summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Conversion/VectorToLLVM
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/lib/Conversion/VectorToLLVM')
-rw-r--r--mlir/lib/Conversion/VectorToLLVM/CMakeLists.txt15
-rw-r--r--mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp766
2 files changed, 781 insertions, 0 deletions
diff --git a/mlir/lib/Conversion/VectorToLLVM/CMakeLists.txt b/mlir/lib/Conversion/VectorToLLVM/CMakeLists.txt
new file mode 100644
index 00000000000..2aaec68f6c4
--- /dev/null
+++ b/mlir/lib/Conversion/VectorToLLVM/CMakeLists.txt
@@ -0,0 +1,15 @@
+add_llvm_library(MLIRVectorToLLVM
+ ConvertVectorToLLVM.cpp
+
+ ADDITIONAL_HEADER_DIRS
+ ${MLIR_MAIN_INCLUDE_DIR}/mlir/Conversion/VectorToLLVM
+)
+set(LIBS
+ MLIRLLVMIR
+ MLIRTransforms
+ LLVMCore
+ LLVMSupport
+ )
+
+add_dependencies(MLIRVectorToLLVM ${LIBS})
+target_link_libraries(MLIRVectorToLLVM ${LIBS})
diff --git a/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
new file mode 100644
index 00000000000..b48930c4dda
--- /dev/null
+++ b/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
@@ -0,0 +1,766 @@
+//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
+//
+// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
+#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
+#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
+#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
+#include "mlir/Dialect/VectorOps/VectorOps.h"
+#include "mlir/IR/Attributes.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/MLIRContext.h"
+#include "mlir/IR/Module.h"
+#include "mlir/IR/Operation.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/IR/Types.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Pass/PassManager.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "mlir/Transforms/Passes.h"
+
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/ErrorHandling.h"
+
+using namespace mlir;
+
+template <typename T>
+static LLVM::LLVMType getPtrToElementType(T containerType,
+ LLVMTypeConverter &lowering) {
+ return lowering.convertType(containerType.getElementType())
+ .template cast<LLVM::LLVMType>()
+ .getPointerTo();
+}
+
+// Helper to reduce vector type by one rank at front.
+static VectorType reducedVectorTypeFront(VectorType tp) {
+ assert((tp.getRank() > 1) && "unlowerable vector type");
+ return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
+}
+
+// Helper to reduce vector type by *all* but one rank at back.
+static VectorType reducedVectorTypeBack(VectorType tp) {
+ assert((tp.getRank() > 1) && "unlowerable vector type");
+ return VectorType::get(tp.getShape().take_back(), tp.getElementType());
+}
+
+// Helper that picks the proper sequence for inserting.
+static Value insertOne(ConversionPatternRewriter &rewriter,
+ LLVMTypeConverter &lowering, Location loc, Value val1,
+ Value val2, Type llvmType, int64_t rank, int64_t pos) {
+ if (rank == 1) {
+ auto idxType = rewriter.getIndexType();
+ auto constant = rewriter.create<LLVM::ConstantOp>(
+ loc, lowering.convertType(idxType),
+ rewriter.getIntegerAttr(idxType, pos));
+ return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
+ constant);
+ }
+ return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
+ rewriter.getI64ArrayAttr(pos));
+}
+
+// Helper that picks the proper sequence for extracting.
+static Value extractOne(ConversionPatternRewriter &rewriter,
+ LLVMTypeConverter &lowering, Location loc, Value val,
+ Type llvmType, int64_t rank, int64_t pos) {
+ if (rank == 1) {
+ auto idxType = rewriter.getIndexType();
+ auto constant = rewriter.create<LLVM::ConstantOp>(
+ loc, lowering.convertType(idxType),
+ rewriter.getIntegerAttr(idxType, pos));
+ return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
+ constant);
+ }
+ return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
+ rewriter.getI64ArrayAttr(pos));
+}
+
+class VectorBroadcastOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorBroadcastOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::BroadcastOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto broadcastOp = cast<vector::BroadcastOp>(op);
+ VectorType dstVectorType = broadcastOp.getVectorType();
+ if (lowering.convertType(dstVectorType) == nullptr)
+ return matchFailure();
+ // Rewrite when the full vector type can be lowered (which
+ // implies all 'reduced' types can be lowered too).
