summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Analysis/AffineStructures.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'mlir/lib/Analysis/AffineStructures.cpp')
-rw-r--r--mlir/lib/Analysis/AffineStructures.cpp2854
1 files changed, 2854 insertions, 0 deletions
diff --git a/mlir/lib/Analysis/AffineStructures.cpp b/mlir/lib/Analysis/AffineStructures.cpp
new file mode 100644
index 00000000000..78a869884ee
--- /dev/null
+++ b/mlir/lib/Analysis/AffineStructures.cpp
@@ -0,0 +1,2854 @@
+//===- AffineStructures.cpp - MLIR Affine Structures Class-----------------===//
+//
+// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Structures for affine/polyhedral analysis of MLIR functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Analysis/AffineStructures.h"
+#include "mlir/Dialect/AffineOps/AffineOps.h"
+#include "mlir/Dialect/StandardOps/Ops.h"
+#include "mlir/IR/AffineExprVisitor.h"
+#include "mlir/IR/IntegerSet.h"
+#include "mlir/Support/LLVM.h"
+#include "mlir/Support/MathExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "affine-structures"
+
+using namespace mlir;
+using llvm::SmallDenseMap;
+using llvm::SmallDenseSet;
+
+namespace {
+
+// See comments for SimpleAffineExprFlattener.
+// An AffineExprFlattener extends a SimpleAffineExprFlattener by recording
+// constraint information associated with mod's, floordiv's, and ceildiv's
+// in FlatAffineConstraints 'localVarCst'.
+struct AffineExprFlattener : public SimpleAffineExprFlattener {
+public:
+ // Constraints connecting newly introduced local variables (for mod's and
+ // div's) to existing (dimensional and symbolic) ones. These are always
+ // inequalities.
+ FlatAffineConstraints localVarCst;
+
+ AffineExprFlattener(unsigned nDims, unsigned nSymbols, MLIRContext *ctx)
+ : SimpleAffineExprFlattener(nDims, nSymbols) {
+ localVarCst.reset(nDims, nSymbols, /*numLocals=*/0);
+ }
+
+private:
+ // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
+ // The local identifier added is always a floordiv of a pure add/mul affine
+ // function of other identifiers, coefficients of which are specified in
+ // `dividend' and with respect to the positive constant `divisor'. localExpr
+ // is the simplified tree expression (AffineExpr) corresponding to the
+ // quantifier.
+ void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor,
+ AffineExpr localExpr) override {
+ SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr);
+ // Update localVarCst.
+ localVarCst.addLocalFloorDiv(dividend, divisor);
+ }
+};
+
+} // end anonymous namespace
+
+// Flattens the expressions in map. Returns failure if 'expr' was unable to be
+// flattened (i.e., semi-affine expressions not handled yet).
+static LogicalResult
+getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims,
+ unsigned numSymbols,
+ std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
+ FlatAffineConstraints *localVarCst) {
+ if (exprs.empty()) {
+ localVarCst->reset(numDims, numSymbols);
+ return success();
+ }
+
+ AffineExprFlattener flattener(numDims, numSymbols, exprs[0].getContext());
+ // Use the same flattener to simplify each expression successively. This way
+ // local identifiers / expressions are shared.
+ for (auto expr : exprs) {
+ if (!expr.isPureAffine())
+ return failure();
+
+ flattener.walkPostOrder(expr);
+ }
+
+ assert(flattener.operandExprStack.size() == exprs.size());
+ flattenedExprs->clear();
+ flattenedExprs->assign(flattener.operandExprStack.begin(),
+ flattener.operandExprStack.end());
+
+ if (localVarCst) {
+ localVarCst->clearAndCopyFrom(flattener.localVarCst);
+ }
+
+ return success();
+}
+
+// Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to
+// be flattened (semi-affine expressions not handled yet).
+LogicalResult
+mlir::getFlattenedAffineExpr(AffineExpr expr, unsigned numDims,
+ unsigned numSymbols,
+ SmallVectorImpl<int64_t> *flattenedExpr,
+ FlatAffineConstraints *localVarCst) {
+ std::vector<SmallVector<int64_t, 8>> flattenedExprs;
+ LogicalResult ret = ::getFlattenedAffineExprs({expr}, numDims, numSymbols,
+ &flattenedExprs, localVarCst);
+ *flattenedExpr = flattenedExprs[0];
+ return ret;
+}
+
+/// Flattens the expressions in map. Returns failure if 'expr' was unable to be
+/// flattened (i.e., semi-affine expressions not handled yet).
+LogicalResult mlir::getFlattenedAffineExprs(
+ AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
+ FlatAffineConstraints *localVarCst) {
+ if (map.getNumResults() == 0) {
+ localVarCst->reset(map.getNumDims(), map.getNumSymbols());
+ return success();
+ }
+ return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(),
+ map.getNumSymbols(), flattenedExprs,
+ localVarCst);
+}
+
+LogicalResult mlir::getFlattenedAffineExprs(
+ IntegerSet set, std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
+ FlatAffineConstraints *localVarCst) {
+ if (set.getNumConstraints() == 0) {
+ localVarCst->reset(set.getNumDims(), set.getNumSymbols());
+ return success();
+ }
+ return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(),
+ set.getNumSymbols(), flattenedExprs,
+ localVarCst);
+}
+
+//===----------------------------------------------------------------------===//
+// MutableAffineMap.
+//===----------------------------------------------------------------------===//
+
+MutableAffineMap::MutableAffineMap(AffineMap map)
+ : numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
+ // A map always has at least 1 result by construction
+ context(map.getResult(0).getContext()) {
+ for (auto result : map.getResults())
+ results.push_back(result);
+}
+
+void MutableAffineMap::reset(AffineMap map) {
+ results.clear();
+ numDims = map.getNumDims();
+ numSymbols = map.getNumSymbols();
+ // A map always has at least 1 result by construction
+ context = map.getResult(0).getContext();
+ for (auto result : map.getResults())
+ results.push_back(result);
+}
+
+bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
+ if (results[idx].isMultipleOf(factor))
+ return true;
+
+ // TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
+ // complete this (for a more powerful analysis).
+ return false;
+}
+
+// Simplifies the result affine expressions of this map. The expressions have to
+// be pure for the simplification implemented.
+void MutableAffineMap::simplify() {
+ // Simplify each of the results if possible.
+ // TODO(ntv): functional-style map
+ for (unsigned i = 0, e = getNumResults(); i < e; i++) {
+ results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
+ }
+}
+
+AffineMap MutableAffineMap::getAffineMap() const {
+ return AffineMap::get(numDims, numSymbols, results);
+}
+
+MutableIntegerSet::MutableIntegerSet(IntegerSet set, MLIRContext *context)
+ : numDims(set.getNumDims()), numSymbols(set.getNumSymbols()) {
+ // TODO(bondhugula)
+}
+
+// Universal set.
+MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols,
+ MLIRContext *context)
+ : numDims(numDims), numSymbols(numSymbols) {}
+
+//===----------------------------------------------------------------------===//
+// AffineValueMap.
+//===----------------------------------------------------------------------===//
+
+AffineValueMap::AffineValueMap(AffineMap map, ArrayRef<Value> operands,
+ ArrayRef<Value> results)
+ : map(map), operands(operands.begin(), operands.end()),
+ results(results.begin(), results.end()) {}
+
+AffineValueMap::AffineValueMap(AffineApplyOp applyOp)
+ : map(applyOp.getAffineMap()),
+ operands(applyOp.operand_begin(), applyOp.operand_end()) {
+ results.push_back(applyOp.getResult());
+}
+
+AffineValueMap::AffineValueMap(AffineBound bound)
+ : map(bound.getMap()),
+ operands(bound.operand_begin(), bound.operand_end()) {}
+
+void AffineValueMap::reset(AffineMap map, ArrayRef<Value> operands,
+ ArrayRef<Value> results) {
+ this->map.reset(map);
+ this->operands.assign(operands.begin(), operands.end());
+ this->results.assign(results.begin(), results.end());
+}
+
+void AffineValueMap::difference(const AffineValueMap &a,
+ const AffineValueMap &b, AffineValueMap *res) {
+ assert(a.getNumResults() == b.getNumResults() && "invalid inputs");
+
+ // Fully compose A's map + operands.
+ auto aMap = a.getAffineMap();
+ SmallVector<Value, 4> aOperands(a.getOperands().begin(),
+ a.getOperands().end());
+ fullyComposeAffineMapAndOperands(&aMap, &aOperands);
+
+ // Use the affine apply normalizer to get B's map into A's coordinate space.
+ AffineApplyNormalizer normalizer(aMap, aOperands);
+ SmallVector<Value, 4> bOperands(b.getOperands().begin(),
+ b.getOperands().end());
+ auto bMap = b.getAffineMap();
+ normalizer.normalize(&bMap, &bOperands);
+
+ assert(std::equal(bOperands.begin(), bOperands.end(),
+ normalizer.getOperands().begin()) &&
+ "operands are expected to be the same after normalization");
+
+ // Construct the difference expressions.
+ SmallVector<AffineExpr, 4> diffExprs;
+ diffExprs.reserve(a.getNumResults());
+ for (unsigned i = 0, e = bMap.getNumResults(); i < e; ++i)
+ diffExprs.push_back(normalizer.getAffineMap().getResult(i) -
+ bMap.getResult(i));
+
+ auto diffMap = AffineMap::get(normalizer.getNumDims(),
+ normalizer.getNumSymbols(), diffExprs);
+ canonicalizeMapAndOperands(&diffMap, &bOperands);
+ diffMap = simplifyAffineMap(diffMap);
+ res->reset(diffMap, bOperands);
+}
+
+// Returns true and sets 'indexOfMatch' if 'valueToMatch' is found in
+// 'valuesToSearch' beginning at 'indexStart'. Returns false otherwise.
+static bool findIndex(Value valueToMatch, ArrayRef<Value> valuesToSearch,
+ unsigned indexStart, unsigned *indexOfMatch) {
+ unsigned size = valuesToSearch.size();
+ for (unsigned i = indexStart; i < size; ++i) {
+ if (valueToMatch == valuesToSearch[i]) {
+ *indexOfMatch = i;
+ return true;
+ }
+ }
+ return false;
+}
+
+inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const {
+ return map.isMultipleOf(idx, factor);
+}
+
+/// This method uses the invariant that operands are always positionally aligned
+/// with the AffineDimExpr in the underlying AffineMap.
+bool AffineValueMap::isFunctionOf(unsigned idx, Value value) const {
+ unsigned index;
+ if (!findIndex(value, operands, /*indexStart=*/0, &index)) {
+ return false;
+ }
+ auto expr = const_cast<AffineValueMap *>(this)->getAffineMap().getResult(idx);
+ // TODO(ntv): this is better implemented on a flattened representation.
+ // At least for now it is conservative.
