diff options
Diffstat (limited to 'mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp')
-rw-r--r-- | mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp | 528 |
1 files changed, 528 insertions, 0 deletions
diff --git a/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp b/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp new file mode 100644 index 00000000000..e500d10983c --- /dev/null +++ b/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp @@ -0,0 +1,528 @@ +//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// +// +// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements a straightforward conversion of an loop nest into a GPU +// kernel. The caller is expected to guarantee that the conversion is correct +// or to further transform the kernel to ensure correctness. +// +//===----------------------------------------------------------------------===// + +#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h" + +#include "mlir/Conversion/AffineToStandard/AffineToStandard.h" +#include "mlir/Dialect/AffineOps/AffineOps.h" +#include "mlir/Dialect/GPU/GPUDialect.h" +#include "mlir/Dialect/LoopOps/LoopOps.h" +#include "mlir/Dialect/StandardOps/Ops.h" +#include "mlir/IR/AffineExpr.h" +#include "mlir/IR/Builders.h" +#include "mlir/Transforms/LoopUtils.h" +#include "mlir/Transforms/RegionUtils.h" +#include "llvm/ADT/Sequence.h" +#include "llvm/Support/Debug.h" + +#define DEBUG_TYPE "loops-to-gpu" + +using namespace mlir; +using namespace mlir::loop; + +using llvm::seq; + +// Extract an indexed value from KernelDim3. +static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { + switch (pos) { + case 0: + return dim3.x; + case 1: + return dim3.y; + case 2: + return dim3.z; + default: + llvm_unreachable("dim3 position out of bounds"); + } + return nullptr; +} + +// Get the lower bound-related operands of a loop operation. +static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { + return forOp.getLowerBoundOperands(); +} +static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) { + SmallVector<Value, 1> bounds(1, forOp.lowerBound()); + return bounds; +} + +// Get the upper bound-related operands of a loop operation. +static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { + return forOp.getUpperBoundOperands(); +} +static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) { + SmallVector<Value, 1> bounds(1, forOp.upperBound()); + return bounds; +} + +// Get a Value that corresponds to the loop step. If the step is an attribute, +// materialize a corresponding constant using builder. +static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { + return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep()); +} +static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); } + +// Get a Value for the loop lower bound. If the value requires computation, +// materialize the instructions using builder. +static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { + return lowerAffineLowerBound(forOp, builder); +} +static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) { + return forOp.lowerBound(); +} + +// Get a Value for the loop upper bound. If the value requires computation, +// materialize the instructions using builder. +static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { + return lowerAffineUpperBound(forOp, builder); +} +static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) { + return forOp.upperBound(); +} + +// Check the structure of the loop nest: +// - there are enough loops to map to numDims; +// - the loops are perfectly nested; +// - the loop bounds can be computed above the outermost loop. +// This roughly corresponds to the "matcher" part of the pattern-based +// rewriting infrastructure. +template <typename OpTy> +LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) { + Region &limit = forOp.region(); + for (unsigned i = 0, e = numDims; i < e; ++i) { + Operation *nested = &forOp.getBody()->front(); + if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || + !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) + return forOp.emitError( + "loops with bounds depending on other mapped loops " + "are not supported"); + + // The innermost loop can have an arbitrary body, skip the perfect nesting + // check for it. + if (i == e - 1) + break; + + auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); + if (forOp.getBody()->empty() || std::next(begin, 2) != end) + return forOp.emitError("expected perfectly nested loops in the body"); + + if (!