+ auto adaptor = vector::BroadcastOpOperandAdaptor(operands);
+ VectorType srcVectorType =
+ broadcastOp.getSourceType().dyn_cast<VectorType>();
+ rewriter.replaceOp(
+ op, expandRanks(adaptor.source(), // source value to be expanded
+ op->getLoc(), // location of original broadcast
+ srcVectorType, dstVectorType, rewriter));
+ return matchSuccess();
+ }
+
+private:
+ // Expands the given source value over all the ranks, as defined
+ // by the source and destination type (a null source type denotes
+ // expansion from a scalar value into a vector).
+ //
+ // TODO(ajcbik): consider replacing this one-pattern lowering
+ // with a two-pattern lowering using other vector
+ // ops once all insert/extract/shuffle operations
+ // are available with lowering implemention.
+ //
+ Value expandRanks(Value value, Location loc, VectorType srcVectorType,
+ VectorType dstVectorType,
+ ConversionPatternRewriter &rewriter) const {
+ assert((dstVectorType != nullptr) && "invalid result type in broadcast");
+ // Determine rank of source and destination.
+ int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0;
+ int64_t dstRank = dstVectorType.getRank();
+ int64_t curDim = dstVectorType.getDimSize(0);
+ if (srcRank < dstRank)
+ // Duplicate this rank.
+ return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
+ curDim, rewriter);
+ // If all trailing dimensions are the same, the broadcast consists of
+ // simply passing through the source value and we are done. Otherwise,
+ // any non-matching dimension forces a stretch along this rank.
+ assert((srcVectorType != nullptr) && (srcRank > 0) &&
+ (srcRank == dstRank) && "invalid rank in broadcast");
+ for (int64_t r = 0; r < dstRank; r++) {
+ if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) {
+ return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
+ curDim, rewriter);
+ }
+ }
+ return value;
+ }
+
+ // Picks the best way to duplicate a single rank. For the 1-D case, a
+ // single insert-elt/shuffle is the most efficient expansion. For higher
+ // dimensions, however, we need dim x insert-values on a new broadcast
+ // with one less leading dimension, which will be lowered "recursively"
+ // to matching LLVM IR.
+ // For example:
+ // v = broadcast s : f32 to vector<4x2xf32>
+ // becomes:
+ // x = broadcast s : f32 to vector<2xf32>
+ // v = [x,x,x,x]
+ // becomes:
+ // x = [s,s]
+ // v = [x,x,x,x]
+ Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType,
+ VectorType dstVectorType, int64_t rank, int64_t dim,
+ ConversionPatternRewriter &rewriter) const {
+ Type llvmType = lowering.convertType(dstVectorType);
+ assert((llvmType != nullptr) && "unlowerable vector type");
+ if (rank == 1) {
+ Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType);
+ Value expand =
+ insertOne(rewriter, lowering, loc, undef, value, llvmType, rank, 0);
+ SmallVector<int32_t, 4> zeroValues(dim, 0);
+ return rewriter.create<LLVM::ShuffleVectorOp>(
+ loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues));
+ }
+ Value expand = expandRanks(value, loc, srcVectorType,
+ reducedVectorTypeFront(dstVectorType), rewriter);
+ Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
+ for (int64_t d = 0; d < dim; ++d) {
+ result =
+ insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d);
+ }
+ return result;
+ }
+
+ // Picks the best way to stretch a single rank. For the 1-D case, a
+ // single insert-elt/shuffle is the most efficient expansion when at
+ // a stretch. Otherwise, every dimension needs to be expanded
+ // individually and individually inserted in the resulting vector.