+ return expr.isFunctionOfDim(index);
+}
+
+Value AffineValueMap::getOperand(unsigned i) const {
+ return static_cast<Value>(operands[i]);
+}
+
+ArrayRef<Value> AffineValueMap::getOperands() const {
+ return ArrayRef<Value>(operands);
+}
+
+AffineMap AffineValueMap::getAffineMap() const { return map.getAffineMap(); }
+
+AffineValueMap::~AffineValueMap() {}
+
+//===----------------------------------------------------------------------===//
+// FlatAffineConstraints.
+//===----------------------------------------------------------------------===//
+
+// Copy constructor.
+FlatAffineConstraints::FlatAffineConstraints(
+ const FlatAffineConstraints &other) {
+ numReservedCols = other.numReservedCols;
+ numDims = other.getNumDimIds();
+ numSymbols = other.getNumSymbolIds();
+ numIds = other.getNumIds();
+
+ auto otherIds = other.getIds();
+ ids.reserve(numReservedCols);
+ ids.append(otherIds.begin(), otherIds.end());
+
+ unsigned numReservedEqualities = other.getNumReservedEqualities();
+ unsigned numReservedInequalities = other.getNumReservedInequalities();
+
+ equalities.reserve(numReservedEqualities * numReservedCols);
+ inequalities.reserve(numReservedInequalities * numReservedCols);
+
+ for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
+ addInequality(other.getInequality(r));
+ }
+ for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
+ addEquality(other.getEquality(r));
+ }
+}
+
+// Clones this object.
+std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const {
+ return std::make_unique<FlatAffineConstraints>(*this);
+}
+
+// Construct from an IntegerSet.
+FlatAffineConstraints::FlatAffineConstraints(IntegerSet set)
+ : numReservedCols(set.getNumInputs() + 1),
+ numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()),
+ numSymbols(set.getNumSymbols()) {
+ equalities.reserve(set.getNumEqualities() * numReservedCols);
+ inequalities.reserve(set.getNumInequalities() * numReservedCols);
+ ids.resize(numIds, None);
+
+ // Flatten expressions and add them to the constraint system.
+ std::vector<SmallVector<int64_t, 8>> flatExprs;
+ FlatAffineConstraints localVarCst;
+ if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) {
+ assert(false && "flattening unimplemented for semi-affine integer sets");
+ return;
+ }
+ assert(flatExprs.size() == set.getNumConstraints());
+ for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) {
+ addLocalId(getNumLocalIds());
+ }
+
+ for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
+ const auto &flatExpr = flatExprs[i];
+ assert(flatExpr.size() == getNumCols());
+ if (set.getEqFlags()[i]) {
+ addEquality(flatExpr);
+ } else {
+ addInequality(flatExpr);
+ }
+ }
+ // Add the other constraints involving local id's from flattening.
+ append(localVarCst);
+}
+
+void FlatAffineConstraints::reset(unsigned numReservedInequalities,
+ unsigned numReservedEqualities,
+ unsigned newNumReservedCols,
+ unsigned newNumDims, unsigned newNumSymbols,
+ unsigned newNumLocals,
+ ArrayRef<Value> idArgs) {
+ assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 &&
+ "minimum 1 column");
+ numReservedCols = newNumReservedCols;
+ numDims = newNumDims;
+ numSymbols = newNumSymbols;
+ numIds = numDims + numSymbols + newNumLocals;
+ assert(idArgs.empty() || idArgs.size() == numIds);
+
+ clearConstraints();
+ if (numReservedEqualities >= 1)
+ equalities.reserve(newNumReservedCols * numReservedEqualities);
+ if (numReservedInequalities >= 1)
+ inequalities.reserve(newNumReservedCols * numReservedInequalities);
+ if (idArgs.empty()) {
+ ids.resize(numIds, None);
+ } else {
+ ids.assign(idArgs.begin(), idArgs.end());
+ }
+}
+
+void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols,
+ unsigned newNumLocals,
+ ArrayRef<Value> idArgs) {
+ reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims,
+ newNumSymbols, newNumLocals, idArgs);
+}
+
+void FlatAffineConstraints::append(const FlatAffineConstraints &other) {
+ assert(other.getNumCols() == getNumCols());
+ assert(other.getNumDimIds() == getNumDimIds());
+ assert(other.getNumSymbolIds() == getNumSymbolIds());
+
+ inequalities.reserve(inequalities.size() +
+ other.getNumInequalities() * numReservedCols);
+ equalities.reserve(equalities.size() +
+ other.getNumEqualities() * numReservedCols);
+
+ for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
+ addInequality(other.getInequality(r));
+ }
+ for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
+ addEquality(other.getEquality(r));
+ }
+}
+
+void FlatAffineConstraints::addLocalId(unsigned pos) {
+ addId(IdKind::Local, pos);
+}
+
+void FlatAffineConstraints::addDimId(unsigned pos, Value id) {
+ addId(IdKind::Dimension, pos, id);
+}
+
+void FlatAffineConstraints::addSymbolId(unsigned pos, Value id) {
+ addId(IdKind::Symbol, pos, id);
+}
+
+/// Adds a dimensional identifier. The added column is initialized to
+/// zero.
+void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value id) {
+ if (kind == IdKind::Dimension) {
+ assert(pos <= getNumDimIds());
+ } else if (kind == IdKind::Symbol) {
+ assert(pos <= getNumSymbolIds());
+ } else {
+ assert(pos <= getNumLocalIds());
+ }
+
+ unsigned oldNumReservedCols = numReservedCols;
+
+ // Check if a resize is necessary.
+ if (getNumCols() + 1 > numReservedCols) {
+ equalities.resize(getNumEqualities() * (getNumCols() + 1));
+ inequalities.resize(getNumInequalities() * (getNumCols() + 1));
+ numReservedCols++;
+ }
+
+ int absolutePos;
+
+ if (kind == IdKind::Dimension) {
+ absolutePos = pos;
+ numDims++;
+ } else if (kind == IdKind::Symbol) {
+ absolutePos = pos + getNumDimIds();
+ numSymbols++;
+ } else {
+ absolutePos = pos + getNumDimIds() + getNumSymbolIds();
+ }
+ numIds++;
+
+ // Note that getNumCols() now will already return the new size, which will be
+ // at least one.
+ int numInequalities = static_cast<int>(getNumInequalities());
+ int numEqualities = static_cast<int>(getNumEqualities());
+ int numCols = static_cast<int>(getNumCols());
+ for (int r = numInequalities - 1; r >= 0; r--) {
+ for (int c = numCols - 2; c >= 0; c--) {
+ if (c < absolutePos)
+ atIneq(r, c) = inequalities[r * oldNumReservedCols + c];
+ else
+ atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c];
+ }
+ atIneq(r, absolutePos) = 0;
+ }
+
+ for (int r = numEqualities - 1; r >= 0; r--) {
+ for (int c = numCols - 2; c >= 0; c--) {
+ // All values in column absolutePositions < absolutePos have the same
+ // coordinates in the 2-d view of the coefficient buffer.
+ if (c < absolutePos)
+ atEq(r, c) = equalities[r * oldNumReservedCols + c];
+ else
+ // Those at absolutePosition >= absolutePos, get a shifted
+ // absolutePosition.
+ atEq(r, c + 1) = equalities[r * oldNumReservedCols + c];
+ }
+ // Initialize added dimension to zero.
+ atEq(r, absolutePos) = 0;
+ }
+
+ // If an 'id' is provided, insert it; otherwise use None.
+ if (id) {
+ ids.insert(ids.begin() + absolutePos, id);
+ } else {
+ ids.insert(ids.begin() + absolutePos, None);
+ }
+ assert(ids.size() == getNumIds());
+}
+
+/// Checks if two constraint systems are in the same space, i.e., if they are
+/// associated with the same set of identifiers, appearing in the same order.
+static bool areIdsAligned(const FlatAffineConstraints &A,
+ const FlatAffineConstraints &B) {
+ return A.getNumDimIds() == B.getNumDimIds() &&
+ A.getNumSymbolIds() == B.getNumSymbolIds() &&
+ A.getNumIds() == B.getNumIds() && A.getIds().equals(B.getIds());
+}
+
+/// Calls areIdsAligned to check if two constraint systems have the same set
+/// of identifiers in the same order.
+bool FlatAffineConstraints::areIdsAlignedWithOther(
+ const FlatAffineConstraints &other) {
+ return areIdsAligned(*this, other);
+}
+
+/// Checks if the SSA values associated with `cst''s identifiers are unique.
+static bool LLVM_ATTRIBUTE_UNUSED
+areIdsUnique(const FlatAffineConstraints &cst) {
+ SmallPtrSet<Value, 8> uniqueIds;
+ for (auto id : cst.getIds()) {
+ if (id.hasValue() && !uniqueIds.insert(id.getValue()).second)
+ return false;
+ }
+ return true;
+}
+
+// Swap the posA^th identifier with the posB^th identifier.
+static void swapId(FlatAffineConstraints *A, unsigned posA, unsigned posB) {
+ assert(posA < A->getNumIds() && "invalid position A");
+ assert(posB < A->getNumIds() && "invalid position B");
+
+ if (posA == posB)
+ return;
+
+ for (unsigned r = 0, e = A->getNumInequalities(); r < e; r++) {
+ std::swap(A->atIneq(r, posA), A->atIneq(r, posB));
+ }
+ for (unsigned r = 0, e = A->getNumEqualities(); r < e; r++) {
+ std::swap(A->atEq(r, posA), A->atEq(r, posB));
+ }
+ std::swap(A->getId(posA), A->getId(posB));
+}
+
+/// Merge and align the identifiers of A and B starting at 'offset', so that
+/// both constraint systems get the union of the contained identifiers that is
+/// dimension-wise and symbol-wise unique; both constraint systems are updated
+/// so that they have the union of all identifiers, with A's original
+/// identifiers appearing first followed by any of B's identifiers that didn't
+/// appear in A. Local identifiers of each system are by design separate/local
+/// and are placed one after other (A's followed by B's).
+// Eg: Input: A has ((%i %j) [%M %N]) and B has (%k, %j) [%P, %N, %M])
+// Output: both A, B have (%i, %j, %k) [%M, %N, %P]
+//
+static void mergeAndAlignIds(unsigned offset, FlatAffineConstraints *A,
+ FlatAffineConstraints *B) {
+ assert(offset <= A->getNumDimIds() && offset <= B->getNumDimIds());
+ // A merge/align isn't meaningful if a cst's ids aren't distinct.
+ assert(areIdsUnique(*A) && "A's id values aren't unique");
+ assert(areIdsUnique(*B) && "B's id values aren't unique");
+
+ assert(std::all_of(A->getIds().begin() + offset,
+ A->getIds().begin() + A->getNumDimAndSymbolIds(),
+ [](Optional<Value> id) { return id.hasValue(); }));
+
+ assert(std::all_of(B->getIds().begin() + offset,
+ B->getIds().begin() + B->getNumDimAndSymbolIds(),
+ [](Optional<Value> id) { return id.hasValue(); }));
+
+ // Place local id's of A after local id's of B.
