summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp')
-rw-r--r--mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp528
1 files changed, 528 insertions, 0 deletions
diff --git a/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp b/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp
new file mode 100644
index 00000000000..e500d10983c
--- /dev/null
+++ b/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp
@@ -0,0 +1,528 @@
+//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
+//
+// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a straightforward conversion of an loop nest into a GPU
+// kernel. The caller is expected to guarantee that the conversion is correct
+// or to further transform the kernel to ensure correctness.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h"
+
+#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
+#include "mlir/Dialect/AffineOps/AffineOps.h"
+#include "mlir/Dialect/GPU/GPUDialect.h"
+#include "mlir/Dialect/LoopOps/LoopOps.h"
+#include "mlir/Dialect/StandardOps/Ops.h"
+#include "mlir/IR/AffineExpr.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/Transforms/LoopUtils.h"
+#include "mlir/Transforms/RegionUtils.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "loops-to-gpu"
+
+using namespace mlir;
+using namespace mlir::loop;
+
+using llvm::seq;
+
+// Extract an indexed value from KernelDim3.
+static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
+ switch (pos) {
+ case 0:
+ return dim3.x;
+ case 1:
+ return dim3.y;
+ case 2:
+ return dim3.z;
+ default:
+ llvm_unreachable("dim3 position out of bounds");
+ }
+ return nullptr;
+}
+
+// Get the lower bound-related operands of a loop operation.
+static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
+ return forOp.getLowerBoundOperands();
+}
+static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) {
+ SmallVector<Value, 1> bounds(1, forOp.lowerBound());
+ return bounds;
+}
+
+// Get the upper bound-related operands of a loop operation.
+static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
+ return forOp.getUpperBoundOperands();
+}
+static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) {
+ SmallVector<Value, 1> bounds(1, forOp.upperBound());
+ return bounds;
+}
+
+// Get a Value that corresponds to the loop step. If the step is an attribute,
+// materialize a corresponding constant using builder.
+static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
+ return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
+}
+static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }
+
+// Get a Value for the loop lower bound. If the value requires computation,
+// materialize the instructions using builder.
+static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
+ return lowerAffineLowerBound(forOp, builder);
+}
+static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
+ return forOp.lowerBound();
+}
+
+// Get a Value for the loop upper bound. If the value requires computation,
+// materialize the instructions using builder.
+static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
+ return lowerAffineUpperBound(forOp, builder);
+}
+static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
+ return forOp.upperBound();
+}
+
+// Check the structure of the loop nest:
+// - there are enough loops to map to numDims;
+// - the loops are perfectly nested;
+// - the loop bounds can be computed above the outermost loop.
+// This roughly corresponds to the "matcher" part of the pattern-based
+// rewriting infrastructure.
+template <typename OpTy>
+LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
+ Region &limit = forOp.region();
+ for (unsigned i = 0, e = numDims; i < e; ++i) {
+ Operation *nested = &forOp.getBody()->front();
+ if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
+ !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
+ return forOp.emitError(
+ "loops with bounds depending on other mapped loops "
+ "are not supported");
+
+ // The innermost loop can have an arbitrary body, skip the perfect nesting
+ // check for it.
+ if (i == e - 1)
+ break;
+
+ auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
+ if (forOp.getBody()->empty() || std::next(begin, 2) != end)
+ return forOp.emitError("expected perfectly nested loops in the body");
+
+ if (!(forOp = dyn_cast<OpTy>(nested)))
+ return nested->emitError("expected a nested loop");
+ }
+ return success();
+}
+
+template <typename OpTy>
+LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
+ unsigned numThreadDims) {
+ if (numBlockDims < 1 || numThreadDims < 1) {
+ LLVM_DEBUG(llvm::dbgs() << "nothing to map");
+ return success();
+ }
+
+ OpBuilder builder(forOp.getOperation());
+ if (numBlockDims > 3) {
+ return forOp.emitError("cannot map to more than 3 block dimensions");
+ }
+ if (numThreadDims > 3) {
+ return forOp.emitError("cannot map to more than 3 thread dimensions");
+ }
+ return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
+}
+
+template <typename OpTy>
+LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
+ unsigned numThreadDims) {
+ if (numBlockDims < 1 || numThreadDims < 1) {
+ LLVM_DEBUG(llvm::dbgs() << "nothing to map");
+ return success();
+ }
+
+ if (numBlockDims > 3) {
+ return forOp.emitError("cannot map to more than 3 block dimensions");
+ }
+ if (numThreadDims > 3) {
+ return forOp.emitError("cannot map to more than 3 thread dimensions");
+ }
+ if (numBlockDims != numThreadDims) {
+ // TODO(ravishankarm) : This can probably be relaxed by having a one-trip
+ // loop for the missing dimension, but there is not reason to handle this
+ // case for now.