+ // For example:
+ // v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32>
+ // becomes:
+ // a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32>
+ // b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32>
+ // c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32>
+ // d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32>
+ // v = [a,b,c,d]
+ // becomes:
+ // x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32>
+ // y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32>
+ // a = [x, y]
+ // etc.
+ Value stretchOneRank(Value value, Location loc, VectorType srcVectorType,
+ VectorType dstVectorType, int64_t rank, int64_t dim,
+ ConversionPatternRewriter &rewriter) const {
+ Type llvmType = lowering.convertType(dstVectorType);
+ assert((llvmType != nullptr) && "unlowerable vector type");
+ Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
+ bool atStretch = dim != srcVectorType.getDimSize(0);
+ if (rank == 1) {
+ assert(atStretch);
+ Type redLlvmType = lowering.convertType(dstVectorType.getElementType());
+ Value one =
+ extractOne(rewriter, lowering, loc, value, redLlvmType, rank, 0);
+ Value expand =
+ insertOne(rewriter, lowering, loc, result, one, llvmType, rank, 0);
+ SmallVector<int32_t, 4> zeroValues(dim, 0);
+ return rewriter.create<LLVM::ShuffleVectorOp>(
+ loc, expand, result, rewriter.getI32ArrayAttr(zeroValues));
+ }
+ VectorType redSrcType = reducedVectorTypeFront(srcVectorType);
+ VectorType redDstType = reducedVectorTypeFront(dstVectorType);
+ Type redLlvmType = lowering.convertType(redSrcType);
+ for (int64_t d = 0; d < dim; ++d) {
+ int64_t pos = atStretch ? 0 : d;
+ Value one =
+ extractOne(rewriter, lowering, loc, value, redLlvmType, rank, pos);
+ Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter);
+ result =
+ insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d);
+ }
+ return result;
+ }
+};
+
+class VectorShuffleOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorShuffleOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::ShuffleOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto loc = op->getLoc();
+ auto adaptor = vector::ShuffleOpOperandAdaptor(operands);
+ auto shuffleOp = cast<vector::ShuffleOp>(op);
+ auto v1Type = shuffleOp.getV1VectorType();
+ auto v2Type = shuffleOp.getV2VectorType();
+ auto vectorType = shuffleOp.getVectorType();
+ Type llvmType = lowering.convertType(vectorType);
+ auto maskArrayAttr = shuffleOp.mask();
+
+ // Bail if result type cannot be lowered.
+ if (!llvmType)
+ return matchFailure();
+
+ // Get rank and dimension sizes.
+ int64_t rank = vectorType.getRank();
+ assert(v1Type.getRank() == rank);
+ assert(v2Type.getRank() == rank);
+ int64_t v1Dim = v1Type.getDimSize(0);
+
+ // For rank 1, where both operands have *exactly* the same vector type,
+ // there is direct shuffle support in LLVM. Use it!
+ if (rank == 1 && v1Type == v2Type) {
+ Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
+ loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
+ rewriter.replaceOp(op, shuffle);
+ return matchSuccess();
+ }
+
+ // For all other cases, insert the individual values individually.
+ Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
+ int64_t insPos = 0;
+ for (auto en : llvm::enumerate(maskArrayAttr)) {
+ int64_t extPos = en.value().cast<IntegerAttr>().getInt();
+ Value value = adaptor.v1();
+ if (extPos >= v1Dim) {
+ extPos -= v1Dim;
+ value = adaptor.v2();
+ }
+ Value extract =
+ extractOne(rewriter, lowering, loc, value, llvmType, rank, extPos);
+ insert = insertOne(rewriter, lowering, loc, insert, extract, llvmType,
+ rank, insPos++);
+ }
+ rewriter.replaceOp(op, insert);
+ return matchSuccess();
+ }
+};
+
+class VectorExtractElementOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorExtractElementOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
+ auto extractEltOp = cast<vector::ExtractElementOp>(op);
+ auto vectorType = extractEltOp.getVectorType();
+ auto llvmType = lowering.convertType(vectorType.getElementType());
+
+ // Bail if result type cannot be lowered.