+ for (unsigned l = 0, e = A->getNumLocalIds(); l < e; l++) {
+ B->addLocalId(0);
+ }
+ for (unsigned t = 0, e = B->getNumLocalIds() - A->getNumLocalIds(); t < e;
+ t++) {
+ A->addLocalId(A->getNumLocalIds());
+ }
+
+ SmallVector<Value, 4> aDimValues, aSymValues;
+ A->getIdValues(offset, A->getNumDimIds(), &aDimValues);
+ A->getIdValues(A->getNumDimIds(), A->getNumDimAndSymbolIds(), &aSymValues);
+ {
+ // Merge dims from A into B.
+ unsigned d = offset;
+ for (auto aDimValue : aDimValues) {
+ unsigned loc;
+ if (B->findId(*aDimValue, &loc)) {
+ assert(loc >= offset && "A's dim appears in B's aligned range");
+ assert(loc < B->getNumDimIds() &&
+ "A's dim appears in B's non-dim position");
+ swapId(B, d, loc);
+ } else {
+ B->addDimId(d);
+ B->setIdValue(d, aDimValue);
+ }
+ d++;
+ }
+
+ // Dimensions that are in B, but not in A, are added at the end.
+ for (unsigned t = A->getNumDimIds(), e = B->getNumDimIds(); t < e; t++) {
+ A->addDimId(A->getNumDimIds());
+ A->setIdValue(A->getNumDimIds() - 1, B->getIdValue(t));
+ }
+ }
+ {
+ // Merge symbols: merge A's symbols into B first.
+ unsigned s = B->getNumDimIds();
+ for (auto aSymValue : aSymValues) {
+ unsigned loc;
+ if (B->findId(*aSymValue, &loc)) {
+ assert(loc >= B->getNumDimIds() && loc < B->getNumDimAndSymbolIds() &&
+ "A's symbol appears in B's non-symbol position");
+ swapId(B, s, loc);
+ } else {
+ B->addSymbolId(s - B->getNumDimIds());
+ B->setIdValue(s, aSymValue);
+ }
+ s++;
+ }
+ // Symbols that are in B, but not in A, are added at the end.
+ for (unsigned t = A->getNumDimAndSymbolIds(),
+ e = B->getNumDimAndSymbolIds();
+ t < e; t++) {
+ A->addSymbolId(A->getNumSymbolIds());
+ A->setIdValue(A->getNumDimAndSymbolIds() - 1, B->getIdValue(t));
+ }
+ }
+ assert(areIdsAligned(*A, *B) && "IDs expected to be aligned");
+}
+
+// Call 'mergeAndAlignIds' to align constraint systems of 'this' and 'other'.
+void FlatAffineConstraints::mergeAndAlignIdsWithOther(
+ unsigned offset, FlatAffineConstraints *other) {
+ mergeAndAlignIds(offset, this, other);
+}
+
+// This routine may add additional local variables if the flattened expression
+// corresponding to the map has such variables due to mod's, ceildiv's, and
+// floordiv's in it.
+LogicalResult FlatAffineConstraints::composeMap(const AffineValueMap *vMap) {
+ std::vector<SmallVector<int64_t, 8>> flatExprs;
+ FlatAffineConstraints localCst;
+ if (failed(getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs,
+ &localCst))) {
+ LLVM_DEBUG(llvm::dbgs()
+ << "composition unimplemented for semi-affine maps\n");
+ return failure();
+ }
+ assert(flatExprs.size() == vMap->getNumResults());
+
+ // Add localCst information.
+ if (localCst.getNumLocalIds() > 0) {
+ localCst.setIdValues(0, /*end=*/localCst.getNumDimAndSymbolIds(),
+ /*values=*/vMap->getOperands());
+ // Align localCst and this.
+ mergeAndAlignIds(/*offset=*/0, &localCst, this);
+ // Finally, append localCst to this constraint set.
+ append(localCst);
+ }
+
+ // Add dimensions corresponding to the map's results.
+ for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) {
+ // TODO: Consider using a batched version to add a range of IDs.
+ addDimId(0);
+ }
+
+ // We add one equality for each result connecting the result dim of the map to
+ // the other identifiers.
+ // For eg: if the expression is 16*i0 + i1, and this is the r^th
+ // iteration/result of the value map, we are adding the equality:
+ // d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
+ // add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
+ for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
+ const auto &flatExpr = flatExprs[r];
+ assert(flatExpr.size() >= vMap->getNumOperands() + 1);
+
+ // eqToAdd is the equality corresponding to the flattened affine expression.
+ SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
+ // Set the coefficient for this result to one.
+ eqToAdd[r] = 1;
+
+ // Dims and symbols.
+ for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) {
+ unsigned loc;
+ bool ret = findId(*vMap->getOperand(i), &loc);
+ assert(ret && "value map's id can't be found");
+ (void)ret;
+ // Negate 'eq[r]' since the newly added dimension will be set to this one.
+ eqToAdd[loc] = -flatExpr[i];
+ }
+ // Local vars common to eq and localCst are at the beginning.
+ unsigned j = getNumDimIds() + getNumSymbolIds();
+ unsigned end = flatExpr.size() - 1;
+ for (unsigned i = vMap->getNumOperands(); i < end; i++, j++) {
+ eqToAdd[j] = -flatExpr[i];
+ }
+
+ // Constant term.
+ eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
+
+ // Add the equality connecting the result of the map to this constraint set.
+ addEquality(eqToAdd);
+ }
+
+ return success();
+}
+
+// Similar to composeMap except that no Value's need be associated with the
+// constraint system nor are they looked at -- since the dimensions and
+// symbols of 'other' are expected to correspond 1:1 to 'this' system. It
+// is thus not convenient to share code with composeMap.
+LogicalResult FlatAffineConstraints::composeMatchingMap(AffineMap other) {
+ assert(other.getNumDims() == getNumDimIds() && "dim mismatch");
+ assert(other.getNumSymbols() == getNumSymbolIds() && "symbol mismatch");
+
+ std::vector<SmallVector<int64_t, 8>> flatExprs;
+ FlatAffineConstraints localCst;
+ if (failed(getFlattenedAffineExprs(other, &flatExprs, &localCst))) {
+ LLVM_DEBUG(llvm::dbgs()
+ << "composition unimplemented for semi-affine maps\n");
+ return failure();
+ }
+ assert(flatExprs.size() == other.getNumResults());
+
+ // Add localCst information.
+ if (localCst.getNumLocalIds() > 0) {
+ // Place local id's of A after local id's of B.
+ for (unsigned l = 0, e = localCst.getNumLocalIds(); l < e; l++) {
+ addLocalId(0);
+ }
+ // Finally, append localCst to this constraint set.
+ append(localCst);
+ }
+
+ // Add dimensions corresponding to the map's results.
+ for (unsigned t = 0, e = other.getNumResults(); t < e; t++) {
+ addDimId(0);
+ }
+
+ // We add one equality for each result connecting the result dim of the map to
+ // the other identifiers.
+ // For eg: if the expression is 16*i0 + i1, and this is the r^th
+ // iteration/result of the value map, we are adding the equality:
+ // d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
+ // add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
+ for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
+ const auto &flatExpr = flatExprs[r];
+ assert(flatExpr.size() >= other.getNumInputs() + 1);
+
+ // eqToAdd is the equality corresponding to the flattened affine expression.
+ SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
+ // Set the coefficient for this result to one.
+ eqToAdd[r] = 1;
+
+ // Dims and symbols.
+ for (unsigned i = 0, f = other.getNumInputs(); i < f; i++) {
+ // Negate 'eq[r]' since the newly added dimension will be set to this one.
+ eqToAdd[e + i] = -flatExpr[i];
+ }
+ // Local vars common to eq and localCst are at the beginning.
+ unsigned j = getNumDimIds() + getNumSymbolIds();
+ unsigned end = flatExpr.size() - 1;
+ for (unsigned i = other.getNumInputs(); i < end; i++, j++) {
+ eqToAdd[j] = -flatExpr[i];
+ }
+
+ // Constant term.
+ eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
+
+ // Add the equality connecting the result of the map to this constraint set.
+ addEquality(eqToAdd);
+ }
+
+ return success();
+}
+
+// Turn a dimension into a symbol.
+static void turnDimIntoSymbol(FlatAffineConstraints *cst, Value id) {
+ unsigned pos;
+ if (cst->findId(id, &pos) && pos < cst->getNumDimIds()) {
+ swapId(cst, pos, cst->getNumDimIds() - 1);
+ cst->setDimSymbolSeparation(cst->getNumSymbolIds() + 1);
+ }
+}
+
+// Turn a symbol into a dimension.
+static void turnSymbolIntoDim(FlatAffineConstraints *cst, Value id) {
+ unsigned pos;
+ if (cst->findId(id, &pos) && pos >= cst->getNumDimIds() &&
+ pos < cst->getNumDimAndSymbolIds()) {
+ swapId(cst, pos, cst->getNumDimIds());
+ cst->setDimSymbolSeparation(cst->getNumSymbolIds() - 1);
+ }
+}
+
+// Changes all symbol identifiers which are loop IVs to dim identifiers.
+void FlatAffineConstraints::convertLoopIVSymbolsToDims() {
+ // Gather all symbols which are loop IVs.
+ SmallVector<Value, 4> loopIVs;
+ for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) {
+ if (ids[i].hasValue() && getForInductionVarOwner(ids[i].getValue()))
+ loopIVs.push_back(ids[i].getValue());
+ }
+ // Turn each symbol in 'loopIVs' into a dim identifier.
+ for (auto iv : loopIVs) {
+ turnSymbolIntoDim(this, *iv);
+ }
+}
+
+void FlatAffineConstraints::addInductionVarOrTerminalSymbol(Value id) {
+ if (containsId(*id))
+ return;
+
+ // Caller is expected to fully compose map/operands if necessary.
+ assert((isTopLevelValue(id) || isForInductionVar(id)) &&
+ "non-terminal symbol / loop IV expected");
+ // Outer loop IVs could be used in forOp's bounds.
+ if (auto loop = getForInductionVarOwner(id)) {
+ addDimId(getNumDimIds(), id);
+ if (failed(this->addAffineForOpDomain(loop)))
+ LLVM_DEBUG(
+ loop.emitWarning("failed to add domain info to constraint system"));
+ return;
+ }
+ // Add top level symbol.
+ addSymbolId(getNumSymbolIds(), id);
+ // Check if the symbol is a constant.
+ if (auto constOp = dyn_cast_or_null<ConstantIndexOp>(id->getDefiningOp()))
+ setIdToConstant(*id, constOp.getValue());
+}
+
+LogicalResult FlatAffineConstraints::addAffineForOpDomain(AffineForOp forOp) {
+ unsigned pos;
+ // Pre-condition for this method.
+ if (!findId(*forOp.getInductionVar(), &pos)) {
+ assert(false && "Value not found");
+ return failure();
+ }
+
+ int64_t step = forOp.getStep();
+ if (step != 1) {
+ if (!forOp.hasConstantLowerBound())
+ forOp.emitWarning("domain conservatively approximated");
+ else {
+ // Add constraints for the stride.