+ return forOp.emitError(
+ "mismatch in block dimensions and thread dimensions");
+ }
+
+ // Check that the forOp contains perfectly nested loops for numBlockDims
+ if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) {
+ return failure();
+ }
+
+ // Get to the innermost loop.
+ for (auto i : seq<unsigned>(0, numBlockDims - 1)) {
+ forOp = cast<OpTy>(&forOp.getBody()->front());
+ (void)i;
+ }
+
+ // The forOp now points to the body of the innermost loop mapped to blocks.
+ for (Operation &op : *forOp.getBody()) {
+ // If the operation is a loop, check that it is mappable to workItems.
+ if (auto innerLoop = dyn_cast<OpTy>(&op)) {
+ if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) {
+ return failure();
+ }
+ continue;
+ }
+ // TODO(ravishankarm) : If it is not a loop op, it is assumed that the
+ // statement is executed by all threads. It might be a collective operation,
+ // or some non-side effect instruction. Have to decide on "allowable"
+ // statements and check for those here.
+ }
+ return success();
+}
+
+namespace {
+// Helper structure that holds common state of the loop to GPU kernel
+// conversion.
+struct LoopToGpuConverter {
+ template <typename OpTy>
+ Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);
+
+ template <typename OpTy>
+ void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
+ unsigned numThreadDims);
+
+ // Ranges of the loops mapped to blocks or threads.
+ SmallVector<Value, 6> dims;
+ // Lower bounds of the loops mapped to blocks or threads.
+ SmallVector<Value, 6> lbs;
+ // Induction variables of the loops mapped to blocks or threads.
+ SmallVector<Value, 6> ivs;
+ // Steps of the loops mapped to blocks or threads.
+ SmallVector<Value, 6> steps;
+};
+} // namespace
+
+// Return true if the value is obviously a constant "one".
+static bool isConstantOne(Value value) {
+ if (auto def = dyn_cast_or_null<ConstantIndexOp>(value->getDefiningOp()))
+ return def.getValue() == 1;
+ return false;
+}
+
+// Collect ranges, bounds, steps and induction variables in preparation for
+// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
+// This may fail if the IR for computing loop bounds cannot be constructed, for
+// example if an affine loop uses semi-affine maps. Return the last loop to be
+// mapped on success, llvm::None on failure.
+template <typename OpTy>
+Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
+ unsigned numLoops) {
+ OpBuilder builder(forOp.getOperation());
+ dims.reserve(numLoops);
+ lbs.reserve(numLoops);
+ ivs.reserve(numLoops);
+ steps.reserve(numLoops);
+ OpTy currentLoop = forOp;
+ for (unsigned i = 0; i < numLoops; ++i) {
+ Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
+ Value upperBound = getOrEmitUpperBound(currentLoop, builder);
+ if (!lowerBound || !upperBound) {
+ return llvm::None;
+ }
+
+ Value range =
+ builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound);
+ Value step = getOrCreateStep(currentLoop, builder);
+ if (!isConstantOne(step))
+ range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step);
+ dims.push_back(range);
+
+ lbs.push_back(lowerBound);
+ ivs.push_back(currentLoop.getInductionVar());
+ steps.push_back(step);
+
+ if (i != numLoops - 1)
+ currentLoop = cast<OpTy>(&currentLoop.getBody()->front());
+ }
+ return currentLoop;
+}
+
+/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o
+/// be partitioned across workgroups or workitems. The values for the
+/// workgroup/workitem id along each dimension is passed in with `ids`. The
+/// number of workgroups/workitems along each dimension are passed in with
+/// `nids`. The innermost loop is mapped to the x-dimension, followed by the
+/// next innermost loop to y-dimension, followed by z-dimension.
+template <typename OpTy>
+OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids,
+ ArrayRef<Value> nids) {
+ auto nDims = ids.size();
+ assert(nDims == nids.size());
+ for (auto dim : llvm::seq<unsigned>(0, nDims)) {
+ // TODO(ravishankarm): Don't always need to generate a loop here. If nids >=
+ // number of iterations of the original loop, this becomes a if
+ // condition. Though that does rely on how the workgroup/workitem sizes are
+ // specified to begin with.
+ mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]);
+ if (dim != nDims - 1) {
+ rootForOp = cast<OpTy>(rootForOp.getBody()->front());
+ }
+ }
+ return rootForOp;
+}
+
+/// Utility method to convert the gpu::KernelDim3 object for representing id of
+/// each workgroup/workitem and number of workgroup/workitems along a dimension
+/// of the launch into a container.