+ if (!llvmType)
+ return matchFailure();
+
+ rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
+ op, llvmType, adaptor.vector(), adaptor.position());
+ return matchSuccess();
+ }
+};
+
+class VectorExtractOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorExtractOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::ExtractOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto loc = op->getLoc();
+ auto adaptor = vector::ExtractOpOperandAdaptor(operands);
+ auto extractOp = cast<vector::ExtractOp>(op);
+ auto vectorType = extractOp.getVectorType();
+ auto resultType = extractOp.getResult()->getType();
+ auto llvmResultType = lowering.convertType(resultType);
+ auto positionArrayAttr = extractOp.position();
+
+ // Bail if result type cannot be lowered.
+ if (!llvmResultType)
+ return matchFailure();
+
+ // One-shot extraction of vector from array (only requires extractvalue).
+ if (resultType.isa<VectorType>()) {
+ Value extracted = rewriter.create<LLVM::ExtractValueOp>(
+ loc, llvmResultType, adaptor.vector(), positionArrayAttr);
+ rewriter.replaceOp(op, extracted);
+ return matchSuccess();
+ }
+
+ // Potential extraction of 1-D vector from array.
+ auto *context = op->getContext();
+ Value extracted = adaptor.vector();
+ auto positionAttrs = positionArrayAttr.getValue();
+ if (positionAttrs.size() > 1) {
+ auto oneDVectorType = reducedVectorTypeBack(vectorType);
+ auto nMinusOnePositionAttrs =
+ ArrayAttr::get(positionAttrs.drop_back(), context);
+ extracted = rewriter.create<LLVM::ExtractValueOp>(
+ loc, lowering.convertType(oneDVectorType), extracted,
+ nMinusOnePositionAttrs);
+ }
+
+ // Remaining extraction of element from 1-D LLVM vector
+ auto position = positionAttrs.back().cast<IntegerAttr>();
+ auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
+ auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
+ extracted =
+ rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
+ rewriter.replaceOp(op, extracted);
+
+ return matchSuccess();
+ }
+};
+
+class VectorInsertElementOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorInsertElementOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::InsertElementOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto adaptor = vector::InsertElementOpOperandAdaptor(operands);
+ auto insertEltOp = cast<vector::InsertElementOp>(op);
+ auto vectorType = insertEltOp.getDestVectorType();
+ auto llvmType = lowering.convertType(vectorType);
+
+ // Bail if result type cannot be lowered.
+ if (!llvmType)
+ return matchFailure();
+
+ rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
+ op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
+ return matchSuccess();
+ }
+};
+
+class VectorInsertOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorInsertOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::InsertOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto loc = op->getLoc();
+ auto adaptor = vector::InsertOpOperandAdaptor(operands);
+ auto insertOp = cast<vector::InsertOp>(op);
+ auto sourceType = insertOp.getSourceType();
+ auto destVectorType = insertOp.getDestVectorType();
+ auto llvmResultType = lowering.convertType(destVectorType);
+ auto positionArrayAttr = insertOp.position();
+
+ // Bail if result type cannot be lowered.
+ if (!llvmResultType)
+ return matchFailure();
+
+ // One-shot insertion of a vector into an array (only requires insertvalue).
+ if (sourceType.isa<VectorType>()) {
+ Value inserted = rewriter.create<LLVM::InsertValueOp>(
+ loc, llvmResultType, adaptor.dest(), adaptor.source(),
+ positionArrayAttr);
+ rewriter.replaceOp(op, inserted);
+ return matchSuccess();
+ }
+
+ // Potential extraction of 1-D vector from array.
