diff options
Diffstat (limited to 'polly/lib/CodeGeneration.cpp')
| -rw-r--r-- | polly/lib/CodeGeneration.cpp | 1497 |
1 files changed, 1497 insertions, 0 deletions
diff --git a/polly/lib/CodeGeneration.cpp b/polly/lib/CodeGeneration.cpp new file mode 100644 index 00000000000..c4e524fb4b9 --- /dev/null +++ b/polly/lib/CodeGeneration.cpp @@ -0,0 +1,1497 @@ +//===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The CodeGeneration pass takes a Scop created by ScopInfo and translates it +// back to LLVM-IR using Cloog. +// +// The Scop describes the high level memory behaviour of a control flow region. +// Transformation passes can update the schedule (execution order) of statements +// in the Scop. Cloog is used to generate an abstract syntax tree (clast) that +// reflects the updated execution order. This clast is used to create new +// LLVM-IR that is computational equivalent to the original control flow region, +// but executes its code in the new execution order defined by the changed +// scattering. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "polly-codegen" + +#include "polly/LinkAllPasses.h" +#include "polly/Support/GICHelper.h" +#include "polly/Support/ScopHelper.h" +#include "polly/Cloog.h" +#include "polly/Dependences.h" +#include "polly/ScopInfo.h" +#include "polly/TempScopInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Module.h" +#include "llvm/ADT/SetVector.h" + +#define CLOOG_INT_GMP 1 +#include "cloog/cloog.h" +#include "cloog/isl/cloog.h" + +#include <vector> +#include <utility> + +using namespace polly; +using namespace llvm; + +struct isl_set; + +namespace polly { + +static cl::opt<bool> +Vector("enable-polly-vector", + cl::desc("Enable polly vector code generation"), cl::Hidden, + cl::value_desc("Vector code generation enabled if true"), + cl::init(false)); + +static cl::opt<bool> +OpenMP("enable-polly-openmp", + cl::desc("Generate OpenMP parallel code"), cl::Hidden, + cl::value_desc("OpenMP code generation enabled if true"), + cl::init(false)); + +static cl::opt<bool> +AtLeastOnce("enable-polly-atLeastOnce", + cl::desc("Give polly the hint, that every loop is executed at least" + "once"), cl::Hidden, + cl::value_desc("OpenMP code generation enabled if true"), + cl::init(false)); + +static cl::opt<bool> +Aligned("enable-polly-aligned", + cl::desc("Assumed aligned memory accesses."), cl::Hidden, + cl::value_desc("OpenMP code generation enabled if true"), + cl::init(false)); + +static cl::opt<std::string> +CodegenOnly("polly-codegen-only", + cl::desc("Codegen only this function"), cl::Hidden, + cl::value_desc("The function name to codegen"), + cl::ValueRequired, cl::init("")); + +typedef DenseMap<const Value*, Value*> ValueMapT; +typedef DenseMap<const char*, Value*> CharMapT; +typedef std::vector<ValueMapT> VectorValueMapT; + +// Create a new loop. +// +// @param Builder The builder used to create the loop. It also defines the +// place where to create the loop. +// @param UB The upper bound of the loop iv. +// @param Stride The number by which the loop iv is incremented after every +// iteration. +static void createLoop(IRBuilder<> *Builder, Value *LB, Value *UB, APInt Stride, + PHINode*& IV, BasicBlock*& AfterBB, Value*& IncrementedIV, + DominatorTree *DT) { + Function *F = Builder->GetInsertBlock()->getParent(); + LLVMContext &Context = F->getContext(); + + BasicBlock *PreheaderBB = Builder->GetInsertBlock(); + BasicBlock *HeaderBB = BasicBlock::Create(Context, "polly.loop_header", F); + BasicBlock *BodyBB = BasicBlock::Create(Context, "polly.loop_body", F); + AfterBB = BasicBlock::Create(Context, "polly.after_loop", F); + + Builder->CreateBr(HeaderBB); + DT->addNewBlock(HeaderBB, PreheaderBB); + + Builder->SetInsertPoint(BodyBB); + + Builder->SetInsertPoint(HeaderBB); + + // Use the type of upper and lower bound. + assert(LB->getType() == UB->getType() + && "Different types for upper and lower bound."); + + const IntegerType *LoopIVType = dyn_cast<IntegerType>(UB->getType()); + assert(LoopIVType && "UB is not integer?"); + + // IV + IV = Builder->CreatePHI(LoopIVType, 2, "polly.loopiv"); + IV->addIncoming(LB, PreheaderBB); + + // IV increment. + Value *StrideValue = ConstantInt::get(LoopIVType, + Stride.zext(LoopIVType->getBitWidth())); + IncrementedIV = Builder->CreateAdd(IV, StrideValue, "polly.next_loopiv"); + + // Exit condition. + if (AtLeastOnce) { // At least on iteration. + UB = Builder->CreateAdd(UB, Builder->getInt64(1)); + Value *CMP = Builder->CreateICmpEQ(IV, UB); + Builder->CreateCondBr(CMP, AfterBB, BodyBB); + } else { // Maybe not executed at all. + Value *CMP = Builder->CreateICmpSLE(IV, UB); + Builder->CreateCondBr(CMP, BodyBB, AfterBB); + } + DT->addNewBlock(BodyBB, HeaderBB); + DT->addNewBlock(AfterBB, HeaderBB); + + Builder->SetInsertPoint(BodyBB); +} + +class BlockGenerator { + IRBuilder<> &Builder; + ValueMapT &VMap; + VectorValueMapT &ValueMaps; + Scop &S; + ScopStmt &statement; + isl_set *scatteringDomain; + +public: + BlockGenerator(IRBuilder<> &B, ValueMapT &vmap, VectorValueMapT &vmaps, + ScopStmt &Stmt, isl_set *domain) + : Builder(B), VMap(vmap), ValueMaps(vmaps), S(*Stmt.getParent()), + statement(Stmt), scatteringDomain(domain) {} + + const Region &getRegion() { + return S.getRegion(); + } + + Value* makeVectorOperand(Value *operand, int vectorWidth) { + if (operand->getType()->isVectorTy()) + return operand; + + VectorType *vectorType = VectorType::get(operand->getType(), vectorWidth); + Value *vector = UndefValue::get(vectorType); + vector = Builder.CreateInsertElement(vector, operand, Builder.getInt32(0)); + + std::vector<Constant*> splat; + + for (int i = 0; i < vectorWidth; i++) + splat.push_back (Builder.getInt32(0)); + + Constant *splatVector = ConstantVector::get(splat); + + return Builder.CreateShuffleVector(vector, vector, splatVector); + } + + Value* getOperand(const