if (!bound)
+ break;
+ }
+ if (i < set->n)
+ return hull;
+
+ k = isl_basic_set_alloc_inequality(hull);
+ if (k < 0)
+ return isl_basic_set_free(hull);
+ isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
+
+ return hull;
+}
+
+/* Compute a superset of the convex hull of "set" that is described
+ * by only some of the "n_ineq" constraints in the list "ineq", where "set"
+ * has no parameters or integer divisions.
+ *
+ * The inequalities in "ineq" are assumed to have been sorted such
+ * that constraints with the same linear part appear together and
+ * that among constraints with the same linear part, those with
+ * smaller constant term appear first.
+ *
+ * We reuse the same data structure that is used by uset_simple_hull,
+ * but we do not need the hull table since we will not consider the
+ * same constraint more than once. We therefore allocate it with zero size.
+ *
+ * We run through the constraints and try to add them one by one,
+ * skipping identical constraints. If we have added a constraint and
+ * the next constraint is a more relaxed translate, then we skip this
+ * next constraint as well.
+ */
+static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints(
+ __isl_take isl_set *set, int n_ineq, isl_int **ineq)
+{
+ int i;
+ int last_added = 0;
+ struct sh_data *data = NULL;
+ isl_basic_set *hull = NULL;
+ unsigned dim;
+
+ hull = isl_basic_set_alloc_space(isl_set_get_space(set), 0, 0, n_ineq);
+ if (!hull)
+ goto error;
+
+ data = sh_data_alloc(set, 0);
+ if (!data)
+ goto error;
+
+ dim = isl_set_dim(set, isl_dim_set);
+ for (i = 0; i < n_ineq; ++i) {
+ int hull_n_ineq = hull->n_ineq;
+ int parallel;
+
+ parallel = i > 0 && isl_seq_eq(ineq[i - 1] + 1, ineq[i] + 1,
+ dim);
+ if (parallel &&
+ (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0])))
+ continue;
+ hull = add_bound_from_constraint(hull, data, set, ineq[i]);
+ if (!hull)
+ goto error;
+ last_added = hull->n_ineq > hull_n_ineq;
+ }
+
+ sh_data_free(data);
+ isl_set_free(set);
+ return hull;
+error:
+ sh_data_free(data);
+ isl_set_free(set);
+ isl_basic_set_free(hull);
+ return NULL;
+}
+
+/* Collect pointers to all the inequalities in the elements of "list"
+ * in "ineq". For equalities, store both a pointer to the equality and
+ * a pointer to its opposite, which is first copied to "mat".
+ * "ineq" and "mat" are assumed to have been preallocated to the right size
+ * (the number of inequalities + 2 times the number of equalites and
+ * the number of equalities, respectively).
+ */
+static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat,
+ __isl_keep isl_basic_set_list *list, isl_int **ineq)
+{
+ int i, j, n, n_eq, n_ineq;
+
+ if (!mat)
+ return NULL;
+
+ n_eq = 0;
+ n_ineq = 0;
+ n = isl_basic_set_list_n_basic_set(list);
+ for (i = 0; i < n; ++i) {
+ isl_basic_set *bset;
+ bset = isl_basic_set_list_get_basic_set(list, i);
+ if (!bset)
+ return isl_mat_free(mat);
+ for (j = 0; j < bset->n_eq; ++j) {
+ ineq[n_ineq++] = mat->row[n_eq];
+ ineq[n_ineq++] = bset->eq[j];
+ isl_seq_neg(mat->row[n_eq++], bset->eq[j], mat->n_col);
+ }
+ for (j = 0; j < bset->n_ineq; ++j)
+ ineq[n_ineq++] = bset->ineq[j];
+ isl_basic_set_free(bset);
+ }
+
+ return mat;
+}
+
+/* Comparison routine for use as an isl_sort callback.
+ *
+ * Constraints with the same linear part are sorted together and
+ * among constraints with the same linear part, those with smaller
+ * constant term are sorted first.