+ auto *context = op->getContext();
+ Value extracted = adaptor.dest();
+ auto positionAttrs = positionArrayAttr.getValue();
+ auto position = positionAttrs.back().cast<IntegerAttr>();
+ auto oneDVectorType = destVectorType;
+ if (positionAttrs.size() > 1) {
+ oneDVectorType = reducedVectorTypeBack(destVectorType);
+ auto nMinusOnePositionAttrs =
+ ArrayAttr::get(positionAttrs.drop_back(), context);
+ extracted = rewriter.create<LLVM::ExtractValueOp>(
+ loc, lowering.convertType(oneDVectorType), extracted,
+ nMinusOnePositionAttrs);
+ }
+
+ // Insertion of an element into a 1-D LLVM vector.
+ auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
+ auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
+ Value inserted = rewriter.create<LLVM::InsertElementOp>(
+ loc, lowering.convertType(oneDVectorType), extracted, adaptor.source(),
+ constant);
+
+ // Potential insertion of resulting 1-D vector into array.
+ if (positionAttrs.size() > 1) {
+ auto nMinusOnePositionAttrs =
+ ArrayAttr::get(positionAttrs.drop_back(), context);
+ inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
+ adaptor.dest(), inserted,
+ nMinusOnePositionAttrs);
+ }
+
+ rewriter.replaceOp(op, inserted);
+ return matchSuccess();
+ }
+};
+
+class VectorOuterProductOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorOuterProductOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto loc = op->getLoc();
+ auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
+ auto *ctx = op->getContext();
+ auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>();
+ auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>();
+ auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
+ auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
+ auto llvmArrayOfVectType = lowering.convertType(
+ cast<vector::OuterProductOp>(op).getResult()->getType());
+ Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
+ Value a = adaptor.lhs(), b = adaptor.rhs();
+ Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
+ SmallVector<Value, 8> lhs, accs;
+ lhs.reserve(rankLHS);
+ accs.reserve(rankLHS);
+ for (unsigned d = 0, e = rankLHS; d < e; ++d) {
+ // shufflevector explicitly requires i32.
+ auto attr = rewriter.getI32IntegerAttr(d);
+ SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
+ auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
+ Value aD = nullptr, accD = nullptr;
+ // 1. Broadcast the element a[d] into vector aD.
+ aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
+ // 2. If acc is present, extract 1-d vector acc[d] into accD.
+ if (acc)
+ accD = rewriter.create<LLVM::ExtractValueOp>(
+ loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
+ // 3. Compute aD outer b (plus accD, if relevant).
+ Value aOuterbD =
+ accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
+ .getResult()
+ : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
+ // 4. Insert as value `d` in the descriptor.
+ desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
+ desc, aOuterbD,
+ rewriter.getI64ArrayAttr(d));
+ }
+ rewriter.replaceOp(op, desc);
+ return matchSuccess();
+ }
+};
+
+class VectorTypeCastOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorTypeCastOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::TypeCastOp::getOperationName(), context,
+ typeConverter) {}
+
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto loc = op->getLoc();
+ vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
+ MemRefType sourceMemRefType =
+ castOp.getOperand()->getType().cast<MemRefType>();
+ MemRefType targetMemRefType =
+ castOp.getResult()->getType().cast<MemRefType>();
+
+ // Only static shape casts supported atm.
+ if (!sourceMemRefType.hasStaticShape() ||
+ !targetMemRefType.hasStaticShape())
+ return matchFailure();
+
+ auto llvmSourceDescriptorTy =
+ operands[0]->getType().dyn_cast<LLVM::LLVMType>();
+ if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
+ return matchFailure();
+ MemRefDescriptor sourceMemRef(operands[0]);
+
+ auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
+ .dyn_cast_or_null<LLVM::LLVMType>();
+ if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
+ return matchFailure();
+
+ int64_t offset;
+ SmallVector<int64_t, 4> strides;
+ auto successStrides =
+ getStridesAndOffset(sourceMemRefType, strides, offset);
+ bool isContiguous = (strides.back() == 1);
+ if (isContiguous) {
+ auto sizes = sourceMemRefType.getShape();
+ for (int index = 0, e = strides.size() - 2; index < e; ++index) {
+ if (strides[index] != strides[index + 1] * sizes[index + 1]) {
+ isContiguous = false;
+ break;
+ }
+ }
+ }
+ // Only contiguous source tensors supported atm.