+ // (iv - lb) % step = 0 can be written as:
+ // (iv - lb) - step * q = 0 where q = (iv - lb) / step.
+ // Add local variable 'q' and add the above equality.
+ // The first constraint is q = (iv - lb) floordiv step
+ SmallVector<int64_t, 8> dividend(getNumCols(), 0);
+ int64_t lb = forOp.getConstantLowerBound();
+ dividend[pos] = 1;
+ dividend.back() -= lb;
+ addLocalFloorDiv(dividend, step);
+ // Second constraint: (iv - lb) - step * q = 0.
+ SmallVector<int64_t, 8> eq(getNumCols(), 0);
+ eq[pos] = 1;
+ eq.back() -= lb;
+ // For the local var just added above.
+ eq[getNumCols() - 2] = -step;
+ addEquality(eq);
+ }
+ }
+
+ if (forOp.hasConstantLowerBound()) {
+ addConstantLowerBound(pos, forOp.getConstantLowerBound());
+ } else {
+ // Non-constant lower bound case.
+ SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands().begin(),
+ forOp.getLowerBoundOperands().end());
+ if (failed(addLowerOrUpperBound(pos, forOp.getLowerBoundMap(), lbOperands,
+ /*eq=*/false, /*lower=*/true)))
+ return failure();
+ }
+
+ if (forOp.hasConstantUpperBound()) {
+ addConstantUpperBound(pos, forOp.getConstantUpperBound() - 1);
+ return success();
+ }
+ // Non-constant upper bound case.
+ SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands().begin(),
+ forOp.getUpperBoundOperands().end());
+ return addLowerOrUpperBound(pos, forOp.getUpperBoundMap(), ubOperands,
+ /*eq=*/false, /*lower=*/false);
+}
+
+// Searches for a constraint with a non-zero coefficient at 'colIdx' in
+// equality (isEq=true) or inequality (isEq=false) constraints.
+// Returns true and sets row found in search in 'rowIdx'.
+// Returns false otherwise.
+static bool
+findConstraintWithNonZeroAt(const FlatAffineConstraints &constraints,
+ unsigned colIdx, bool isEq, unsigned *rowIdx) {
+ auto at = [&](unsigned rowIdx) -> int64_t {
+ return isEq ? constraints.atEq(rowIdx, colIdx)
+ : constraints.atIneq(rowIdx, colIdx);
+ };
+ unsigned e =
+ isEq ? constraints.getNumEqualities() : constraints.getNumInequalities();
+ for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
+ if (at(*rowIdx) != 0) {
+ return true;
+ }
+ }
+ return false;
+}
+
+// Normalizes the coefficient values across all columns in 'rowIDx' by their
+// GCD in equality or inequality constraints as specified by 'isEq'.
+template <bool isEq>
+static void normalizeConstraintByGCD(FlatAffineConstraints *constraints,
+ unsigned rowIdx) {
+ auto at = [&](unsigned colIdx) -> int64_t {
+ return isEq ? constraints->atEq(rowIdx, colIdx)
+ : constraints->atIneq(rowIdx, colIdx);
+ };
+ uint64_t gcd = std::abs(at(0));
+ for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) {
+ gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j)));
+ }
+ if (gcd > 0 && gcd != 1) {
+ for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) {
+ int64_t v = at(j) / static_cast<int64_t>(gcd);
+ isEq ? constraints->atEq(rowIdx, j) = v
+ : constraints->atIneq(rowIdx, j) = v;
+ }
+ }
+}
+
+void FlatAffineConstraints::normalizeConstraintsByGCD() {
+ for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
+ normalizeConstraintByGCD</*isEq=*/true>(this, i);
+ }
+ for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
+ normalizeConstraintByGCD</*isEq=*/false>(this, i);
+ }
+}
+
+bool FlatAffineConstraints::hasConsistentState() const {
+ if (inequalities.size() != getNumInequalities() * numReservedCols)
+ return false;
+ if (equalities.size() != getNumEqualities() * numReservedCols)
+ return false;
+ if (ids.size() != getNumIds())
+ return false;
+
+ // Catches errors where numDims, numSymbols, numIds aren't consistent.
+ if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds)
+ return false;
+
+ return true;
+}
+
+/// Checks all rows of equality/inequality constraints for trivial
+/// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
+/// after elimination. Returns 'true' if an invalid constraint is found;
+/// 'false' otherwise.
+bool FlatAffineConstraints::hasInvalidConstraint() const {
+ assert(hasConsistentState());
+ auto check = [&](bool isEq) -> bool {
+ unsigned numCols = getNumCols();
+ unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
+ for (unsigned i = 0, e = numRows; i < e; ++i) {
+ unsigned j;
+ for (j = 0; j < numCols - 1; ++j) {
+ int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
+ // Skip rows with non-zero variable coefficients.
+ if (v != 0)
+ break;
+ }
+ if (j < numCols - 1) {
+ continue;
+ }
+ // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
+ // Example invalid constraints include: '1 == 0' or '-1 >= 0'
+ int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
+ if ((isEq && v != 0) || (!isEq && v < 0)) {
+ return true;
+ }
+ }
+ return false;
+ };
+ if (check(/*isEq=*/true))
+ return true;
+ return check(/*isEq=*/false);
+}
+
+// Eliminate identifier from constraint at 'rowIdx' based on coefficient at
+// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
+// updated as they have already been eliminated.
+static void eliminateFromConstraint(FlatAffineConstraints *constraints,
+ unsigned rowIdx, unsigned pivotRow,
+ unsigned pivotCol, unsigned elimColStart,
+ bool isEq) {
+ // Skip if equality 'rowIdx' if same as 'pivotRow'.
+ if (isEq && rowIdx == pivotRow)
+ return;
+ auto at = [&](unsigned i, unsigned j) -> int64_t {
+ return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
+ };
+ int64_t leadCoeff = at(rowIdx, pivotCol);
+ // Skip if leading coefficient at 'rowIdx' is already zero.
+ if (leadCoeff == 0)
+ return;
+ int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
+ int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
+ int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
+ int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
+ int64_t rowMultiplier = lcm / std::abs(leadCoeff);
+
+ unsigned numCols = constraints->getNumCols();
+ for (unsigned j = 0; j < numCols; ++j) {
+ // Skip updating column 'j' if it was just eliminated.
+ if (j >= elimColStart && j < pivotCol)
+ continue;
+ int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
+ rowMultiplier * at(rowIdx, j);
+ isEq ? constraints->atEq(rowIdx, j) = v
+ : constraints->atIneq(rowIdx, j) = v;
+ }
+}
+
+// Remove coefficients in column range [colStart, colLimit) in place.
+// This removes in data in the specified column range, and copies any
+// remaining valid data into place.
+static void shiftColumnsToLeft(FlatAffineConstraints *constraints,
+ unsigned colStart, unsigned colLimit,
+ bool isEq) {
+ assert(colLimit <= constraints->getNumIds());
+ if (colLimit <= colStart)
+ return;
+
+ unsigned numCols = constraints->getNumCols();
+ unsigned numRows = isEq ? constraints->getNumEqualities()
+ : constraints->getNumInequalities();
+ unsigned numToEliminate = colLimit - colStart;
+ for (unsigned r = 0, e = numRows; r < e; ++r) {
+ for (unsigned c = colLimit; c < numCols; ++c) {
+ if (isEq) {
+ constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c);
+ } else {
+ constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c);
+ }
+ }
+ }
+}
+
+// Removes identifiers in column range [idStart, idLimit), and copies any
+// remaining valid data into place, and updates member variables.
+void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) {
+ assert(idLimit < getNumCols() && "invalid id limit");
+
+ if (idStart >= idLimit)
+ return;
+
+ // We are going to be removing one or more identifiers from the range.
+ assert(idStart < numIds && "invalid idStart position");
+
+ // TODO(andydavis) Make 'removeIdRange' a lambda called from here.
+ // Remove eliminated identifiers from equalities.
+ shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true);
+
+ // Remove eliminated identifiers from inequalities.
+ shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false);
+
+ // Update members numDims, numSymbols and numIds.
+ unsigned numDimsEliminated = 0;
+ unsigned numLocalsEliminated = 0;
+ unsigned numColsEliminated = idLimit - idStart;
+ if (idStart < numDims) {
+ numDimsEliminated = std::min(numDims, idLimit) - idStart;
+ }
+ // Check how many local id's were removed. Note that our identifier order is
+ // [dims, symbols, locals]. Local id start at position numDims + numSymbols.
+ if (idLimit > numDims + numSymbols) {
+ numLocalsEliminated = std::min(
+ idLimit - std::max(idStart, numDims + numSymbols), getNumLocalIds());
+ }
+ unsigned numSymbolsEliminated =
+ numColsEliminated - numDimsEliminated - numLocalsEliminated;
+
+ numDims -= numDimsEliminated;
+ numSymbols -= numSymbolsEliminated;
+ numIds = numIds - numColsEliminated;
+
+ ids.erase(ids.begin() + idStart, ids.begin() + idLimit);
+
+ // No resize necessary. numReservedCols remains the same.
+}
+
+/// Returns the position of the identifier that has the minimum <number of lower
+/// bounds> times <number of upper bounds> from the specified range of
+/// identifiers [start, end). It is often best to eliminate in the increasing
+/// order of these counts when doing Fourier-Motzkin elimination since FM adds
+/// that many new constraints.
+static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst,
+ unsigned start, unsigned end) {
+ assert(start < cst.getNumIds() && end < cst.getNumIds() + 1);
+
+ auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
+ unsigned numLb = 0;
+ unsigned numUb = 0;
+ for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
+ if (cst.atIneq(r, pos) > 0) {
+ ++numLb;
+ } else if (cst.atIneq(r, pos) < 0) {
+ ++numUb;
+ }
+ }
+ return numLb * numUb;
+ };
+
+ unsigned minLoc = start;
+ unsigned min = getProductOfNumLowerUpperBounds(start);
+ for (unsigned c = start + 1; c < end; c++) {
+ unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
+ if (numLbUbProduct < min) {
+ min = numLbUbProduct;
+ minLoc = c;
+ }
+ }
+ return minLoc;
+}
+
+// Checks for emptiness of the set by eliminating identifiers successively and
+// using the GCD test (on all equality constraints) and checking for trivially
+// invalid constraints. Returns 'true' if the constraint system is found to be
+// empty; false otherwise.
+bool FlatAffineConstraints::isEmpty() const {
+ if (isEmptyByGCDTest() || hasInvalidConstraint())
+ return true;
+
+ // First, eliminate as many identifiers as possible using Gaussian
+ // elimination.
+ FlatAffineConstraints tmpCst(*this);
+ unsigned currentPos = 0;
+ while (currentPos < tmpCst.getNumIds()) {
+ tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds());
+ ++currentPos;
+ // We check emptiness through trivial checks after eliminating each ID to
+ // detect emptiness early. Since the checks isEmptyByGCDTest() and
+ // hasInvalidConstraint() are linear time and single sweep on the constraint
+ // buffer, this appears reasonable - but can optimize in the future.