+void packIdAndNumId(gpu::KernelDim3 kernelIds, gpu::KernelDim3 kernelNids,
+ unsigned nDims, SmallVectorImpl<Value> &ids,
+ SmallVectorImpl<Value> &nids) {
+ assert(nDims <= 3 && "invalid number of launch dimensions");
+ SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x};
+ SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x};
+ ids.clear();
+ ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end());
+ nids.clear();
+ nids.append(std::next(allNids.begin(), allNids.size() - nDims),
+ allNids.end());
+}
+
+/// Generate the body of the launch operation.
+template <typename OpTy>
+LogicalResult createLaunchBody(OpBuilder &builder, OpTy rootForOp,
+ gpu::LaunchOp launchOp, unsigned numBlockDims,
+ unsigned numThreadDims) {
+ OpBuilder::InsertionGuard bodyInsertionGuard(builder);
+ builder.setInsertionPointToEnd(&launchOp.body().front());
+ auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc());
+
+ rootForOp.getOperation()->moveBefore(returnOp);
+ SmallVector<Value, 3> workgroupID, numWorkGroups;
+ packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims,
+ workgroupID, numWorkGroups);
+
+ // Partition the loop for mapping to workgroups.
+ auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups);
+
+ // Iterate over the body of the loopOp and get the loops to partition for
+ // thread blocks.
+ SmallVector<OpTy, 1> threadRootForOps;
+ for (Operation &op : *loopOp.getBody()) {
+ if (auto threadRootForOp = dyn_cast<OpTy>(&op)) {
+ threadRootForOps.push_back(threadRootForOp);
+ }
+ }
+
+ SmallVector<Value, 3> workItemID, workGroupSize;
+ packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(),
+ numThreadDims, workItemID, workGroupSize);
+ for (auto &loopOp : threadRootForOps) {
+ builder.setInsertionPoint(loopOp);
+ createGPULaunchLoops(loopOp, workItemID, workGroupSize);
+ }
+ return success();
+}
+
+// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the
+// given workgroup size and number of workgroups.
+template <typename OpTy>
+LogicalResult createLaunchFromOp(OpTy rootForOp, ArrayRef<Value> numWorkGroups,
+ ArrayRef<Value> workGroupSizes) {
+ OpBuilder builder(rootForOp.getOperation());
+ if (numWorkGroups.size() > 3) {
+ return rootForOp.emitError("invalid ")
+ << numWorkGroups.size() << "-D workgroup specification";
+ }
+ auto loc = rootForOp.getLoc();
+ Value one = builder.create<ConstantOp>(
+ loc, builder.getIntegerAttr(builder.getIndexType(), 1));
+ SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one);
+ for (auto numWorkGroup : enumerate(numWorkGroups)) {
+ numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value();
+ }
+ for (auto workGroupSize : enumerate(workGroupSizes)) {
+ workGroupSize3D[workGroupSize.index()] = workGroupSize.value();
+ }
+
+ // Get the values used within the region of the rootForOp but defined above
+ // it.
+ llvm::SetVector<Value> valuesToForwardSet;
+ getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(),
+ valuesToForwardSet);
+ // Also add the values used for the lb, ub, and step of the rootForOp.
+ valuesToForwardSet.insert(rootForOp.getOperands().begin(),
+ rootForOp.getOperands().end());
+ auto valuesToForward = valuesToForwardSet.takeVector();
+ auto launchOp = builder.create<gpu::LaunchOp>(
+ rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1],
+ numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1],
+ workGroupSize3D[2], valuesToForward);
+ if (failed(createLaunchBody(builder, rootForOp, launchOp,
+ numWorkGroups.size(), workGroupSizes.size()))) {
+ return failure();
+ }
+
+ // Replace values that are used within the region of the launchOp but are
+ // defined outside. They all are replaced with kernel arguments.
+ for (const auto &pair :
+ llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
+ Value from = std::get<0>(pair);
+ Value to = std::get<1>(pair);
+ replaceAllUsesInRegionWith(from, to, launchOp.body());
+ }
+ return success();
+}
+
+// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
+// "innermostForOp" to point to the last loop to be transformed to the kernel,
+// and to have (numBlockDims + numThreadDims) perfectly nested loops between
+// "rootForOp" and "innermostForOp".
+// TODO(ravishankarm) : This method can be modified to use the
+// createLaunchFromOp method, since that is a strict generalization of this
+// method.
+template <typename OpTy>
+void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
+ unsigned numBlockDims,
+ unsigned numThreadDims) {
+ OpBuilder builder(rootForOp.getOperation());
+ // Prepare the grid and block sizes for the launch operation. If there is
+ // no loop mapped to a specific dimension, use constant "1" as its size.