+ if (failed(successStrides) || !isContiguous)
+ return matchFailure();
+
+ auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
+
+ // Create descriptor.
+ auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
+ Type llvmTargetElementTy = desc.getElementType();
+ // Set allocated ptr.
+ Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
+ allocated =
+ rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
+ desc.setAllocatedPtr(rewriter, loc, allocated);
+ // Set aligned ptr.
+ Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
+ ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
+ desc.setAlignedPtr(rewriter, loc, ptr);
+ // Fill offset 0.
+ auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
+ auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
+ desc.setOffset(rewriter, loc, zero);
+
+ // Fill size and stride descriptors in memref.
+ for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
+ int64_t index = indexedSize.index();
+ auto sizeAttr =
+ rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
+ auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
+ desc.setSize(rewriter, loc, index, size);
+ auto strideAttr =
+ rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
+ auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
+ desc.setStride(rewriter, loc, index, stride);
+ }
+
+ rewriter.replaceOp(op, {desc});
+ return matchSuccess();
+ }
+};
+
+class VectorPrintOpConversion : public LLVMOpLowering {
+public:
+ explicit VectorPrintOpConversion(MLIRContext *context,
+ LLVMTypeConverter &typeConverter)
+ : LLVMOpLowering(vector::PrintOp::getOperationName(), context,
+ typeConverter) {}
+
+ // Proof-of-concept lowering implementation that relies on a small
+ // runtime support library, which only needs to provide a few
+ // printing methods (single value for all data types, opening/closing
+ // bracket, comma, newline). The lowering fully unrolls a vector
+ // in terms of these elementary printing operations. The advantage
+ // of this approach is that the library can remain unaware of all
+ // low-level implementation details of vectors while still supporting
+ // output of any shaped and dimensioned vector. Due to full unrolling,
+ // this approach is less suited for very large vectors though.
+ //
+ // TODO(ajcbik): rely solely on libc in future? something else?
+ //
+ PatternMatchResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override {
+ auto printOp = cast<vector::PrintOp>(op);
+ auto adaptor = vector::PrintOpOperandAdaptor(operands);
+ Type printType = printOp.getPrintType();
+
+ if (lowering.convertType(printType) == nullptr)
+ return matchFailure();
+
+ // Make sure element type has runtime support (currently just Float/Double).
+ VectorType vectorType = printType.dyn_cast<VectorType>();
+ Type eltType = vectorType ? vectorType.getElementType() : printType;
+ int64_t rank = vectorType ? vectorType.getRank() : 0;
+ Operation *printer;
+ if (eltType.isF32())
+ printer = getPrintFloat(op);
+ else if (eltType.isF64())
+ printer = getPrintDouble(op);
+ else
+ return matchFailure();
+
+ // Unroll vector into elementary print calls.
+ emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
+ emitCall(rewriter, op->getLoc(), getPrintNewline(op));
+ rewriter.eraseOp(op);
+ return matchSuccess();
+ }
+
+private:
+ void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
+ Value value, VectorType vectorType, Operation *printer,
+ int64_t rank) const {
+ Location loc = op->getLoc();
+ if (rank == 0) {
+ emitCall(rewriter, loc, printer, value);
+ return;
+ }
+
+ emitCall(rewriter, loc, getPrintOpen(op));
+ Operation *printComma = getPrintComma(op);
+ int64_t dim = vectorType.getDimSize(0);
+ for (int64_t d = 0; d < dim; ++d) {
+ auto reducedType =
+ rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
+ auto llvmType = lowering.convertType(
+ rank > 1 ? reducedType : vectorType.getElementType());
+ Value nestedVal =
+ extractOne(rewriter, lowering, loc, value, llvmType, rank, d);
+ emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
+ if (d != dim - 1)
+ emitCall(rewriter, loc, printComma);
+ }
+ emitCall(rewriter, loc, getPrintClose(op));
+ }
+
+ // Helper to emit a call.