+ if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
+ return true;
+ }
+
+ // Eliminate the remaining using FM.
+ for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) {
+ tmpCst.FourierMotzkinEliminate(
+ getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds()));
+ // Check for a constraint explosion. This rarely happens in practice, but
+ // this check exists as a safeguard against improperly constructed
+ // constraint systems or artificially created arbitrarily complex systems
+ // that aren't the intended use case for FlatAffineConstraints. This is
+ // needed since FM has a worst case exponential complexity in theory.
+ if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) {
+ LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
+ return false;
+ }
+
+ // FM wouldn't have modified the equalities in any way. So no need to again
+ // run GCD test. Check for trivial invalid constraints.
+ if (tmpCst.hasInvalidConstraint())
+ return true;
+ }
+ return false;
+}
+
+// Runs the GCD test on all equality constraints. Returns 'true' if this test
+// fails on any equality. Returns 'false' otherwise.
+// This test can be used to disprove the existence of a solution. If it returns
+// true, no integer solution to the equality constraints can exist.
+//
+// GCD test definition:
+//
+// The equality constraint:
+//
+// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
+//
+// has an integer solution iff:
+//
+// GCD of c_1, c_2, ..., c_n divides c_0.
+//
+bool FlatAffineConstraints::isEmptyByGCDTest() const {
+ assert(hasConsistentState());
+ unsigned numCols = getNumCols();
+ for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
+ uint64_t gcd = std::abs(atEq(i, 0));
+ for (unsigned j = 1; j < numCols - 1; ++j) {
+ gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
+ }
+ int64_t v = std::abs(atEq(i, numCols - 1));
+ if (gcd > 0 && (v % gcd != 0)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Tightens inequalities given that we are dealing with integer spaces. This is
+/// analogous to the GCD test but applied to inequalities. The constant term can
+/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
+/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
+/// fast method - linear in the number of coefficients.
+// Example on how this affects practical cases: consider the scenario:
+// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
+// j >= 100 instead of the tighter (exact) j >= 128.
+void FlatAffineConstraints::GCDTightenInequalities() {
+ unsigned numCols = getNumCols();
+ for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
+ uint64_t gcd = std::abs(atIneq(i, 0));
+ for (unsigned j = 1; j < numCols - 1; ++j) {
+ gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j)));
+ }
+ if (gcd > 0 && gcd != 1) {
+ int64_t gcdI = static_cast<int64_t>(gcd);
+ // Tighten the constant term and normalize the constraint by the GCD.
+ atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcdI);
+ for (unsigned j = 0, e = numCols - 1; j < e; ++j)
+ atIneq(i, j) /= gcdI;
+ }
+ }
+}
+
+// Eliminates all identifier variables in column range [posStart, posLimit).
+// Returns the number of variables eliminated.
+unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
+ unsigned posLimit) {
+ // Return if identifier positions to eliminate are out of range.
+ assert(posLimit <= numIds);
+ assert(hasConsistentState());
+
+ if (posStart >= posLimit)
+ return 0;
+
+ GCDTightenInequalities();
+
+ unsigned pivotCol = 0;
+ for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
+ // Find a row which has a non-zero coefficient in column 'j'.
+ unsigned pivotRow;
+ if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
+ &pivotRow)) {
+ // No pivot row in equalities with non-zero at 'pivotCol'.
+ if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
+ &pivotRow)) {
+ // If inequalities are also non-zero in 'pivotCol', it can be
+ // eliminated.
+ continue;
+ }
+ break;
+ }
+
+ // Eliminate identifier at 'pivotCol' from each equality row.
+ for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
+ eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
+ /*isEq=*/true);
+ normalizeConstraintByGCD</*isEq=*/true>(this, i);
+ }
+
+ // Eliminate identifier at 'pivotCol' from each inequality row.
+ for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
+ eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
+ /*isEq=*/false);
+ normalizeConstraintByGCD</*isEq=*/false>(this, i);
+ }
+ removeEquality(pivotRow);
+ GCDTightenInequalities();
+ }
+ // Update position limit based on number eliminated.
+ posLimit = pivotCol;
+ // Remove eliminated columns from all constraints.
+ removeIdRange(posStart, posLimit);
+ return posLimit - posStart;
+}
+
+// Detect the identifier at 'pos' (say id_r) as modulo of another identifier
+// (say id_n) w.r.t a constant. When this happens, another identifier (say id_q)
+// could be detected as the floordiv of n. For eg:
+// id_n - 4*id_q - id_r = 0, 0 <= id_r <= 3 <=>
+// id_r = id_n mod 4, id_q = id_n floordiv 4.
+// lbConst and ubConst are the constant lower and upper bounds for 'pos' -
+// pre-detected at the caller.
+static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
+ int64_t lbConst, int64_t ubConst,
+ SmallVectorImpl<AffineExpr> *memo) {
+ assert(pos < cst.getNumIds() && "invalid position");
+
+ // Check if 0 <= id_r <= divisor - 1 and if id_r is equal to
+ // id_n - divisor * id_q. If these are true, then id_n becomes the dividend
+ // and id_q the quotient when dividing id_n by the divisor.
+
+ if (lbConst != 0 || ubConst < 1)
+ return false;
+
+ int64_t divisor = ubConst + 1;
+
+ // Now check for: id_r = id_n - divisor * id_q. As an example, we
+ // are looking r = d - 4q, i.e., either r - d + 4q = 0 or -r + d - 4q = 0.
+ unsigned seenQuotient = 0, seenDividend = 0;
+ int quotientPos = -1, dividendPos = -1;
+ for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
+ // id_n should have coeff 1 or -1.
+ if (std::abs(cst.atEq(r, pos)) != 1)
+ continue;
+ // constant term should be 0.
+ if (cst.atEq(r, cst.getNumCols() - 1) != 0)
+ continue;
+ unsigned c, f;
+ int quotientSign = 1, dividendSign = 1;
+ for (c = 0, f = cst.getNumDimAndSymbolIds(); c < f; c++) {
+ if (c == pos)
+ continue;
+ // The coefficient of the quotient should be +/-divisor.
+ // TODO(bondhugula): could be extended to detect an affine function for
+ // the quotient (i.e., the coeff could be a non-zero multiple of divisor).
+ int64_t v = cst.atEq(r, c) * cst.atEq(r, pos);
+ if (v == divisor || v == -divisor) {
+ seenQuotient++;
+ quotientPos = c;
+ quotientSign = v > 0 ? 1 : -1;
+ }
+ // The coefficient of the dividend should be +/-1.
+ // TODO(bondhugula): could be extended to detect an affine function of
+ // the other identifiers as the dividend.
+ else if (v == -1 || v == 1) {
+ seenDividend++;
+ dividendPos = c;
+ dividendSign = v < 0 ? 1 : -1;
+ } else if (cst.atEq(r, c) != 0) {
+ // Cannot be inferred as a mod since the constraint has a coefficient
+ // for an identifier that's neither a unit nor the divisor (see TODOs
+ // above).
+ break;
+ }
+ }
+ if (c < f)
+ // Cannot be inferred as a mod since the constraint has a coefficient for
+ // an identifier that's neither a unit nor the divisor (see TODOs above).
+ continue;
+
+ // We are looking for exactly one identifier as the dividend.
+ if (seenDividend == 1 && seenQuotient >= 1) {
+ if (!(*memo)[dividendPos])
+ return false;
+ // Successfully detected a mod.
+ (*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign;
+ auto ub = cst.getConstantUpperBound(dividendPos);
+ if (ub.hasValue() && ub.getValue() < divisor)
+ // The mod can be optimized away.
+ (*memo)[pos] = (*memo)[dividendPos] * dividendSign;
+ else
+ (*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign;
+
+ if (seenQuotient == 1 && !(*memo)[quotientPos])
+ // Successfully detected a floordiv as well.
+ (*memo)[quotientPos] =
+ (*memo)[dividendPos].floorDiv(divisor) * quotientSign;
+ return true;
+ }
+ }
+ return false;
+}
+
+// Gather lower and upper bounds for the pos^th identifier.
+static void getLowerAndUpperBoundIndices(const FlatAffineConstraints &cst,
+ unsigned pos,
+ SmallVectorImpl<unsigned> *lbIndices,
+ SmallVectorImpl<unsigned> *ubIndices) {
+ assert(pos < cst.getNumIds() && "invalid position");
+
+ // Gather all lower bounds and upper bounds of the variable. Since the
+ // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
+ // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
+ for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
+ if (cst.atIneq(r, pos) >= 1) {
+ // Lower bound.
+ lbIndices->push_back(r);
+ } else if (cst.atIneq(r, pos) <= -1) {
+ // Upper bound.
+ ubIndices->push_back(r);
+ }
+ }
+}
+
+// Check if the pos^th identifier can be expressed as a floordiv of an affine
+// function of other identifiers (where the divisor is a positive constant).
+// For eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4.
+bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
+ SmallVectorImpl<AffineExpr> *memo, MLIRContext *context) {
+ assert(pos < cst.getNumIds() && "invalid position");
+
+ SmallVector<unsigned, 4> lbIndices, ubIndices;
+ getLowerAndUpperBoundIndices(cst, pos, &lbIndices, &ubIndices);
+
+ // Check if any lower bound, upper bound pair is of the form:
+ // divisor * id >= expr - (divisor - 1) <-- Lower bound for 'id'
+ // divisor * id <= expr <-- Upper bound for 'id'
+ // Then, 'id' is equivalent to 'expr floordiv divisor'. (where divisor > 1).
+ //
+ // For example, if -32*k + 16*i + j >= 0
+ // 32*k - 16*i - j + 31 >= 0 <=>
+ // k = ( 16*i + j ) floordiv 32
+ unsigned seenDividends = 0;
+ for (auto ubPos : ubIndices) {
+ for (auto lbPos : lbIndices) {
+ // Check if lower bound's constant term is 'divisor - 1'. The 'divisor'
+ // here is cst.atIneq(lbPos, pos) and we already know that it's positive
+ // (since cst.Ineq(lbPos, ...) is a lower bound expression for 'pos'.
+ if (cst.atIneq(lbPos, cst.getNumCols() - 1) != cst.atIneq(lbPos, pos) - 1)
+ continue;
+ // Check if upper bound's constant term is 0.
+ if (cst.atIneq(ubPos, cst.getNumCols() - 1) != 0)
+ continue;
+ // For the remaining part, check if the lower bound expr's coeff's are
+ // negations of corresponding upper bound ones'.
+ unsigned c, f;
+ for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
+ if (cst.atIneq(lbPos, c) != -cst.atIneq(ubPos, c))
+ break;
+ if (c != pos && cst.atIneq(lbPos, c) != 0)
+ seenDividends++;
+ }
+ // Lb coeff's aren't negative of ub coeff's (for the non constant term
+ // part).
+ if (c < f)
+ continue;
+ if (seenDividends >= 1) {
+ // The divisor is the constant term of the lower bound expression.
+ // We already know that cst.atIneq(lbPos, pos) > 0.