Value *OldOperand, ValueMapT &BBMap, + ValueMapT *VectorMap = 0) { + const Instruction *OpInst = dyn_cast<Instruction>(OldOperand); + + if (!OpInst) + return const_cast<Value*>(OldOperand); + + if (VectorMap && VectorMap->count(OldOperand)) + return (*VectorMap)[OldOperand]; + + // IVS and Parameters. + if (VMap.count(OldOperand)) { + Value *NewOperand = VMap[OldOperand]; + + // Insert a cast if types are different + if (OldOperand->getType()->getScalarSizeInBits() + < NewOperand->getType()->getScalarSizeInBits()) + NewOperand = Builder.CreateTruncOrBitCast(NewOperand, + OldOperand->getType()); + + return NewOperand; + } + + // Instructions calculated in the current BB. + if (BBMap.count(OldOperand)) { + return BBMap[OldOperand]; + } + + // Ignore instructions that are referencing ops in the old BB. These + // instructions are unused. They where replace by new ones during + // createIndependentBlocks(). + if (getRegion().contains(OpInst->getParent())) + return NULL; + + return const_cast<Value*>(OldOperand); + } + + const Type *getVectorPtrTy(const Value *V, int vectorWidth) { + const PointerType *pointerType = dyn_cast<PointerType>(V->getType()); + assert(pointerType && "PointerType expected"); + + const Type *scalarType = pointerType->getElementType(); + VectorType *vectorType = VectorType::get(scalarType, vectorWidth); + + return PointerType::getUnqual(vectorType); + } + + /// @brief Load a vector from a set of adjacent scalars + /// + /// In case a set of scalars is known to be next to each other in memory, + /// create a vector load that loads those scalars + /// + /// %vector_ptr= bitcast double* %p to <4 x double>* + /// %vec_full = load <4 x double>* %vector_ptr + /// + Value *generateStrideOneLoad(const LoadInst *load, ValueMapT &BBMap, + int size) { + const Value *pointer = load->getPointerOperand(); + const Type *vectorPtrType = getVectorPtrTy(pointer, size); + Value *newPointer = getOperand(pointer, BBMap); + Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, + "vector_ptr"); + LoadInst *VecLoad = Builder.CreateLoad(VectorPtr, + load->getNameStr() + + "_p_vec_full"); + if (!Aligned) + VecLoad->setAlignment(8); + + return VecLoad; + } + + /// @brief Load a vector initialized from a single scalar in memory + /// + /// In case all elements of a vector are initialized to the same + /// scalar value, this value is loaded and shuffeled into all elements + /// of the vector. + /// + /// %splat_one = load <1 x double>* %p + /// %splat = shufflevector <1 x double> %splat_one, <1 x + /// double> %splat_one, <4 x i32> zeroinitializer + /// + Value *generateStrideZeroLoad(const LoadInst *load, ValueMapT &BBMap, + int size) { + const Value *pointer = load->getPointerOperand(); + const Type *vectorPtrType = getVectorPtrTy(pointer, 1); + Value *newPointer = getOperand(pointer, BBMap); + Value *vectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, + load->getNameStr() + "_p_vec_p"); + LoadInst *scalarLoad= Builder.CreateLoad(vectorPtr, + load->getNameStr() + "_p_splat_one"); + + if (!Aligned) + scalarLoad->setAlignment(8); + + std::vector<Constant*> splat; + + for (int i = 0; i < size; i++) + splat.push_back (Builder.getInt32(0)); + + Constant *splatVector = ConstantVector::get(splat); + + Value *vectorLoad = Builder.CreateShuffleVector(scalarLoad, scalarLoad, + splatVector, + load->getNameStr() + + "_p_splat"); + return vectorLoad; + } + + /// @Load a vector from scalars distributed in memory + /// + /// In case some scalars a distributed randomly in memory. Create a vector + /// by loading each scalar and by inserting one after the other into the + /// vector. + /// + /// %scalar_1= load double* %p_1 + /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 + /// %scalar 2 = load double* %p_2 + /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 + /// + Value *generateUnknownStrideLoad(const LoadInst *load, + VectorValueMapT &scalarMaps, + int size) { + const Value *pointer = load->getPointerOperand(); + VectorType *vectorType = VectorType::get( + dyn_cast<PointerType>(pointer->getType())->getElementType(), size); + + Value *vector = UndefValue::get(vectorType); + + for (int i = 0; i < size; i++) { + Value *newPointer = getOperand(pointer, scalarMaps[i]); + Value *scalarLoad = Builder.CreateLoad(newPointer, + load->getNameStr() + "_p_scalar_"); + vector = Builder.CreateInsertElement(vector, scalarLoad, + Builder.getInt32(i), + load->getNameStr() + "_p_vec_"); + } + + return vector; + } + + Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap) { + const Value *pointer = load->getPointerOperand(); + Value *newPointer = getOperand(pointer, BBMap); + Value *scalarLoad = Builder.CreateLoad(newPointer, + load->getNameStr() + "_p_scalar_"); + return scalarLoad; + } + + /// @brief Load a value (or several values as a vector) from memory. + void generateLoad(const LoadInst *load, ValueMapT &vectorMap, + VectorValueMapT &scalarMaps, int vectorWidth) { + + if (scalarMaps.size() == 1) { + scalarMaps[0][load] = generateScalarLoad(load, scalarMaps[0]); + return; + } + + Value *newLoad; + + MemoryAccess &Access = statement.getAccessFor(load); + + assert(scatteringDomain && "No scattering domain available"); + + if (Access.isStrideZero(scatteringDomain)) + newLoad = generateStrideZeroLoad(load, scalarMaps[0], vectorWidth); + else if (Access.isStrideOne(scatteringDomain)) + newLoad = generateStrideOneLoad(load, scalarMaps[0], vectorWidth); + else + newLoad = generateUnknownStrideLoad(load, scalarMaps, vectorWidth); + + vectorMap[load] = newLoad; + } + + void copyInstruction(const Instruction *Inst, ValueMapT &BBMap, + ValueMapT &vectorMap, VectorValueMapT &scalarMaps, + int vectorDimension, int vectorWidth) { + // If this instruction is already in the vectorMap, a vector instruction + // was already issued, that calculates