+ static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
+ Operation *ref, ValueRange params = ValueRange()) {
+ rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
+ rewriter.getSymbolRefAttr(ref), params);
+ }
+
+ // Helper for printer method declaration (first hit) and lookup.
+ static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
+ StringRef name, ArrayRef<LLVM::LLVMType> params) {
+ auto module = op->getParentOfType<ModuleOp>();
+ auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
+ if (func)
+ return func;
+ OpBuilder moduleBuilder(module.getBodyRegion());
+ return moduleBuilder.create<LLVM::LLVMFuncOp>(
+ op->getLoc(), name,
+ LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
+ params, /*isVarArg=*/false));
+ }
+
+ // Helpers for method names.
+ Operation *getPrintFloat(Operation *op) const {
+ LLVM::LLVMDialect *dialect = lowering.getDialect();
+ return getPrint(op, dialect, "print_f32",
+ LLVM::LLVMType::getFloatTy(dialect));
+ }
+ Operation *getPrintDouble(Operation *op) const {
+ LLVM::LLVMDialect *dialect = lowering.getDialect();
+ return getPrint(op, dialect, "print_f64",
+ LLVM::LLVMType::getDoubleTy(dialect));
+ }
+ Operation *getPrintOpen(Operation *op) const {
+ return getPrint(op, lowering.getDialect(), "print_open", {});
+ }
+ Operation *getPrintClose(Operation *op) const {
+ return getPrint(op, lowering.getDialect(), "print_close", {});
+ }
+ Operation *getPrintComma(Operation *op) const {
+ return getPrint(op, lowering.getDialect(), "print_comma", {});
+ }
+ Operation *getPrintNewline(Operation *op) const {
+ return getPrint(op, lowering.getDialect(), "print_newline", {});
+ }
+};
+
+/// Populate the given list with patterns that convert from Vector to LLVM.
+void mlir::populateVectorToLLVMConversionPatterns(
+ LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
+ patterns.insert<VectorBroadcastOpConversion, VectorShuffleOpConversion,
+ VectorExtractElementOpConversion, VectorExtractOpConversion,
+ VectorInsertElementOpConversion, VectorInsertOpConversion,
+ VectorOuterProductOpConversion, VectorTypeCastOpConversion,
+ VectorPrintOpConversion>(converter.getDialect()->getContext(),
+ converter);
+}
+
+namespace {
+struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
+ void runOnModule() override;
+};
+} // namespace
+
+void LowerVectorToLLVMPass::runOnModule() {
+ // Convert to the LLVM IR dialect using the converter defined above.
+ OwningRewritePatternList patterns;
+ LLVMTypeConverter converter(&getContext());
+ populateVectorToLLVMConversionPatterns(converter, patterns);
+ populateStdToLLVMConversionPatterns(converter, patterns);
+
+ ConversionTarget target(getContext());
+ target.addLegalDialect<LLVM::LLVMDialect>();
+ target.addDynamicallyLegalOp<FuncOp>(
+ [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
+ if (failed(
+ applyPartialConversion(getModule(), target, patterns, &converter))) {
+ signalPassFailure();
+ }
+}
+
+OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
+ return new LowerVectorToLLVMPass();
+}
+
+static PassRegistration<LowerVectorToLLVMPass>
+ pass("convert-vector-to-llvm",
+ "Lower the operations from the vector dialect into the LLVM dialect");
OpenPOWER on IntegriCloud