+ int64_t divisor = cst.atIneq(lbPos, pos);
+ // Construct the dividend expression.
+ auto dividendExpr = getAffineConstantExpr(0, context);
+ unsigned c, f;
+ for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
+ if (c == pos)
+ continue;
+ int64_t ubVal = cst.atIneq(ubPos, c);
+ if (ubVal == 0)
+ continue;
+ if (!(*memo)[c])
+ break;
+ dividendExpr = dividendExpr + ubVal * (*memo)[c];
+ }
+ // Expression can't be constructed as it depends on a yet unknown
+ // identifier.
+ // TODO(mlir-team): Visit/compute the identifiers in an order so that
+ // this doesn't happen. More complex but much more efficient.
+ if (c < f)
+ continue;
+ // Successfully detected the floordiv.
+ (*memo)[pos] = dividendExpr.floorDiv(divisor);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+// Fills an inequality row with the value 'val'.
+static inline void fillInequality(FlatAffineConstraints *cst, unsigned r,
+ int64_t val) {
+ for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
+ cst->atIneq(r, c) = val;
+ }
+}
+
+// Negates an inequality.
+static inline void negateInequality(FlatAffineConstraints *cst, unsigned r) {
+ for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) {
+ cst->atIneq(r, c) = -cst->atIneq(r, c);
+ }
+}
+
+// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
+// to check if a constraint is redundant.
+void FlatAffineConstraints::removeRedundantInequalities() {
+ SmallVector<bool, 32> redun(getNumInequalities(), false);
+ // To check if an inequality is redundant, we replace the inequality by its
+ // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
+ // system is empty. If it is, the inequality is redundant.
+ FlatAffineConstraints tmpCst(*this);
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ // Change the inequality to its complement.
+ negateInequality(&tmpCst, r);
+ tmpCst.atIneq(r, tmpCst.getNumCols() - 1)--;
+ if (tmpCst.isEmpty()) {
+ redun[r] = true;
+ // Zero fill the redundant inequality.
+ fillInequality(this, r, /*val=*/0);
+ fillInequality(&tmpCst, r, /*val=*/0);
+ } else {
+ // Reverse the change (to avoid recreating tmpCst each time).
+ tmpCst.atIneq(r, tmpCst.getNumCols() - 1)++;
+ negateInequality(&tmpCst, r);
+ }
+ }
+
+ // Scan to get rid of all rows marked redundant, in-place.
+ auto copyRow = [&](unsigned src, unsigned dest) {
+ if (src == dest)
+ return;
+ for (unsigned c = 0, e = getNumCols(); c < e; c++) {
+ atIneq(dest, c) = atIneq(src, c);
+ }
+ };
+ unsigned pos = 0;
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ if (!redun[r])
+ copyRow(r, pos++);
+ }
+ inequalities.resize(numReservedCols * pos);
+}
+
+std::pair<AffineMap, AffineMap> FlatAffineConstraints::getLowerAndUpperBound(
+ unsigned pos, unsigned offset, unsigned num, unsigned symStartPos,
+ ArrayRef<AffineExpr> localExprs, MLIRContext *context) const {
+ assert(pos + offset < getNumDimIds() && "invalid dim start pos");
+ assert(symStartPos >= (pos + offset) && "invalid sym start pos");
+ assert(getNumLocalIds() == localExprs.size() &&
+ "incorrect local exprs count");
+
+ SmallVector<unsigned, 4> lbIndices, ubIndices;
+ getLowerAndUpperBoundIndices(*this, pos + offset, &lbIndices, &ubIndices);
+
+ /// Add to 'b' from 'a' in set [0, offset) U [offset + num, symbStartPos).
+ auto addCoeffs = [&](ArrayRef<int64_t> a, SmallVectorImpl<int64_t> &b) {
+ b.clear();
+ for (unsigned i = 0, e = a.size(); i < e; ++i) {
+ if (i < offset || i >= offset + num)
+ b.push_back(a[i]);
+ }
+ };
+
+ SmallVector<int64_t, 8> lb, ub;
+ SmallVector<AffineExpr, 4> exprs;
+ unsigned dimCount = symStartPos - num;
+ unsigned symCount = getNumDimAndSymbolIds() - symStartPos;
+ exprs.reserve(lbIndices.size());
+ // Lower bound expressions.
+ for (auto idx : lbIndices) {
+ auto ineq = getInequality(idx);
+ // Extract the lower bound (in terms of other coeff's + const), i.e., if
+ // i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j
+ // - 1.
+ addCoeffs(ineq, lb);
+ std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>());
+ auto expr = mlir::toAffineExpr(lb, dimCount, symCount, localExprs, context);
+ exprs.push_back(expr);
+ }
+ auto lbMap =
+ exprs.empty() ? AffineMap() : AffineMap::get(dimCount, symCount, exprs);
+
+ exprs.clear();
+ exprs.reserve(ubIndices.size());
+ // Upper bound expressions.
+ for (auto idx : ubIndices) {
+ auto ineq = getInequality(idx);
+ // Extract the upper bound (in terms of other coeff's + const).
+ addCoeffs(ineq, ub);
+ auto expr = mlir::toAffineExpr(ub, dimCount, symCount, localExprs, context);
+ // Upper bound is exclusive.
+ exprs.push_back(expr + 1);
+ }
+ auto ubMap =
+ exprs.empty() ? AffineMap() : AffineMap::get(dimCount, symCount, exprs);
+
+ return {lbMap, ubMap};
+}
+
+/// Computes the lower and upper bounds of the first 'num' dimensional
+/// identifiers (starting at 'offset') as affine maps of the remaining
+/// identifiers (dimensional and symbolic identifiers). Local identifiers are
+/// themselves explicitly computed as affine functions of other identifiers in
+/// this process if needed.
+void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num,
+ MLIRContext *context,
+ SmallVectorImpl<AffineMap> *lbMaps,
+ SmallVectorImpl<AffineMap> *ubMaps) {
+ assert(num < getNumDimIds() && "invalid range");
+
+ // Basic simplification.
+ normalizeConstraintsByGCD();
+
+ LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for first " << num
+ << " identifiers\n");
+ LLVM_DEBUG(dump());
+
+ // Record computed/detected identifiers.
+ SmallVector<AffineExpr, 8> memo(getNumIds());
+ // Initialize dimensional and symbolic identifiers.
+ for (unsigned i = 0, e = getNumDimIds(); i < e; i++) {
+ if (i < offset)
+ memo[i] = getAffineDimExpr(i, context);
+ else if (i >= offset + num)
+ memo[i] = getAffineDimExpr(i - num, context);
+ }
+ for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++)
+ memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context);
+
+ bool changed;
+ do {
+ changed = false;
+ // Identify yet unknown identifiers as constants or mod's / floordiv's of
+ // other identifiers if possible.
+ for (unsigned pos = 0; pos < getNumIds(); pos++) {
+ if (memo[pos])
+ continue;
+
+ auto lbConst = getConstantLowerBound(pos);
+ auto ubConst = getConstantUpperBound(pos);
+ if (lbConst.hasValue() && ubConst.hasValue()) {
+ // Detect equality to a constant.
+ if (lbConst.getValue() == ubConst.getValue()) {
+ memo[pos] = getAffineConstantExpr(lbConst.getValue(), context);
+ changed = true;
+ continue;
+ }
+
+ // Detect an identifier as modulo of another identifier w.r.t a
+ // constant.
+ if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(),
+ &memo)) {
+ changed = true;
+ continue;
+ }
+ }
+
+ // Detect an identifier as floordiv of another identifier w.r.t a
+ // constant.
+ if (detectAsFloorDiv(*this, pos, &memo, context)) {
+ changed = true;
+ continue;
+ }
+
+ // Detect an identifier as an expression of other identifiers.
+ unsigned idx;
+ if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) {
+ continue;
+ }
+
+ // Build AffineExpr solving for identifier 'pos' in terms of all others.
+ auto expr = getAffineConstantExpr(0, context);
+ unsigned j, e;
+ for (j = 0, e = getNumIds(); j < e; ++j) {
+ if (j == pos)
+ continue;
+ int64_t c = atEq(idx, j);
+ if (c == 0)
+ continue;
+ // If any of the involved IDs hasn't been found yet, we can't proceed.
+ if (!memo[j])
+ break;
+ expr = expr + memo[j] * c;
+ }
+ if (j < e)
+ // Can't construct expression as it depends on a yet uncomputed
+ // identifier.
+ continue;
+
+ // Add constant term to AffineExpr.
+ expr = expr + atEq(idx, getNumIds());
+ int64_t vPos = atEq(idx, pos);
+ assert(vPos != 0 && "expected non-zero here");
+ if (vPos > 0)
+ expr = (-expr).floorDiv(vPos);
+ else
+ // vPos < 0.
+ expr = expr.floorDiv(-vPos);
+ // Successfully constructed expression.
+ memo[pos] = expr;
+ changed = true;
+ }
+ // This loop is guaranteed to reach a fixed point - since once an
+ // identifier's explicit form is computed (in memo[pos]), it's not updated
+ // again.
+ } while (changed);
+
+ // Set the lower and upper bound maps for all the identifiers that were
+ // computed as affine expressions of the rest as the "detected expr" and
+ // "detected expr + 1" respectively; set the undetected ones to null.
+ Optional<FlatAffineConstraints> tmpClone;
+ for (unsigned pos = 0; pos < num; pos++) {
+ unsigned numMapDims = getNumDimIds() - num;
+ unsigned numMapSymbols = getNumSymbolIds();
+ AffineExpr expr = memo[pos + offset];
+ if (expr)
+ expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols);
+
+ AffineMap &lbMap = (*lbMaps)[pos];
+ AffineMap &ubMap = (*ubMaps)[pos];
+
+ if (expr) {
+ lbMap = AffineMap::get(numMapDims, numMapSymbols, expr);
+ ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + 1);
+ } else {
+ // TODO(bondhugula): Whenever there are local identifiers in the
+ // dependence constraints, we'll conservatively over-approximate, since we
+ // don't always explicitly compute them above (in the while loop).
+ if (getNumLocalIds() == 0) {
+ // Work on a copy so that we don't update this constraint system.
+ if (!tmpClone) {
+ tmpClone.emplace(FlatAffineConstraints(*this));
+ // Removing redundant inequalities is necessary so that we don't get
+ // redundant loop bounds.
+ tmpClone->removeRedundantInequalities();
+ }
+ std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound(
+ pos, offset, num, getNumDimIds(), {}, context);
+ }
+
+ // If the above fails, we'll just use the constant lower bound and the
+ // constant upper bound (if they exist) as the slice bounds.
+ // TODO(b/126426796): being conservative for the moment in cases that
+ // lead to multiple bounds - until getConstDifference in LoopFusion.cpp is
+ // fixed (b/126426796).