the values of all dimensions. No + // need to create any more instructions. + if (vectorMap.count(Inst)) + return; + + // Terminator instructions control the control flow. They are explicitally + // expressed in the clast and do not need to be copied. + if (Inst->isTerminator()) + return; + + if (const LoadInst *load = dyn_cast<LoadInst>(Inst)) { + generateLoad(load, vectorMap, scalarMaps, vectorWidth); + return; + } + + if (const BinaryOperator *binaryInst = dyn_cast<BinaryOperator>(Inst)) { + Value *opZero = Inst->getOperand(0); + Value *opOne = Inst->getOperand(1); + + // This is an old instruction that can be ignored. + if (!opZero && !opOne) + return; + + bool isVectorOp = vectorMap.count(opZero) || vectorMap.count(opOne); + + if (isVectorOp && vectorDimension > 0) + return; + + Value *newOpZero, *newOpOne; + newOpZero = getOperand(opZero, BBMap, &vectorMap); + newOpOne = getOperand(opOne, BBMap, &vectorMap); + + + std::string name; + if (isVectorOp) { + newOpZero = makeVectorOperand(newOpZero, vectorWidth); + newOpOne = makeVectorOperand(newOpOne, vectorWidth); + name = Inst->getNameStr() + "p_vec"; + } else + name = Inst->getNameStr() + "p_sca"; + + Value *newInst = Builder.CreateBinOp(binaryInst->getOpcode(), newOpZero, + newOpOne, name); + if (isVectorOp) + vectorMap[Inst] = newInst; + else + BBMap[Inst] = newInst; + + return; + } + + if (const StoreInst *store = dyn_cast<StoreInst>(Inst)) { + if (vectorMap.count(store->getValueOperand()) > 0) { + + // We only need to generate one store if we are in vector mode. + if (vectorDimension > 0) + return; + + MemoryAccess &Access = statement.getAccessFor(store); + + assert(scatteringDomain && "No scattering domain available"); + + const Value *pointer = store->getPointerOperand(); + Value *vector = getOperand(store->getValueOperand(), BBMap, &vectorMap); + + if (Access.isStrideOne(scatteringDomain)) { + const Type *vectorPtrType = getVectorPtrTy(pointer, vectorWidth); + Value *newPointer = getOperand(pointer, BBMap, &vectorMap); + + Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, + "vector_ptr"); + StoreInst *Store = Builder.CreateStore(vector, VectorPtr); + + if (!Aligned) + Store->setAlignment(8); + } else { + for (unsigned i = 0; i < scalarMaps.size(); i++) { + Value *scalar = Builder.CreateExtractElement(vector, + Builder.getInt32(i)); + Value *newPointer = getOperand(pointer, scalarMaps[i]); + Builder.CreateStore(scalar, newPointer); + } + } + + return; + } + } + + Instruction *NewInst = Inst->clone(); + + // Copy the operands in temporary vector, as an in place update + // fails if an instruction is referencing the same operand twice. + std::vector<Value*> Operands(NewInst->op_begin(), NewInst->op_end()); + + // Replace old operands with the new ones. + for (std::vector<Value*>::iterator UI = Operands.begin(), + UE = Operands.end(); UI != UE; ++UI) { + Value *newOperand = getOperand(*UI, BBMap); + + if (!newOperand) { + assert(!isa<StoreInst>(NewInst) + && "Store instructions are always needed!"); + delete NewInst; + return; + } + + NewInst->replaceUsesOfWith(*UI, newOperand); + } + + Builder.Insert(NewInst); + BBMap[Inst] = NewInst; + + if (!NewInst->getType()->isVoidTy()) + NewInst->setName("p_" + Inst->getName()); + } + + int getVectorSize() { + return ValueMaps.size(); + } + + bool isVectorBlock() { + return getVectorSize() > 1; + } + + // Insert a copy of a basic block in the newly generated code. + // + // @param Builder The builder used to insert the code. It also specifies + // where to insert the code. + // @param BB The basic block to copy + // @param VMap A map returning for any old value its new equivalent. This + // is used to update the operands of the statements. + // For new statements a relation old->new is inserted in this + // map. + void copyBB(BasicBlock *BB, DominatorTree *DT) { + Function *F = Builder.GetInsertBlock()->getParent(); + LLVMContext &Context = F->getContext(); + BasicBlock *CopyBB = BasicBlock::Create(Context, + "polly.stmt_" + BB->getNameStr(), + F); + Builder.CreateBr(CopyBB); + DT->addNewBlock(CopyBB, Builder.GetInsertBlock()); + Builder.SetInsertPoint(CopyBB); + + // Create two maps that store the mapping from the original instructions of + // the old basic block to their copies in the new basic block. Those maps + // are basic block local. + // + // As vector code generation is supported there is one map for scalar values + // and one for vector values. + // + // In case we just do scalar code generation, the vectorMap is not used and + // the scalarMap has just one dimension, which contains the mapping. + // + // In case vector code generation is done, an instruction may either appear + // in the vector map once (as it is calculating >vectorwidth< values at a + // time. Or (if the values are calculated using scalar operations), it + // appears once in every dimension of the scalarMap. + VectorValueMapT scalarBlockMap(getVectorSize()); + ValueMapT vectorBlockMap; + + for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); + II != IE; ++II) + for (int i = 0; i < getVectorSize(); i++) { + if (isVectorBlock()) + VMap = ValueMaps[i]; + + copyInstruction(II, scalarBlockMap[i], vectorBlockMap, + scalarBlockMap, i, getVectorSize()); + } + } +}; + +/// Class to generate LLVM-IR that calculates the value of a clast_expr. +class ClastExpCodeGen { + IRBuilder<> &Builder; + const CharMapT *IVS; + + Value *codegen(const clast_name *e, const Type *Ty) { + CharMapT::const_iterator I = IVS->find(e->name); + + if (I != IVS->end()) + return Builder.CreateSExtOrBitCast(I->second, Ty); + else + llvm_unreachable("Clast name not found"); + } + + Value *codegen(const clast_term *e, const Type *Ty) { + APInt a = APInt_from_MPZ(e->val); + + Value *ConstOne = ConstantInt::get(Builder.getContext(), a); + ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); + + if (e->var) { + Value *var = codegen(e->var, Ty); + return Builder.CreateMul(ConstOne, var); + } + + return ConstOne; + } + + Value *codegen(const clast_binary *e, const Type *Ty) { + Value *LHS = codegen(e->LHS, Ty); + + APInt RHS_AP = APInt_from_MPZ(e->RHS); + + Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); + RHS = Builder.CreateSExtOrBitCast(RHS, Ty); + + switch (e->type) { + case clast_bin_mod: + return Builder.CreateSRem(LHS, RHS); + case clast_bin_fdiv: + { + // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d + Value *One = ConstantInt::get(Builder.getInt1Ty(), 1); + Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0); + One = Builder.CreateZExtOrBitCast(One, Ty); + Zero = Builder.CreateZExtOrBitCast(Zero, Ty); + Value *Sum1 = Builder.CreateSub(LHS, RHS); + Value *Sum2 = Builder.CreateAdd(Sum1, One); + Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); + Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); + return Builder.CreateSDiv(Dividend, RHS); + } + case clast_bin_cdiv: + { + // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d + Value *One = ConstantInt::get(Builder.getInt1Ty(), 1); + Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0); + One = Builder.CreateZExtOrBitCast(One, Ty); + Zero = Builder.CreateZExtOrBitCast(Zero, Ty); + Value *Sum1 = Builder.CreateAdd(LHS, RHS); + Value *Sum2 = Builder.CreateSub(Sum1, One); + Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); + Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); + return Builder.CreateSDiv(Dividend, RHS); + } + case clast_bin_div: + return Builder.CreateSDiv(LHS, RHS); + default: + llvm_unreachable("Unknown clast binary expression type"); + }; + } + + Value *codegen(const clast_reduction *r, const Type *Ty) { + assert(( r->type == clast_red_min + || r->type == clast_red_max + || r->type == clast_red_sum) + && "Clast reduction type not supported"); + Value *old = codegen(r->elts[0], Ty); + + for (int i=1; i < r->n; ++i) { + Value *exprValue = codegen(r->elts[i], Ty); + + switch (r->type) { + case clast_red_min: + { + Value *cmp = Builder.CreateICmpSLT(old, exprValue); + old = Builder.CreateSelect(cmp, old, exprValue); + break; + } + case clast_red_max: + { + Value *cmp = Builder.CreateICmpSGT(old, exprValue); + old = Builder.CreateSelect(cmp, old, exprValue); + break; + } + case clast_red_sum: + old = Builder.CreateAdd(old, exprValue); + break; + default: + llvm_unreachable("Clast unknown reduction type"); + } + } + + return old; + } + +public: + + // A generator for clast expressions. + // + // @param B The IRBuilder that defines where the code to calculate the + // clast expressions should be inserted. + // @param IVMAP A Map that translates strings describing the induction + // variables to the Values* that represent these variables + // on the LLVM side. + ClastExpCodeGen(IRBuilder<> &B, CharMapT *IVMap) : Builder(B), IVS(IVMap) {} + + // Generates code to calculate a given clast expression. + // + // @param e The expression to calculate. + // @return The Value that holds the result. + Value *codegen(const clast_expr *e, const Type *Ty) { + switch(e->type) { + case clast_expr_name: + return codegen((const clast_name *)e, Ty); + case clast_expr_term: + return codegen((const clast_term *)e, Ty); + case clast_expr_bin: + return codegen((const clast_binary *)e, Ty); + case clast_expr_red: + return codegen((const clast_reduction *)e, Ty); + default: + llvm_unreachable("Unknown clast expression!"); + } + } + + // @brief Reset the CharMap. + // + // This function is called to reset the CharMap to new one, while generating + // OpenMP code. + void setIVS(CharMapT *IVSNew) { + IVS = IVSNew; + } + +}; + +class ClastStmtCodeGen { + // The Scop we code generate. + Scop *S; + ScalarEvolution &SE; + + DominatorTree *DT; + Dependences *DP; + TargetData *TD; + + // The Builder specifies the current location to code generate at. + IRBuilder<> &Builder; + + // Map the Values from the old code to their counterparts in the new code. + ValueMapT ValueMap; + + // clastVars maps from the textual representation of a clast variable to its + // current *Value. clast variables are scheduling variables, original + // induction variables or parameters. They are used either in loop bounds or + // to define the statement instance that is executed. + // + // for (s = 0; s < n + 3; ++i) + // for (t = s; t < m; ++j) + // Stmt(i = s + 3 * m, j = t); + // + // {s,t,i,j,n,m} is the set of clast variables in this clast. + CharMapT *clastVars; + + // Codegenerator for clast expressions. + ClastExpCodeGen ExpGen; + + // Do we currently generate parallel code? + bool parallelCodeGeneration; + + std::vector<std::string> parallelLoops; + +public: + + const std::vector<std::string> &getParallelLoops() { + return parallelLoops; + } + + protected: + void codegen(const clast_assignment *a) { + (*clastVars)[a->LHS] = ExpGen.codegen(a->RHS, + TD->getIntPtrType(Builder.getContext())); + } + + void codegen(const clast_assignment *a, ScopStmt *Statement, + unsigned Dimension, int vectorDim, + std::vector<ValueMapT> *VectorVMap = 0) { + Value *RHS = ExpGen.codegen(a->RHS, + TD->getIntPtrType(Builder.getContext())); + + assert(!a->LHS && "Statement assignments do not have left hand side"); + const PHINode *PN; + PN = Statement->getInductionVariableForDimension(Dimension); + const Value *V = PN; + + if (PN->getNumOperands() == 2) + V = *(PN->use_begin()); + + if (VectorVMap) + (*VectorVMap)[vectorDim][V] = RHS; + + ValueMap[V] = RHS; + } + + void codegenSubstitutions(const clast_stmt *Assignment, + ScopStmt *Statement, int vectorDim = 0, + std::vector<ValueMapT> *VectorVMap = 0) { + int Dimension = 0; + + while (Assignment) { + assert(CLAST_STMT_IS_A(Assignment, stmt_ass) + && "Substitions are expected to be assignments"); + codegen((const clast_assignment *)Assignment, Statement, Dimension, + vectorDim, VectorVMap); + Assignment = Assignment->next; + Dimension++; + } + } + + void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, + const char *iterator = NULL, isl_set *scatteringDomain = 0) { + ScopStmt *Statement = (ScopStmt *)u->statement->usr; + BasicBlock *BB = Statement->getBasicBlock(); + + if (u->substitutions) + codegenSubstitutions(u->substitutions, Statement); + + int vectorDimensions = IVS ? IVS->size() : 1; + + VectorValueMapT VectorValueMap(vectorDimensions); + + if (IVS) { + assert (u->substitutions && "Substitutions expected!"); + int i = 0; + for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); + II != IE; ++II) { + (*clastVars)[iterator] = *II; + codegenSubstitutions(u->substitutions, Statement, i, &VectorValueMap); + i++; + } + } + + BlockGenerator Generator(Builder, ValueMap, VectorValueMap, *Statement, + scatteringDomain); + Generator.copyBB(BB, DT); + } + + void codegen(const clast_block *b) { + if (b->body) + codegen(b->body); + } + + /// @brief Create a classical sequential loop. + void codegenForSequential(const clast_for *f, Value *lowerBound = 0, + Value *upperBound = 0) { + APInt Stride = APInt_from_MPZ(f->stride); + PHINode *IV; + Value *IncrementedIV; + BasicBlock *AfterBB; + // The value of lowerbound and upperbound will be supplied, if this + // function is called while generating OpenMP code. Otherwise get + // the values. + assert(((lowerBound && upperBound) || (!lowerBound && !upperBound)) + && "Either give both bounds or none"); + if (lowerBound == 0 || upperBound == 0) { + lowerBound = ExpGen.codegen(f->LB, + TD->getIntPtrType(Builder.getContext())); + upperBound = ExpGen.codegen(f->UB, + TD->getIntPtrType(Builder.getContext())); + } + createLoop(&Builder, lowerBound, upperBound, Stride, IV, AfterBB, + IncrementedIV, DT); + + // Add loop iv to symbols. + (*clastVars)[f->iterator] = IV; + + if (f->body) + codegen(f->body); + + // Loop is finished, so remove its iv from the live symbols. + clastVars->erase(f->iterator); + + BasicBlock *HeaderBB = *pred_begin(AfterBB); + BasicBlock *LastBodyBB = Builder.GetInsertBlock(); + Builder.CreateBr(HeaderBB); + IV->addIncoming(IncrementedIV, LastBodyBB); + Builder.SetInsertPoint(AfterBB); + } + + /// @brief Check if a loop is parallel + /// + /// Detect if a clast_for loop can be executed in parallel. + /// + /// @param f The clast for loop to check. + bool isParallelFor(const clast_for *f) { + isl_set *loopDomain = isl_set_from_cloog_domain(f->domain); + assert(loopDomain && "Cannot access domain of loop"); + + bool isParallel = DP->isParallelDimension(loopDomain, + isl_set_n_dim(loopDomain)); + + if (isParallel) + DEBUG(dbgs() << "Parallel loop with induction variable '" << f->iterator + << "' found\n";); + + return isParallel; + } + + /// @brief Add a new definition of an openmp subfunction. + Function* addOpenMPSubfunction(Module *M) { + Function *F = Builder.GetInsertBlock()->getParent(); + const std::string &Name = F->getNameStr() + ".omp_subfn"; + + std::vector<const Type*> Arguments(1, Builder.getInt8PtrTy()); + FunctionType *FT = FunctionType::get(Builder.getVoidTy(), Arguments, false); + Function *FN = Function::Create(FT, Function::InternalLinkage, Name, M); + + Function::arg_iterator AI = FN->arg_begin(); + AI->setName("omp.userContext"); + + return FN; + } + + /// @brief Add values to the OpenMP structure. + /// + /// Create the subfunction structure and add the values from the list. + Value *addValuesToOpenMPStruct(SetVector<Value*> OMPDataVals, + Function *SubFunction) { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + std::vector<const Type*> structMembers; + + // Create the structure. + for (unsigned i = 0; i < OMPDataVals.size(); i++) + structMembers.push_back(OMPDataVals[i]->getType()); + + const std::string &Name = SubFunction->getNameStr() + ".omp.userContext"; + StructType *structTy = StructType::get(Builder.getContext(), + structMembers); + M->addTypeName(Name, structTy); + + // Store the values into the structure. + Value *structData = Builder.CreateAlloca(structTy, 0, "omp.userContext"); + for (unsigned i = 0; i < OMPDataVals.size(); i++) { + Value *storeAddr = Builder.CreateStructGEP(structData, i); + Builder.CreateStore(OMPDataVals[i], storeAddr); + } + + return structData; + } + + /// @brief Create OpenMP structure values. + /// + /// Create a list of values that has to be stored into the subfuncition + /// structure. + SetVector<Value*> createOpenMPStructValues() { + SetVector<Value*> OMPDataVals; + + // Push the clast variables available in the clastVars. + for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); + I != E; I++) + OMPDataVals.insert(I->second); + + // Push the base addresses of memory references. + for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { + ScopStmt *Stmt = *SI; + for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), + E = Stmt->memacc_end(); I != E; ++I) { + Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); + OMPDataVals.insert((BaseAddr)); + } + } + + return OMPDataVals; + } + + /// @brief Extract the values from the subfunction parameter. + /// + /// Extract the values from the subfunction parameter and update the clast + /// variables to point to the new values. + void extractValuesFromOpenMPStruct(CharMapT *clastVarsOMP, + SetVector<Value*> OMPDataVals, + Value *userContext) { + // Extract the clast variables. + unsigned i = 0; + for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); + I != E; I++) { + Value *loadAddr = Builder.CreateStructGEP(userContext, i); + (*clastVarsOMP)[I->first] = Builder.CreateLoad(loadAddr); + i++; + } + + // Extract the base addresses of memory references. + for (unsigned j = i; j < OMPDataVals.size(); j++) { + Value *loadAddr = Builder.CreateStructGEP(userContext, j); + Value *baseAddr = OMPDataVals[j]; + ValueMap[baseAddr] = Builder.CreateLoad(loadAddr); + } + + } + + /// @brief Add body to the subfunction. + void addOpenMPSubfunctionBody(Function *FN, const clast_for *f, + Value *structData, + SetVector<Value*> OMPDataVals) { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + LLVMContext &Context = FN->getContext(); + const IntegerType *intPtrTy = TD->getIntPtrType(Context); + + // Store the previous basic block. + BasicBlock *PrevBB = Builder.GetInsertBlock(); + + // Create basic blocks. + BasicBlock *HeaderBB = BasicBlock::Create(Context, "omp.setup", FN); + BasicBlock *ExitBB = BasicBlock::Create(Context, "omp.exit", FN); + BasicBlock *checkNextBB = BasicBlock::Create(Context, "omp.checkNext", FN); + BasicBlock *loadIVBoundsBB = BasicBlock::Create(Context, "omp.loadIVBounds", + FN); + + DT->addNewBlock(HeaderBB, PrevBB); + DT->addNewBlock(ExitBB, HeaderBB); + DT->addNewBlock(checkNextBB, HeaderBB); + DT->addNewBlock(loadIVBoundsBB, HeaderBB); + + // Fill up basic block HeaderBB. + Builder.SetInsertPoint(HeaderBB); + Value *lowerBoundPtr = Builder.CreateAlloca(intPtrTy, 0, + "omp.lowerBoundPtr"); + Value *upperBoundPtr = Builder.CreateAlloca(intPtrTy, 0, + "omp.upperBoundPtr"); + Value *userContext = Builder.CreateBitCast(FN->arg_begin(), + structData->getType(), + "omp.userContext"); + + CharMapT clastVarsOMP; + extractValuesFromOpenMPStruct(&clastVarsOMP, OMPDataVals, userContext); + + Builder.CreateBr(checkNextBB); + + // Add code to check if another set of iterations will be executed. + Builder.SetInsertPoint(checkNextBB); + Function *runtimeNextFunction = M->getFunction("GOMP_loop_runtime_next"); + Value *ret1 = Builder.CreateCall2(runtimeNextFunction, + lowerBoundPtr, upperBoundPtr); + Value *hasNextSchedule = Builder.CreateTrunc(ret1, Builder.getInt1Ty(), + "omp.hasNextScheduleBlock"); + Builder.CreateCondBr(hasNextSchedule, loadIVBoundsBB, ExitBB); + + // Add code to to load the iv bounds for this set of iterations. + Builder.SetInsertPoint(loadIVBoundsBB); + Value *lowerBound = Builder.CreateLoad(lowerBoundPtr, "omp.lowerBound"); + Value *upperBound = Builder.CreateLoad(upperBoundPtr, "omp.upperBound"); + + // Subtract one as the upper bound provided by openmp is a < comparison + // whereas the codegenForSequential function creates a <= comparison. + upperBound = Builder.CreateSub(upperBound, ConstantInt::get(intPtrTy, 1), + "omp.upperBoundAdjusted"); + + // Use clastVarsOMP during code generation of the OpenMP subfunction. + CharMapT *oldClastVars = clastVars; + clastVars = &clastVarsOMP; + ExpGen.setIVS(&clastVarsOMP); + + codegenForSequential(f, lowerBound, upperBound); + + // Restore the old clastVars. + clastVars = oldClastVars; + ExpGen.setIVS(oldClastVars); + + Builder.CreateBr(checkNextBB); + + // Add code to terminate this openmp subfunction. + Builder.SetInsertPoint(ExitBB); + Function *endnowaitFunction = M->getFunction("GOMP_loop_end_nowait"); + Builder.CreateCall(endnowaitFunction); + Builder.CreateRetVoid(); + + // Restore the builder back to previous basic block. + Builder.SetInsertPoint(PrevBB); + } + + /// @brief Create an OpenMP parallel for loop. + /// + /// This loop reflects a loop as if it would have been created by an OpenMP + /// statement. + void codegenForOpenMP(const clast_for *f) { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + const IntegerType *intPtrTy = TD->getIntPtrType(Builder.getContext()); + + Function *SubFunction = addOpenMPSubfunction(M); + SetVector<Value*> OMPDataVals = createOpenMPStructValues(); + Value *structData = addValuesToOpenMPStruct(OMPDataVals, SubFunction); + + addOpenMPSubfunctionBody(SubFunction, f, structData, OMPDataVals); + + // Create call for GOMP_parallel_loop_runtime_start. + Value *subfunctionParam = Builder.CreateBitCast(structData, + Builder.getInt8PtrTy(), + "omp_data"); + + Value *numberOfThreads = Builder.getInt32(0); + Value *lowerBound = ExpGen.codegen(f->LB, intPtrTy); + Value *upperBound = ExpGen.codegen(f->UB, intPtrTy); + + // Add one as the upper bound provided by openmp is a < comparison + // whereas the codegenForSequential function creates a <= comparison. + upperBound = Builder.CreateAdd(upperBound, ConstantInt::get(intPtrTy, 1)); + APInt APStride = APInt_from_MPZ(f->stride); + Value *stride = ConstantInt::get(intPtrTy, + APStride.zext(intPtrTy->getBitWidth())); + + SmallVector<Value *, 6> Arguments; + Arguments.push_back(SubFunction); + Arguments.push_back(subfunctionParam); + Arguments.push_back(numberOfThreads); + Arguments.push_back(lowerBound); + Arguments.push_back(upperBound); + Arguments.push_back(stride); + + Function *parallelStartFunction = + M->getFunction("GOMP_parallel_loop_runtime_start"); + Builder.CreateCall(parallelStartFunction, Arguments.begin(), + Arguments.end()); + + // Create call to the subfunction. + Builder.CreateCall(SubFunction, subfunctionParam); + + // Create call for GOMP_parallel_end. + Function *FN = M->getFunction("GOMP_parallel_end"); + Builder.CreateCall(FN); + } + + bool isInnermostLoop(const clast_for *f) { + const clast_stmt *stmt = f->body; + + while (stmt) { + if (!CLAST_STMT_IS_A(stmt, stmt_user)) + return false; + + stmt = stmt->next; + } + + return true; + } + + /// @brief Get the number of loop iterations for this loop. + /// @param f The clast for loop to check. + int getNumberOfIterations(const clast_for *f) { + isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); + isl_set *tmp = isl_set_copy(loopDomain); + + // Calculate a map similar to the identity map, but with the last input + // and output dimension not related. + // [i0, i1, i2, i3] -> [i0, i1, i2, o0] + isl_dim *dim = isl_set_get_dim(loopDomain); + dim = isl_dim_drop_outputs(dim, isl_set_n_dim(loopDomain) - 2, 1); + dim = isl_dim_map_from_set(dim); + isl_map *identity = isl_map_identity(dim); + identity = isl_map_add_dims(identity, isl_dim_in, 1); + identity = isl_map_add_dims(identity, isl_dim_out, 1); + + isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); + map = isl_map_intersect(map, identity); + + isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); + isl_map *lexmin = isl_map_lexmin(isl_map_copy(map)); + isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); + + isl_set *elements = isl_map_range(sub); + + if (!isl_set_is_singleton(elements)) + return -1; + + isl_point *p = isl_set_sample_point(elements); + + isl_int v; + isl_int_init(v); + isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); + int numberIterations = isl_int_get_si(v); + isl_int_clear(v); + + return (numberIterations) / isl_int_get_si(f->stride) + 1; + } + + /// @brief Create vector instructions for this loop. + void codegenForVector(const clast_for *f) { + DEBUG(dbgs() << "Vectorizing loop '" << f->iterator << "'\n";); + int vectorWidth = getNumberOfIterations(f); + + Value *LB = ExpGen.codegen(f->LB, + TD->getIntPtrType(Builder.getContext())); + + APInt Stride = APInt_from_MPZ(f->stride); + const IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); + Stride = Stride.zext(LoopIVType->getBitWidth()); + Value *StrideValue = ConstantInt::get(LoopIVType, Stride); + + std::vector<Value*> IVS(vectorWidth); + IVS[0] = LB; + + for (int i = 1; i < vectorWidth; i++) + IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); + + isl_set *scatteringDomain = isl_set_from_cloog_domain(f->domain); + + // Add loop iv to symbols. + (*clastVars)[f->iterator] = LB; + + const clast_stmt *stmt = f->body; + + while (stmt) { + codegen((const clast_user_stmt *)stmt, &IVS, f->iterator, + scatteringDomain); + stmt = stmt->next; + } + + // Loop is finished, so remove its iv from the live symbols. + clastVars->erase(f->iterator); + } + + void codegen(const clast_for *f) { + if (Vector && isInnermostLoop(f) && isParallelFor(f) + && (-1 != getNumberOfIterations(f)) + && (getNumberOfIterations(f) <= 16)) { + codegenForVector(f); + } else if (OpenMP && !parallelCodeGeneration && isParallelFor(f)) { + parallelCodeGeneration = true; + parallelLoops.push_back(f->iterator); + codegenForOpenMP(f); + parallelCodeGeneration = false; + } else + codegenForSequential(f); + } + + Value *codegen(const clast_equation *eq) { + Value *LHS = ExpGen.codegen(eq->LHS, + TD->getIntPtrType(Builder.getContext())); + Value *RHS = ExpGen.codegen(eq->RHS, + TD->getIntPtrType(Builder.getContext())); + CmpInst::Predicate P; + + if (eq->sign == 0) + P = ICmpInst::ICMP_EQ; + else if (eq->sign > 0) + P = ICmpInst::ICMP_SGE; + else + P = ICmpInst::ICMP_SLE; + + return Builder.CreateICmp(P, LHS, RHS); + } + + void codegen(const clast_guard *g) { + Function *F = Builder.GetInsertBlock()->getParent(); + LLVMContext &Context = F->getContext(); + BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); + BasicBlock *MergeBB = BasicBlock::Create(Context, "polly.merge", F); + DT->addNewBlock(ThenBB, Builder.GetInsertBlock()); + DT->addNewBlock(MergeBB, Builder.GetInsertBlock()); + + Value *Predicate = codegen(&(g->eq[0])); + + for (int i = 1; i < g->n; ++i) { + Value *TmpPredicate = codegen(&(g->eq[i])); + Predicate = Builder.CreateAnd(Predicate, TmpPredicate); + } + + Builder.CreateCondBr(Predicate, ThenBB, MergeBB); + Builder.SetInsertPoint(ThenBB); + + codegen(g->then); + + Builder.CreateBr(MergeBB); + Builder.SetInsertPoint(MergeBB); + } + + void codegen(const clast_stmt *stmt) { + if (CLAST_STMT_IS_A(stmt, stmt_root)) + assert(false && "No second root statement expected"); + else if (CLAST_STMT_IS_A(stmt, stmt_ass)) + codegen((const clast_assignment *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_user)) + codegen((const clast_user_stmt *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_block)) + codegen((const clast_block *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_for)) + codegen((const clast_for *)stmt); + else if (CLAST_STMT_IS_A(stmt, stmt_guard)) + codegen((const clast_guard *)stmt); + + if (stmt->next) + codegen(stmt->next); + } + + void addParameters(const CloogNames *names) { + SCEVExpander Rewriter(SE); + + // Create an instruction that specifies the location where the parameters + // are expanded. + CastInst::CreateIntegerCast(ConstantInt::getTrue(Builder.getContext()), + Builder.getInt16Ty(), false, "insertInst", + Builder.GetInsertBlock()); + + int i = 0; + for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); + PI != PE; ++PI) { + assert(i < names->nb_parameters && "Not enough parameter names"); + + const SCEV *Param = *PI; + const Type *Ty = Param->getType(); + + Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); + Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); + (*clastVars)[names->parameters[i]] = V; + + ++i; + } + } + + public: + void codegen(const clast_root *r) { + clastVars = new CharMapT(); + addParameters(r->names); + ExpGen.setIVS(clastVars); + + parallelCodeGeneration = false; + + const clast_stmt *stmt = (const clast_stmt*) r; + if (stmt->next) + codegen(stmt->next); + + delete clastVars; + } + + ClastStmtCodeGen(Scop *scop, ScalarEvolution &se, DominatorTree *dt, + Dependences *dp, TargetData *td, IRBuilder<> &B) : + S(scop), SE(se), DT(dt), DP(dp), TD(td), Builder(B), ExpGen(Builder, NULL) {} + +}; +} + +namespace { +class CodeGeneration : public ScopPass { + Region *region; + Scop *S; + DominatorTree *DT; + ScalarEvolution *SE; + ScopDetection *SD; + CloogInfo *C; + LoopInfo *LI; + TargetData *TD; + + std::vector<std::string> parallelLoops; + + public: + static char ID; + + CodeGeneration() : ScopPass(ID) {} + + void createSeSeEdges(Region *R) { + BasicBlock *newEntry = createSingleEntryEdge(R, this); + + for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) + if ((*SI)->getBasicBlock() == R->getEntry()) + (*SI)->setBasicBlock(newEntry); + + createSingleExitEdge(R, this); + } + + + // Adding