+ Value constOne = (numBlockDims < 3 || numThreadDims < 3)
+ ? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1)
+ : nullptr;
+ Value gridSizeX = dims[0];
+ Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
+ Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
+ Value blockSizeX = dims[numBlockDims];
+ Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
+ Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
+
+ // Create a launch op and move the body region of the innermost loop to the
+ // launch op. Pass the values defined outside the outermost loop and used
+ // inside the innermost loop and loop lower bounds as kernel data arguments.
+ // Still assuming perfect nesting so there are no values other than induction
+ // variables that are defined in one loop and used in deeper loops.
+ llvm::SetVector<Value> valuesToForwardSet;
+ getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(),
+ valuesToForwardSet);
+ auto valuesToForward = valuesToForwardSet.takeVector();
+ auto originallyForwardedValues = valuesToForward.size();
+ valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end());
+ valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end());
+ auto launchOp = builder.create<gpu::LaunchOp>(
+ rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
+ blockSizeY, blockSizeZ, valuesToForward);
+ valuesToForward.resize(originallyForwardedValues);
+
+ // Replace the loop terminator (loops contain only a single block) with the
+ // gpu return and move the operations from the loop body block to the gpu
+ // launch body block. Do not move the entire block because of the difference
+ // in block arguments.
+ Operation &terminator = innermostForOp.getBody()->back();
+ Location terminatorLoc = terminator.getLoc();
+ terminator.erase();
+ builder.setInsertionPointToEnd(innermostForOp.getBody());
+ builder.create<gpu::ReturnOp>(terminatorLoc);
+ launchOp.body().front().getOperations().splice(
+ launchOp.body().front().begin(),
+ innermostForOp.getBody()->getOperations());
+
+ // Remap the loop iterators to use block/thread identifiers instead. Loops
+ // may iterate from LB with step S whereas GPU thread/block ids always iterate
+ // from 0 to N with step 1. Therefore, loop induction variables are replaced
+ // with (gpu-thread/block-id * S) + LB.
+ builder.setInsertionPointToStart(&launchOp.body().front());
+ auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(),
+ originallyForwardedValues);
+ auto stepArgumentIt = std::next(lbArgumentIt, lbs.size());
+ for (auto en : llvm::enumerate(ivs)) {
+ Value id =
+ en.index() < numBlockDims
+ ? getDim3Value(launchOp.getBlockIds(), en.index())
+ : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
+ Value step = steps[en.index()];
+ if (!isConstantOne(step))
+ id = builder.create<MulIOp>(rootForOp.getLoc(), step, id);
+
+ Value ivReplacement =
+ builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
+ en.value()->replaceAllUsesWith(ivReplacement);
+ replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt,
+ launchOp.body());
+ std::advance(lbArgumentIt, 1);
+ std::advance(stepArgumentIt, 1);
+ }
+
+ // Remap the values defined outside the body to use kernel arguments instead.
+ // The list of kernel arguments also contains the lower bounds for loops at
+ // trailing positions, make sure we don't touch those.
+ for (const auto &pair :
+ llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
+ Value from = std::get<0>(pair);
+ Value to = std::get<1>(pair);
+ replaceAllUsesInRegionWith(from, to, launchOp.body());
+ }
+
+ // We are done and can erase the original outermost loop.
+ rootForOp.erase();
+}
+
+// Generic loop to GPU kernel conversion function.
+template <typename OpTy>
+static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
+ unsigned numBlockDims,
+ unsigned numThreadDims) {
+ if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
+ return failure();
+
+ LoopToGpuConverter converter;
+ auto maybeInnerLoop =
+ converter.collectBounds(forOp, numBlockDims + numThreadDims);
+ if (!maybeInnerLoop)
+ return failure();
+ converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
+
+ return success();
+}
+
+// Generic loop to GPU kernel conversion function when loop is imperfectly
+// nested. The workgroup size and num workgroups is provided as input
+template <typename OpTy>
+static LogicalResult convertLoopToGPULaunch(OpTy forOp,
+ ArrayRef<Value> numWorkGroups,
+ ArrayRef<Value> workGroupSize) {
+ if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(),
+ workGroupSize.size()))) {
+ return failure();
+ }
+ return createLaunchFromOp(forOp, numWorkGroups, workGroupSize);
+}
+
+LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
+ unsigned numBlockDims,
+ unsigned numThreadDims) {
+ return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
+}
+
+LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
+ unsigned numBlockDims,
+ unsigned numThreadDims) {
+ return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
+}
+
+LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp,
+ ArrayRef<Value> numWorkGroups,
+ ArrayRef<Value> workGroupSizes) {
+ return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes);
+}
OpenPOWER on IntegriCloud