+ if (!lbMap || lbMap.getNumResults() > 1) {
+ LLVM_DEBUG(llvm::dbgs()
+ << "WARNING: Potentially over-approximating slice lb\n");
+ auto lbConst = getConstantLowerBound(pos + offset);
+ if (lbConst.hasValue()) {
+ lbMap = AffineMap::get(
+ numMapDims, numMapSymbols,
+ getAffineConstantExpr(lbConst.getValue(), context));
+ }
+ }
+ if (!ubMap || ubMap.getNumResults() > 1) {
+ LLVM_DEBUG(llvm::dbgs()
+ << "WARNING: Potentially over-approximating slice ub\n");
+ auto ubConst = getConstantUpperBound(pos + offset);
+ if (ubConst.hasValue()) {
+ (ubMap) = AffineMap::get(
+ numMapDims, numMapSymbols,
+ getAffineConstantExpr(ubConst.getValue() + 1, context));
+ }
+ }
+ }
+ LLVM_DEBUG(llvm::dbgs()
+ << "lb map for pos = " << Twine(pos + offset) << ", expr: ");
+ LLVM_DEBUG(lbMap.dump(););
+ LLVM_DEBUG(llvm::dbgs()
+ << "ub map for pos = " << Twine(pos + offset) << ", expr: ");
+ LLVM_DEBUG(ubMap.dump(););
+ }
+}
+
+LogicalResult
+FlatAffineConstraints::addLowerOrUpperBound(unsigned pos, AffineMap boundMap,
+ ArrayRef<Value> boundOperands,
+ bool eq, bool lower) {
+ assert(pos < getNumDimAndSymbolIds() && "invalid position");
+ // Equality follows the logic of lower bound except that we add an equality
+ // instead of an inequality.
+ assert((!eq || boundMap.getNumResults() == 1) && "single result expected");
+ if (eq)
+ lower = true;
+
+ // Fully compose map and operands; canonicalize and simplify so that we
+ // transitively get to terminal symbols or loop IVs.
+ auto map = boundMap;
+ SmallVector<Value, 4> operands(boundOperands.begin(), boundOperands.end());
+ fullyComposeAffineMapAndOperands(&map, &operands);
+ map = simplifyAffineMap(map);
+ canonicalizeMapAndOperands(&map, &operands);
+ for (auto operand : operands)
+ addInductionVarOrTerminalSymbol(operand);
+
+ FlatAffineConstraints localVarCst;
+ std::vector<SmallVector<int64_t, 8>> flatExprs;
+ if (failed(getFlattenedAffineExprs(map, &flatExprs, &localVarCst))) {
+ LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n");
+ return failure();
+ }
+
+ // Merge and align with localVarCst.
+ if (localVarCst.getNumLocalIds() > 0) {
+ // Set values for localVarCst.
+ localVarCst.setIdValues(0, localVarCst.getNumDimAndSymbolIds(), operands);
+ for (auto operand : operands) {
+ unsigned pos;
+ if (findId(*operand, &pos)) {
+ if (pos >= getNumDimIds() && pos < getNumDimAndSymbolIds()) {
+ // If the local var cst has this as a dim, turn it into its symbol.
+ turnDimIntoSymbol(&localVarCst, *operand);
+ } else if (pos < getNumDimIds()) {
+ // Or vice versa.
+ turnSymbolIntoDim(&localVarCst, *operand);
+ }
+ }
+ }
+ mergeAndAlignIds(/*offset=*/0, this, &localVarCst);
+ append(localVarCst);
+ }
+
+ // Record positions of the operands in the constraint system. Need to do
+ // this here since the constraint system changes after a bound is added.
+ SmallVector<unsigned, 8> positions;
+ unsigned numOperands = operands.size();
+ for (auto operand : operands) {
+ unsigned pos;
+ if (!findId(*operand, &pos))
+ assert(0 && "expected to be found");
+ positions.push_back(pos);
+ }
+
+ for (const auto &flatExpr : flatExprs) {
+ SmallVector<int64_t, 4> ineq(getNumCols(), 0);
+ ineq[pos] = lower ? 1 : -1;
+ // Dims and symbols.
+ for (unsigned j = 0, e = map.getNumInputs(); j < e; j++) {
+ ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j];
+ }
+ // Copy over the local id coefficients.
+ unsigned numLocalIds = flatExpr.size() - 1 - numOperands;
+ for (unsigned jj = 0, j = getNumIds() - numLocalIds; jj < numLocalIds;
+ jj++, j++) {
+ ineq[j] =
+ lower ? -flatExpr[numOperands + jj] : flatExpr[numOperands + jj];
+ }
+ // Constant term.
+ ineq[getNumCols() - 1] =
+ lower ? -flatExpr[flatExpr.size() - 1]
+ // Upper bound in flattenedExpr is an exclusive one.
+ : flatExpr[flatExpr.size() - 1] - 1;
+ eq ? addEquality(ineq) : addInequality(ineq);
+ }
+ return success();
+}
+
+// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
+// bounds in 'ubMaps' to each value in `values' that appears in the constraint
+// system. Note that both lower/upper bounds share the same operand list
+// 'operands'.
+// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size', and
+// skips any null AffineMaps in 'lbMaps' or 'ubMaps'.
+// Note that both lower/upper bounds use operands from 'operands'.
+// Returns failure for unimplemented cases such as semi-affine expressions or
+// expressions with mod/floordiv.
+LogicalResult FlatAffineConstraints::addSliceBounds(ArrayRef<Value> values,
+ ArrayRef<AffineMap> lbMaps,
+ ArrayRef<AffineMap> ubMaps,
+ ArrayRef<Value> operands) {
+ assert(values.size() == lbMaps.size());
+ assert(lbMaps.size() == ubMaps.size());
+
+ for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
+ unsigned pos;
+ if (!findId(*values[i], &pos))
+ continue;
+
+ AffineMap lbMap = lbMaps[i];
+ AffineMap ubMap = ubMaps[i];
+ assert(!lbMap || lbMap.getNumInputs() == operands.size());
+ assert(!ubMap || ubMap.getNumInputs() == operands.size());
+
+ // Check if this slice is just an equality along this dimension.
+ if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
+ ubMap.getNumResults() == 1 &&
+ lbMap.getResult(0) + 1 == ubMap.getResult(0)) {
+ if (failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/true,
+ /*lower=*/true)))
+ return failure();
+ continue;
+ }
+
+ if (lbMap && failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/false,
+ /*lower=*/true)))
+ return failure();
+
+ if (ubMap && failed(addLowerOrUpperBound(pos, ubMap, operands, /*eq=*/false,
+ /*lower=*/false)))
+ return failure();
+ }
+ return success();
+}
+
+void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) {
+ assert(eq.size() == getNumCols());
+ unsigned offset = equalities.size();
+ equalities.resize(equalities.size() + numReservedCols);
+ std::copy(eq.begin(), eq.end(), equalities.begin() + offset);
+}
+
+void FlatAffineConstraints::addInequality(ArrayRef<int64_t> inEq) {
+ assert(inEq.size() == getNumCols());
+ unsigned offset = inequalities.size();
+ inequalities.resize(inequalities.size() + numReservedCols);
+ std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset);
+}
+
+void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) {
+ assert(pos < getNumCols());
+ unsigned offset = inequalities.size();
+ inequalities.resize(inequalities.size() + numReservedCols);
+ std::fill(inequalities.begin() + offset,
+ inequalities.begin() + offset + getNumCols(), 0);
+ inequalities[offset + pos] = 1;
+ inequalities[offset + getNumCols() - 1] = -lb;
+}
+
+void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) {
+ assert(pos < getNumCols());
+ unsigned offset = inequalities.size();
+ inequalities.resize(inequalities.size() + numReservedCols);
+ std::fill(inequalities.begin() + offset,
+ inequalities.begin() + offset + getNumCols(), 0);
+ inequalities[offset + pos] = -1;
+ inequalities[offset + getNumCols() - 1] = ub;
+}
+
+void FlatAffineConstraints::addConstantLowerBound(ArrayRef<int64_t> expr,
+ int64_t lb) {
+ assert(expr.size() == getNumCols());
+ unsigned offset = inequalities.size();
+ inequalities.resize(inequalities.size() + numReservedCols);
+ std::fill(inequalities.begin() + offset,
+ inequalities.begin() + offset + getNumCols(), 0);
+ std::copy(expr.begin(), expr.end(), inequalities.begin() + offset);
+ inequalities[offset + getNumCols() - 1] += -lb;
+}
+
+void FlatAffineConstraints::addConstantUpperBound(ArrayRef<int64_t> expr,
+ int64_t ub) {
+ assert(expr.size() == getNumCols());
+ unsigned offset = inequalities.size();
+ inequalities.resize(inequalities.size() + numReservedCols);
+ std::fill(inequalities.begin() + offset,
+ inequalities.begin() + offset + getNumCols(), 0);
+ for (unsigned i = 0, e = getNumCols(); i < e; i++) {
+ inequalities[offset + i] = -expr[i];
+ }
+ inequalities[offset + getNumCols() - 1] += ub;
+}
+
+/// Adds a new local identifier as the floordiv of an affine function of other
+/// identifiers, the coefficients of which are provided in 'dividend' and with
+/// respect to a positive constant 'divisor'. Two constraints are added to the
+/// system to capture equivalence with the floordiv.
+/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
+void FlatAffineConstraints::addLocalFloorDiv(ArrayRef<int64_t> dividend,
+ int64_t divisor) {
+ assert(dividend.size() == getNumCols() && "incorrect dividend size");
+ assert(divisor > 0 && "positive divisor expected");
+
+ addLocalId(getNumLocalIds());
+
+ // Add two constraints for this new identifier 'q'.
+ SmallVector<int64_t, 8> bound(dividend.size() + 1);
+
+ // dividend - q * divisor >= 0
+ std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1,
+ bound.begin());
+ bound.back() = dividend.back();
+ bound[getNumIds() - 1] = -divisor;
+ addInequality(bound);
+
+ // -dividend +qdivisor * q + divisor - 1 >= 0
+ std::transform(bound.begin(), bound.end(), bound.begin(),
+ std::negate<int64_t>());
+ bound[bound.size() - 1] += divisor - 1;
+ addInequality(bound);
+}
+
+bool FlatAffineConstraints::findId(Value id, unsigned *pos) const {
+ unsigned i = 0;
+ for (const auto &mayBeId : ids) {
+ if (mayBeId.hasValue() && mayBeId.getValue() == id) {
+ *pos = i;
+ return true;
+ }
+ i++;
+ }
+ return false;
+}
+
+bool FlatAffineConstraints::containsId(Value id) const {
+ return llvm::any_of(ids, [&](const Optional<Value> &mayBeId) {
+ return mayBeId.hasValue() && mayBeId.getValue() == id;
+ });
+}
+
+void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) {
+ assert(newSymbolCount <= numDims + numSymbols &&
+ "invalid separation position");
+ numDims = numDims + numSymbols - newSymbolCount;
+ numSymbols = newSymbolCount;
+}
+
+/// Sets the specified identifier to a constant value.