(forOp = dyn_cast<OpTy>(nested))) + return nested->emitError("expected a nested loop"); + } + return success(); +} + +template <typename OpTy> +LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims, + unsigned numThreadDims) { + if (numBlockDims < 1 || numThreadDims < 1) { + LLVM_DEBUG(llvm::dbgs() << "nothing to map"); + return success(); + } + + OpBuilder builder(forOp.getOperation()); + if (numBlockDims > 3) { + return forOp.emitError("cannot map to more than 3 block dimensions"); + } + if (numThreadDims > 3) { + return forOp.emitError("cannot map to more than 3 thread dimensions"); + } + return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); +} + +template <typename OpTy> +LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims, + unsigned numThreadDims) { + if (numBlockDims < 1 || numThreadDims < 1) { + LLVM_DEBUG(llvm::dbgs() << "nothing to map"); + return success(); + } + + if (numBlockDims > 3) { + return forOp.emitError("cannot map to more than 3 block dimensions"); + } + if (numThreadDims > 3) { + return forOp.emitError("cannot map to more than 3 thread dimensions"); + } + if (numBlockDims != numThreadDims) { + // TODO(ravishankarm) : This can probably be relaxed by having a one-trip + // loop for the missing dimension, but there is not reason to handle this + // case for now. + return forOp.emitError( + "mismatch in block dimensions and thread dimensions"); + } + + // Check that the forOp contains perfectly nested loops for numBlockDims + if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) { + return failure(); + } + + // Get to the innermost loop. + for (auto i : seq<unsigned>(0, numBlockDims - 1)) { + forOp = cast<OpTy>(&forOp.getBody()->front()); + (void)i; + } + + // The forOp now points to the body of the innermost loop mapped to blocks. + for (Operation &op : *forOp.getBody()) { + // If the operation is a loop, check that it is mappable to workItems. + if (auto innerLoop = dyn_cast<OpTy>(&op)) { + if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) { + return failure(); + } + continue; + } + // TODO(ravishankarm) : If it is not a loop op, it is assumed that the + // statement is executed by all threads. It might be a collective operation, + // or some non-side effect instruction. Have to decide on "allowable" + // statements and check for those here. + } + return success(); +} + +namespace { +// Helper structure that holds common state of the loop to GPU kernel +// conversion. +struct LoopToGpuConverter { + template <typename OpTy> + Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops); + + template <typename OpTy> + void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, + unsigned numThreadDims); + + // Ranges of the loops mapped to blocks or threads. + SmallVector<Value, 6> dims; + // Lower bounds of the loops mapped to blocks or threads. + SmallVector<Value, 6> lbs; + // Induction variables of the loops mapped to blocks or threads. + SmallVector<Value, 6> ivs; + // Steps of the loops mapped to blocks or threads. + SmallVector<Value, 6> steps; +}; +} // namespace + +// Return true if the value is obviously a constant "one". +static bool isConstantOne(Value value) { + if (auto def = dyn_cast_or_null<ConstantIndexOp>(value->getDefiningOp())) + return def.getValue() == 1; + return false; +} + +// Collect ranges, bounds, steps and induction variables in preparation for +// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. +// This may fail if the IR for computing loop bounds cannot be constructed, for +// example if an affine loop uses semi-affine maps. Return the last loop to be +// mapped on success, llvm::None on failure. +template <typename OpTy> +Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp, + unsigned numLoops) { + OpBuilder builder(forOp.getOperation()); + dims.reserve(numLoops); + lbs.reserve(numLoops); + ivs.reserve(numLoops); + steps.reserve(numLoops); + OpTy currentLoop = forOp; + for (unsigned i = 0; i < numLoops; ++i) { + Value lowerBound = getOrEmitLowerBound(currentLoop, builder); + Value upperBound = getOrEmitUpperBound(currentLoop, builder); + if (!lowerBound || !upperBound) { + return llvm::None; + } + + Value range = + builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound); + Value step = getOrCreateStep(currentLoop, builder); + if (!isConstantOne(step)) + range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step); + dims.push_back(range); + + lbs.push_back(lowerBound); + ivs.push_back(currentLoop.getInductionVar()); + steps.push_back(step); + + if (i != numLoops - 1) + currentLoop = cast<OpTy>(¤tLoop.getBody()->front()); + } + return currentLoop; +} + +/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o +/// be partitioned across workgroups or workitems. The values for the +/// workgroup/workitem id along each dimension is passed in with `ids`. The +/// number of workgroups/workitems along each dimension are passed in with +/// `nids`. The innermost loop is mapped to the x-dimension, followed by the +/// next innermost loop to y-dimension, followed by z-dimension. +template <typename OpTy> +OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids, + ArrayRef<Value> nids) { + auto nDims = ids.size(); + assert(nDims == nids.size()); + for (auto dim : llvm::seq<unsigned>(0, nDims)) { + // TODO(ravishankarm): Don't always need to generate a loop here. If nids >= + // number of iterations of the original loop, this becomes a if + // condition. Though that does rely on how the workgroup/workitem sizes are + // specified to begin with. + mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]); + if (dim != nDims - 1) { + rootForOp = cast<OpTy>(rootForOp.getBody()->front()); + } + } + return rootForOp; +} + +/// Utility method to convert the gpu::KernelDim3 object for representing id of +/// each workgroup/workitem and number of workgroup/workitems along a dimension +/// of the launch into a container. +void packIdAndNumId(gpu::KernelDim3 kernelIds, gpu::KernelDim3 kernelNids, + unsigned nDims, SmallVectorImpl<Value> &ids, + SmallVectorImpl<Value> &nids) { + assert(nDims <= 3 && "invalid number of launch dimensions"); + SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x}; + SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x}; + ids.clear(); + ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end()); + nids.clear(); + nids.append(std::next(allNids.begin(), allNids.size() - nDims), + allNids.end()); +} + +/// Generate the body of the launch operation. +template <typename OpTy> +LogicalResult createLaunchBody(OpBuilder &builder, OpTy rootForOp, + gpu::LaunchOp launchOp, unsigned numBlockDims, + unsigned numThreadDims) { + OpBuilder::InsertionGuard bodyInsertionGuard(builder); + builder.setInsertionPointToEnd(&launchOp.body().front()); + auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc()); + + rootForOp.getOperation()->moveBefore(returnOp); + SmallVector<Value, 3> workgroupID, numWorkGroups; + packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims, + workgroupID, numWorkGroups); + + // Partition the loop for mapping to workgroups. + auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups); + + // Iterate over the body of the loopOp and get the loops to partition for + // thread blocks. + SmallVector<OpTy, 1> threadRootForOps; + for (Operation &op : *loopOp.getBody()) { + if (auto threadRootForOp = dyn_cast<OpTy>(&op)) { + threadRootForOps.push_back(threadRootForOp); + } + } + + SmallVector<Value, 3> workItemID, workGroupSize; + packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(), + numThreadDims, workItemID, workGroupSize); + for (auto &loopOp : threadRootForOps) { + builder.setInsertionPoint(loopOp); + createGPULaunchLoops(loopOp, workItemID, workGroupSize); + } + return success(); +} + +// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the +// given workgroup size and number of workgroups. +template <typename OpTy> +LogicalResult createLaunchFromOp(OpTy rootForOp, ArrayRef<Value> numWorkGroups, + ArrayRef<Value> workGroupSizes) { + OpBuilder builder(rootForOp.getOperation()); + if (numWorkGroups.size() > 3) { + return rootForOp.emitError("invalid ") + << numWorkGroups.size() << "-D workgroup specification"; + } + auto loc = rootForOp.getLoc(); + Value one = builder.create<ConstantOp>( + loc, builder.getIntegerAttr(builder.getIndexType(), 1)); + SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one); + for (auto numWorkGroup : enumerate(numWorkGroups)) { + numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value(); + } + for (auto workGroupSize : enumerate(workGroupSizes)) { + workGroupSize3D[workGroupSize.index()] = workGroupSize.value(); + } + + // Get the values used within the region of the rootForOp but defined above + // it. + llvm::SetVector<Value> valuesToForwardSet; + getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(), + valuesToForwardSet); + // Also add the values used for the lb, ub, and step of the rootForOp. + valuesToForwardSet.insert(rootForOp.getOperands().begin(), + rootForOp.getOperands().end()); + auto valuesToForward = valuesToForwardSet.takeVector(); + auto launchOp = builder.create<gpu::LaunchOp>( + rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1], + numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1], + workGroupSize3D[2], valuesToForward); + if (failed(createLaunchBody(builder, rootForOp, launchOp, + numWorkGroups.size(), workGroupSizes.size()))) { + return failure(); + } + + // Replace values that are used within the region of the launchOp but are + // defined outside. They all are replaced with kernel arguments. + for (const auto &pair : + llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { + Value from = std::get<0>(pair); + Value to = std::get<1>(pair); + replaceAllUsesInRegionWith(from, to, launchOp.body()); + } + return success(); +} + +// Replace the rooted at "rootForOp" with a GPU launch operation. This expects +// "innermostForOp" to point to the last loop to be transformed to the kernel, +// and to have (numBlockDims + numThreadDims) perfectly nested loops between +// "rootForOp" and "innermostForOp". +// TODO(ravishankarm) : This method can be modified to use the +// createLaunchFromOp method, since that is a strict generalization of this +// method. +template <typename OpTy> +void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp, + unsigned numBlockDims, + unsigned numThreadDims) { + OpBuilder builder(rootForOp.getOperation()); + // Prepare the grid and block sizes for the launch operation. If there is + // no loop mapped to a specific dimension, use constant "1" as its size. + Value constOne = (numBlockDims < 3 || numThreadDims < 3) + ? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1) + : nullptr; + Value gridSizeX = dims[0]; + Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne; + Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; + Value blockSizeX = dims[numBlockDims]; + Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; + Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; + + // Create a launch op and move the body region of the innermost loop to the + // launch op. Pass the values defined outside the outermost loop and used + // inside the innermost loop and loop lower bounds as kernel data arguments. + // Still assuming perfect nesting so there are no values other than induction + // variables that are defined in one loop and used in deeper loops. + llvm::SetVector<Value> valuesToForwardSet; + getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(), + valuesToForwardSet); + auto valuesToForward = valuesToForwardSet.takeVector(); + auto originallyForwardedValues = valuesToForward.size(); + valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end()); + valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end()); + auto launchOp = builder.create<gpu::LaunchOp>( + rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, + blockSizeY, blockSizeZ, valuesToForward); + valuesToForward.resize(originallyForwardedValues); + + // Replace the loop terminator (loops contain only a single block) with the + // gpu return and move the operations from the loop body block to the gpu + // launch body block. Do not move the entire block because of the difference + // in block arguments. + Operation &terminator = innermostForOp.getBody()->back(); + Location terminatorLoc = terminator.getLoc(); + terminator.erase(); + builder.setInsertionPointToEnd(innermostForOp.getBody()); + builder.create<gpu::ReturnOp>(terminatorLoc); + launchOp.body().front().getOperations().splice( + launchOp.body().front().begin(), + innermostForOp.getBody()->getOperations()); + + // Remap the loop iterators to use block/thread identifiers instead. Loops + // may iterate from LB with step S whereas GPU thread/block ids always iterate + // from 0 to N with step 1. Therefore, loop induction variables are replaced + // with (gpu-thread/block-id * S) + LB. + builder.setInsertionPointToStart(&launchOp.body().front()); + auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(), + originallyForwardedValues); + auto stepArgumentIt = std::next(lbArgumentIt, lbs.size()); + for (auto en : llvm::enumerate(ivs)) { + Value id = + en.index() < numBlockDims + ? getDim3Value(launchOp.getBlockIds(), en.index()) + : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); + Value step = steps[en.index()]; + if (!isConstantOne(step)) + id = builder.create<MulIOp>(rootForOp.getLoc(), step, id); + + Value ivReplacement = + builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id); + en.value()->replaceAllUsesWith(ivReplacement); + replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt, + launchOp.body()); + std::advance(lbArgumentIt, 1); + std::advance(stepArgumentIt, 1); + } + + // Remap the values defined outside the body to use kernel arguments instead. + // The list of kernel arguments also contains the lower bounds for loops at + // trailing positions, make sure we don't touch those. + for (const auto &pair : + llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { + Value from = std::get<0>(pair); + Value to = std::get<1>(pair); + replaceAllUsesInRegionWith(from, to, launchOp.body()); + } + + // We are done and can erase the original outermost loop. + rootForOp.erase(); +} + +// Generic loop to GPU kernel conversion function. +template <typename OpTy> +static LogicalResult convertLoopNestToGPULaunch(OpTy forOp, + unsigned numBlockDims, + unsigned numThreadDims) { + if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims))) + return failure(); + + LoopToGpuConverter converter; + auto maybeInnerLoop = + converter.collectBounds(forOp, numBlockDims + numThreadDims); + if (!maybeInnerLoop) + return failure(); + converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims); + + return success(); +} + +// Generic loop to GPU kernel conversion function when loop is imperfectly +// nested. The workgroup size and num workgroups is provided as input +template <typename OpTy> +static LogicalResult convertLoopToGPULaunch(OpTy forOp, + ArrayRef<Value> numWorkGroups, + ArrayRef<Value> workGroupSize) { + if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(), + workGroupSize.size()))) { + return failure(); + } + return createLaunchFromOp(forOp, numWorkGroups, workGroupSize); +} + +LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, + unsigned numBlockDims, + unsigned numThreadDims) { + return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); +} + +LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp, + unsigned numBlockDims, + unsigned numThreadDims) { + return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); +} + +LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp, + ArrayRef<Value> numWorkGroups, + ArrayRef<Value> workGroupSizes) { + return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes); +} |