+ */
+static int cmp_ineq(const void *a, const void *b, void *arg)
+{
+ unsigned dim = *(unsigned *) arg;
+ isl_int * const *ineq1 = a;
+ isl_int * const *ineq2 = b;
+ int cmp;
+
+ cmp = isl_seq_cmp((*ineq1) + 1, (*ineq2) + 1, dim);
+ if (cmp != 0)
+ return cmp;
+ return isl_int_cmp((*ineq1)[0], (*ineq2)[0]);
+}
+
+/* Compute a superset of the convex hull of "set" that is described
+ * by only constraints in the elements of "list", where "set" has
+ * no parameters or integer divisions.
+ *
+ * We collect all the constraints in those elements and then
+ * sort the constraints such that constraints with the same linear part
+ * are sorted together and that those with smaller constant term are
+ * sorted first.
+ */
+static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list(
+ __isl_take isl_set *set, __isl_take isl_basic_set_list *list)
+{
+ int i, n, n_eq, n_ineq;
+ unsigned dim;
+ isl_ctx *ctx;
+ isl_mat *mat = NULL;
+ isl_int **ineq = NULL;
+ isl_basic_set *hull;
+
+ if (!set)
+ goto error;
+ ctx = isl_set_get_ctx(set);
+
+ n_eq = 0;
+ n_ineq = 0;
+ n = isl_basic_set_list_n_basic_set(list);
+ for (i = 0; i < n; ++i) {
+ isl_basic_set *bset;
+ bset = isl_basic_set_list_get_basic_set(list, i);
+ if (!bset)
+ goto error;
+ n_eq += bset->n_eq;
+ n_ineq += 2 * bset->n_eq + bset->n_ineq;
+ isl_basic_set_free(bset);
+ }
+
+ ineq = isl_alloc_array(ctx, isl_int *, n_ineq);
+ if (n_ineq > 0 && !ineq)
+ goto error;
+
+ dim = isl_set_dim(set, isl_dim_set);
+ mat = isl_mat_alloc(ctx, n_eq, 1 + dim);
+ mat = collect_inequalities(mat, list, ineq);
+ if (!mat)
+ goto error;
+
+ if (isl_sort(ineq, n_ineq, sizeof(ineq[0]), &cmp_ineq, &dim) < 0)
+ goto error;
+
+ hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq);
+
+ isl_mat_free(mat);
+ free(ineq);
+ isl_basic_set_list_free(list);
+ return hull;
+error:
+ isl_mat_free(mat);
+ free(ineq);
+ isl_set_free(set);
+ isl_basic_set_list_free(list);
+ return NULL;
+}
+
+/* Compute a superset of the convex hull of "set" that is described
+ * by only constraints in the elements of "list".
+ *
+ * If the list is empty, then we can only describe the universe set.
+ * If the input set is empty, then all constraints are valid, so
+ * we return the intersection of the elements in "list".
+ *
+ * Otherwise, we align all divs and temporarily treat them
+ * as regular variables, computing the unshifted simple hull in
+ * uset_unshifted_simple_hull_from_basic_set_list.
+ */
+static __isl_give isl_basic_set *set_unshifted_simple_hull_from_basic_set_list(
+ __isl_take isl_set *set, __isl_take isl_basic_set_list *list)
+{
+ isl_basic_set *model;
+ isl_basic_set *hull;
+
+ if (!set || !list)
+ goto error;
+
+ if (isl_basic_set_list_n_basic_set(list) == 0) {
+ isl_space *space;
+
+ space = isl_set_get_space(set);
+ isl_set_free(set);
+ isl_basic_set_list_free(list);
+ return isl_basic_set_universe(space);
+ }
+ if (isl_set_plain_is_empty(set)) {
+ isl_set_free(set);
+ return isl_basic_set_list_intersect(list);
+ }
+
+ set = isl_set_align_divs_to_basic_set_list(set, list);
+ if (!set)
+ goto error;
+ list = isl_basic_set_list_align_divs_to_basic_set(list, set->p[0]);
+
+ model = isl_basic_set_list_get_basic_set(list, 0);
+
+ set = isl_set_to_underlying_set(set);
+ list = isl_basic_set_list_underlying_set(list);
+
+ hull = uset_unshifted_simple_hull_from_basic_set_list(set, list);
+ hull = isl_basic_map_overlying_set(hull, model);
+
+ return hull;
+error:
+ isl_set_free(set);
+ isl_basic_set_list_free(list);
+ return NULL;
+}
+
+/* Return a sequence of the basic sets that make up the sets in "list".