prototypes required if OpenMP is enabled. + void addOpenMPDefinitions(IRBuilder<> &Builder) + { + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + LLVMContext &Context = Builder.getContext(); + const IntegerType *intPtrTy = TD->getIntPtrType(Context); + + if (!M->getFunction("GOMP_parallel_end")) { + FunctionType *FT = FunctionType::get(Type::getVoidTy(Context), false); + Function::Create(FT, Function::ExternalLinkage, "GOMP_parallel_end", M); + } + + if (!M->getFunction("GOMP_parallel_loop_runtime_start")) { + // Type of first argument. + std::vector<const Type*> Arguments(1, Builder.getInt8PtrTy()); + FunctionType *FnArgTy = FunctionType::get(Builder.getVoidTy(), Arguments, + false); + PointerType *FnPtrTy = PointerType::getUnqual(FnArgTy); + + std::vector<const Type*> args; + args.push_back(FnPtrTy); + args.push_back(Builder.getInt8PtrTy()); + args.push_back(Builder.getInt32Ty()); + args.push_back(intPtrTy); + args.push_back(intPtrTy); + args.push_back(intPtrTy); + + FunctionType *type = FunctionType::get(Builder.getVoidTy(), args, false); + Function::Create(type, Function::ExternalLinkage, + "GOMP_parallel_loop_runtime_start", M); + } + + if (!M->getFunction("GOMP_loop_runtime_next")) { + PointerType *intLongPtrTy = PointerType::getUnqual(intPtrTy); + + std::vector<const Type*> args; + args.push_back(intLongPtrTy); + args.push_back(intLongPtrTy); + + FunctionType *type = FunctionType::get(Builder.getInt8Ty(), args, false); + Function::Create(type, Function::ExternalLinkage, + "GOMP_loop_runtime_next", M); + } + + if (!M->getFunction("GOMP_loop_end_nowait")) { + FunctionType *FT = FunctionType::get(Builder.getVoidTy(), + std::vector<const Type*>(), false); + Function::Create(FT, Function::ExternalLinkage, + "GOMP_loop_end_nowait", M); + } + } + + bool runOnScop(Scop &scop) { + S = &scop; + region = &S->getRegion(); + Region *R = region; + DT = &getAnalysis<DominatorTree>(); + Dependences *DP = &getAnalysis<Dependences>(); + SE = &getAnalysis<ScalarEvolution>(); + LI = &getAnalysis<LoopInfo>(); + C = &getAnalysis<CloogInfo>(); + SD = &getAnalysis<ScopDetection>(); + TD = &getAnalysis<TargetData>(); + + Function *F = R->getEntry()->getParent(); + + parallelLoops.clear(); + + if (CodegenOnly != "" && CodegenOnly != F->getNameStr()) { + errs() << "Codegenerating only function '" << CodegenOnly + << "' skipping '" << F->getNameStr() << "' \n"; + return false; + } + + createSeSeEdges(R); + + // Create a basic block in which to start code generation. + BasicBlock *PollyBB = BasicBlock::Create(F->getContext(), "pollyBB", F); + IRBuilder<> Builder(PollyBB); + DT->addNewBlock(PollyBB, R->getEntry()); + + const clast_root *clast = (const clast_root *) C->getClast(); + + ClastStmtCodeGen CodeGen(S, *SE, DT, DP, TD, Builder); + + if (OpenMP) + addOpenMPDefinitions(Builder); + + CodeGen.codegen(clast); + + // Save the parallel loops generated. + parallelLoops.insert(parallelLoops.begin(), + CodeGen.getParallelLoops().begin(), + CodeGen.getParallelLoops().end()); + + BasicBlock *AfterScop = *pred_begin(R->getExit()); + Builder.CreateBr(AfterScop); + + BasicBlock *successorBlock = *succ_begin(R->getEntry()); + + // Update old PHI nodes to pass LLVM verification. + std::vector<PHINode*> PHINodes; + for (BasicBlock::iterator SI = successorBlock->begin(), + SE = successorBlock->getFirstNonPHI(); SI != SE; ++SI) { + PHINode *PN = static_cast<PHINode*>(&*SI); + PHINodes.push_back(PN); + } + + for (std::vector<PHINode*>::iterator PI = PHINodes.begin(), + PE = PHINodes.end(); PI != PE; ++PI) + (*PI)->removeIncomingValue(R->getEntry()); + + DT->changeImmediateDominator(AfterScop, Builder.GetInsertBlock()); + + BasicBlock *OldRegionEntry = *succ_begin(R->getEntry()); + + // Enable the new polly code. + R->getEntry()->getTerminator()->setSuccessor(0, PollyBB); + + // Remove old Scop nodes from dominator tree. + std::vector<DomTreeNode*> ToVisit; + std::vector<DomTreeNode*> Visited; + ToVisit.push_back(DT->getNode(OldRegionEntry)); + + while (!ToVisit.empty()) { + DomTreeNode *Node = ToVisit.back(); + + ToVisit.pop_back(); + + if (AfterScop == Node->getBlock()) + continue; + + Visited.push_back(Node); + + std::vector<DomTreeNode*> Children = Node->getChildren(); + ToVisit.insert(ToVisit.end(), Children.begin(), Children.end()); + } + + for (std::vector<DomTreeNode*>::reverse_iterator I = Visited.rbegin(), + E = Visited.rend(); I != E; ++I) + DT->eraseNode((*I)->getBlock()); + + R->getParent()->removeSubRegion(R); + + // And forget the Scop if we remove the region. + SD->forgetScop(*R); + + return false; + } + + virtual void printScop(raw_ostream &OS) const { + for (std::vector<std::string>::const_iterator PI = parallelLoops.begin(), + PE = parallelLoops.end(); PI != PE; ++PI) + OS << "Parallel loop with iterator '" << *PI << "' generated\n"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<CloogInfo>(); + AU.addRequired<Dependences>(); + AU.addRequired<DominatorTree>(); + AU.addRequired<ScalarEvolution>(); + AU.addRequired<LoopInfo>(); + AU.addRequired<RegionInfo>(); + AU.addRequired<ScopDetection>(); + AU.addRequired<ScopInfo>(); + AU.addRequired<TargetData>(); + + AU.addPreserved<CloogInfo>(); + AU.addPreserved<Dependences>(); + AU.addPreserved<LoopInfo>(); + AU.addPreserved<DominatorTree>(); + AU.addPreserved<PostDominatorTree>(); + AU.addPreserved<ScopDetection>(); + AU.addPreserved<ScalarEvolution>(); + AU.addPreserved<RegionInfo>(); + AU.addPreserved<TempScopInfo>(); + AU.addPreserved<ScopInfo>(); + AU.addPreservedID(IndependentBlocksID); + } +}; +} + +char CodeGeneration::ID = 1; + +static RegisterPass<CodeGeneration> +Z("polly-codegen", "Polly - Create LLVM-IR from the polyhedral information"); + +Pass* polly::createCodeGenerationPass() { + return new CodeGeneration(); +} |