+ */
+static __isl_give isl_basic_set_list *collect_basic_sets(
+ __isl_take isl_set_list *list)
+{
+ int i, n;
+ isl_ctx *ctx;
+ isl_basic_set_list *bset_list;
+
+ if (!list)
+ return NULL;
+ n = isl_set_list_n_set(list);
+ ctx = isl_set_list_get_ctx(list);
+ bset_list = isl_basic_set_list_alloc(ctx, 0);
+
+ for (i = 0; i < n; ++i) {
+ isl_set *set;
+ isl_basic_set_list *list_i;
+
+ set = isl_set_list_get_set(list, i);
+ set = isl_set_compute_divs(set);
+ list_i = isl_set_get_basic_set_list(set);
+ isl_set_free(set);
+ bset_list = isl_basic_set_list_concat(bset_list, list_i);
+ }
+
+ isl_set_list_free(list);
+ return bset_list;
+}
+
+/* Compute a superset of the convex hull of "set" that is described
+ * by only constraints in the elements of "list".
+ *
+ * If "set" is the universe, then the convex hull (and therefore
+ * any superset of the convexhull) is the universe as well.
+ *
+ * Otherwise, we collect all the basic sets in the set list and
+ * continue with set_unshifted_simple_hull_from_basic_set_list.
+ */
+__isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list(
+ __isl_take isl_set *set, __isl_take isl_set_list *list)
+{
+ isl_basic_set_list *bset_list;
+ int is_universe;
+
+ is_universe = isl_set_plain_is_universe(set);
+ if (is_universe < 0)
+ set = isl_set_free(set);
+ if (is_universe < 0 || is_universe) {
+ isl_set_list_free(list);
+ return isl_set_unshifted_simple_hull(set);
+ }
+
+ bset_list = collect_basic_sets(list);
+ return set_unshifted_simple_hull_from_basic_set_list(set, bset_list);
+}
+
+/* Given a set "set", return parametric bounds on the dimension "dim".
+ */
+static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
+{
+ unsigned set_dim = isl_set_dim(set, isl_dim_set);
+ set = isl_set_copy(set);
+ set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
+ set = isl_set_eliminate_dims(set, 0, dim);
+ return isl_set_convex_hull(set);
+}
+
+/* Computes a "simple hull" and then check if each dimension in the
+ * resulting hull is bounded by a symbolic constant. If not, the
+ * hull is intersected with the corresponding bounds on the whole set.
+ */
+struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
+{
+ int i, j;
+ struct isl_basic_set *hull;
+ unsigned nparam, left;
+ int removed_divs = 0;
+
+ hull = isl_set_simple_hull(isl_set_copy(set));
+ if (!hull)
+ goto error;
+
+ nparam = isl_basic_set_dim(hull, isl_dim_param);
+ for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
+ int lower = 0, upper = 0;
+ struct isl_basic_set *bounds;
+
+ left = isl_basic_set_total_dim(hull) - nparam - i - 1;
+ for (j = 0; j < hull->n_eq; ++j) {
+ if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
+ continue;
+ if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
+ left) == -1)
+ break;
+ }
+ if (j < hull->n_eq)
+ continue;
+
+ for (j = 0; j < hull->n_ineq; ++j) {
+ if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
+ continue;
+ if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
+ left) != -1 ||
+ isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
+ i) != -1)
+ continue;
+ if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
+ lower = 1;
+ else
+ upper = 1;
+ if (lower && upper)
+ break;
+ }
+
+ if (lower && upper)
+ continue;
+
+ if (!removed_divs) {
+ set = isl_set_remove_divs(set);
+ if (!set)
+ goto error;
+ removed_divs = 1;
+ }
+ bounds = set_bounds(set, i);
+ hull = isl_basic_set_intersect(hull, bounds);
+ if (!hull)
+ goto error;
+ }
+
+ isl_set_free(set);
+ return hull;
+error:
+ isl_set_free(set);
+ return NULL;
+}
OpenPOWER on IntegriCloud