+void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) {
+ unsigned offset = equalities.size();
+ equalities.resize(equalities.size() + numReservedCols);
+ std::fill(equalities.begin() + offset,
+ equalities.begin() + offset + getNumCols(), 0);
+ equalities[offset + pos] = 1;
+ equalities[offset + getNumCols() - 1] = -val;
+}
+
+/// Sets the specified identifier to a constant value; asserts if the id is not
+/// found.
+void FlatAffineConstraints::setIdToConstant(Value id, int64_t val) {
+ unsigned pos;
+ if (!findId(id, &pos))
+ // This is a pre-condition for this method.
+ assert(0 && "id not found");
+ setIdToConstant(pos, val);
+}
+
+void FlatAffineConstraints::removeEquality(unsigned pos) {
+ unsigned numEqualities = getNumEqualities();
+ assert(pos < numEqualities);
+ unsigned outputIndex = pos * numReservedCols;
+ unsigned inputIndex = (pos + 1) * numReservedCols;
+ unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols;
+ std::copy(equalities.begin() + inputIndex,
+ equalities.begin() + inputIndex + numElemsToCopy,
+ equalities.begin() + outputIndex);
+ equalities.resize(equalities.size() - numReservedCols);
+}
+
+/// Finds an equality that equates the specified identifier to a constant.
+/// Returns the position of the equality row. If 'symbolic' is set to true,
+/// symbols are also treated like a constant, i.e., an affine function of the
+/// symbols is also treated like a constant.
+static int findEqualityToConstant(const FlatAffineConstraints &cst,
+ unsigned pos, bool symbolic = false) {
+ assert(pos < cst.getNumIds() && "invalid position");
+ for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
+ int64_t v = cst.atEq(r, pos);
+ if (v * v != 1)
+ continue;
+ unsigned c;
+ unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds();
+ // This checks for zeros in all positions other than 'pos' in [0, f)
+ for (c = 0; c < f; c++) {
+ if (c == pos)
+ continue;
+ if (cst.atEq(r, c) != 0) {
+ // Dependent on another identifier.
+ break;
+ }
+ }
+ if (c == f)
+ // Equality is free of other identifiers.
+ return r;
+ }
+ return -1;
+}
+
+void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) {
+ assert(pos < getNumIds() && "invalid position");
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal;
+ }
+ for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
+ atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal;
+ }
+ removeId(pos);
+}
+
+LogicalResult FlatAffineConstraints::constantFoldId(unsigned pos) {
+ assert(pos < getNumIds() && "invalid position");
+ int rowIdx;
+ if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
+ return failure();
+
+ // atEq(rowIdx, pos) is either -1 or 1.
+ assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
+ int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
+ setAndEliminate(pos, constVal);
+ return success();
+}
+
+void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) {
+ for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
+ if (failed(constantFoldId(t)))
+ t++;
+ }
+}
+
+/// Returns the extent (upper bound - lower bound) of the specified
+/// identifier if it is found to be a constant; returns None if it's not a
+/// constant. This methods treats symbolic identifiers specially, i.e.,
+/// it looks for constant differences between affine expressions involving
+/// only the symbolic identifiers. See comments at function definition for
+/// example. 'lb', if provided, is set to the lower bound associated with the
+/// constant difference. Note that 'lb' is purely symbolic and thus will contain
+/// the coefficients of the symbolic identifiers and the constant coefficient.
+// Egs: 0 <= i <= 15, return 16.
+// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
+// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
+// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
+// ceil(s0 - 7 / 8) = floor(s0 / 8)).
+Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize(
+ unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *lbFloorDivisor,
+ SmallVectorImpl<int64_t> *ub) const {
+ assert(pos < getNumDimIds() && "Invalid identifier position");
+ assert(getNumLocalIds() == 0);
+
+ // TODO(bondhugula): eliminate all remaining dimensional identifiers (other
+ // than the one at 'pos' to make this more powerful. Not needed for
+ // hyper-rectangular spaces.
+
+ // Find an equality for 'pos'^th identifier that equates it to some function
+ // of the symbolic identifiers (+ constant).
+ int eqRow = findEqualityToConstant(*this, pos, /*symbolic=*/true);
+ if (eqRow != -1) {
+ // This identifier can only take a single value.
+ if (lb) {
+ // Set lb to the symbolic value.
+ lb->resize(getNumSymbolIds() + 1);
+ if (ub)
+ ub->resize(getNumSymbolIds() + 1);
+ for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) {
+ int64_t v = atEq(eqRow, pos);
+ // atEq(eqRow, pos) is either -1 or 1.
+ assert(v * v == 1);
+ (*lb)[c] = v < 0 ? atEq(eqRow, getNumDimIds() + c) / -v
+ : -atEq(eqRow, getNumDimIds() + c) / v;
+ // Since this is an equality, ub = lb.
+ if (ub)
+ (*ub)[c] = (*lb)[c];
+ }
+ assert(lbFloorDivisor &&
+ "both lb and divisor or none should be provided");
+ *lbFloorDivisor = 1;
+ }
+ return 1;
+ }
+
+ // Check if the identifier appears at all in any of the inequalities.
+ unsigned r, e;
+ for (r = 0, e = getNumInequalities(); r < e; r++) {
+ if (atIneq(r, pos) != 0)
+ break;
+ }
+ if (r == e)
+ // If it doesn't, there isn't a bound on it.
+ return None;
+
+ // Positions of constraints that are lower/upper bounds on the variable.
+ SmallVector<unsigned, 4> lbIndices, ubIndices;
+
+ // Gather all symbolic lower bounds and upper bounds of the variable. Since
+ // the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a
+ // lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ unsigned c, f;
+ for (c = 0, f = getNumDimIds(); c < f; c++) {
+ if (c != pos && atIneq(r, c) != 0)
+ break;
+ }
+ if (c < getNumDimIds())
+ // Not a pure symbolic bound.
+ continue;
+ if (atIneq(r, pos) >= 1)
+ // Lower bound.
+ lbIndices.push_back(r);
+ else if (atIneq(r, pos) <= -1)
+ // Upper bound.
+ ubIndices.push_back(r);
+ }
+
+ // TODO(bondhugula): eliminate other dimensional identifiers to make this more
+ // powerful. Not needed for hyper-rectangular iteration spaces.
+
+ Optional<int64_t> minDiff = None;
+ unsigned minLbPosition, minUbPosition;
+ for (auto ubPos : ubIndices) {
+ for (auto lbPos : lbIndices) {
+ // Look for a lower bound and an upper bound that only differ by a
+ // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
+ // For example, if ii is the pos^th variable, we are looking for
+ // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
+ // minimum among all such constant differences is kept since that's the
+ // constant bounding the extent of the pos^th variable.
+ unsigned j, e;
+ for (j = 0, e = getNumCols() - 1; j < e; j++)
+ if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
+ break;
+ }
+ if (j < getNumCols() - 1)
+ continue;
+ int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
+ atIneq(lbPos, getNumCols() - 1) + 1,
+ atIneq(lbPos, pos));
+ if (minDiff == None || diff < minDiff) {
+ minDiff = diff;
+ minLbPosition = lbPos;
+ minUbPosition = ubPos;
+ }
+ }
+ }
+ if (lb && minDiff.hasValue()) {
+ // Set lb to the symbolic lower bound.
+ lb->resize(getNumSymbolIds() + 1);
+ if (ub)
+ ub->resize(getNumSymbolIds() + 1);
+ // The lower bound is the ceildiv of the lb constraint over the coefficient
+ // of the variable at 'pos'. We express the ceildiv equivalently as a floor
+ // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
+ // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
+ *lbFloorDivisor = atIneq(minLbPosition, pos);
+ assert(*lbFloorDivisor == -atIneq(minUbPosition, pos));
+ for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) {
+ (*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c);
+ }
+ if (ub) {
+ for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++)
+ (*ub)[c] = atIneq(minUbPosition, getNumDimIds() + c);
+ }
+ // The lower bound leads to a ceildiv while the upper bound is a floordiv
+ // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
+ // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
+ // the constant term for the lower bound.
+ (*lb)[getNumSymbolIds()] += atIneq(minLbPosition, pos) - 1;
+ }
+ return minDiff;
+}
+
+template <bool isLower>
+Optional<int64_t>
+FlatAffineConstraints::computeConstantLowerOrUpperBound(unsigned pos) {
+ assert(pos < getNumIds() && "invalid position");
+ // Project to 'pos'.
+ projectOut(0, pos);
+ projectOut(1, getNumIds() - 1);
+ // Check if there's an equality equating the '0'^th identifier to a constant.
+ int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false);
+ if (eqRowIdx != -1)
+ // atEq(rowIdx, 0) is either -1 or 1.
+ return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
+
+ // Check if the identifier appears at all in any of the inequalities.
+ unsigned r, e;
+ for (r = 0, e = getNumInequalities(); r < e; r++) {
+ if (atIneq(r, 0) != 0)
+ break;
+ }
+ if (r == e)
+ // If it doesn't, there isn't a bound on it.
+ return None;
+
+ Optional<int64_t> minOrMaxConst = None;
+
+ // Take the max across all const lower bounds (or min across all constant
+ // upper bounds).
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ if (isLower) {
+ if (atIneq(r, 0) <= 0)
+ // Not a lower bound.
+ continue;
+ } else if (atIneq(r, 0) >= 0) {
+ // Not an upper bound.
+ continue;
+ }
+ unsigned c, f;
+ for (c = 0, f = getNumCols() - 1; c < f; c++)
+ if (c != 0 && atIneq(r, c) != 0)
+ break;
+ if (c < getNumCols() - 1)
+ // Not a constant bound.
+ continue;
+
+ int64_t boundConst =
+ isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
+ : mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
+ if (isLower) {
+ if (minOrMaxConst == None || boundConst > minOrMaxConst)
+ minOrMaxConst = boundConst;
+ } else {
+ if (minOrMaxConst == None || boundConst < minOrMaxConst)
+ minOrMaxConst = boundConst;
+ }
+ }
+ return minOrMaxConst;
+}
+
+Optional<int64_t>
+FlatAffineConstraints::getConstantLowerBound(unsigned pos) const {
+ FlatAffineConstraints tmpCst(*this);
+ return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
+}
+
+Optional<int64_t>
+FlatAffineConstraints::getConstantUpperBound(unsigned pos) const {
+ FlatAffineConstraints tmpCst(*this);
+ return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
+}
+
+// A simple (naive and conservative) check for hyper-rectangularity.
+bool FlatAffineConstraints::isHyperRectangular(unsigned pos,
+ unsigned num) const {
+ assert(pos < getNumCols() - 1);
+ // Check for two non-zero coefficients in the range [pos, pos + sum).
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ unsigned sum = 0;
+ for (unsigned c = pos; c < pos + num; c++) {
+ if (atIneq(r, c) != 0)
+ sum++;
+ }
+ if (sum > 1)
+ return false;
+ }
+ for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
+ unsigned sum = 0;
+ for (unsigned c = pos; c < pos + num; c++) {
+ if (atEq(r, c) != 0)
+ sum++;
+ }
+ if (sum > 1)
+ return false;
+ }
+ return true;
+}
+
+void FlatAffineConstraints::print(raw_ostream &os) const {
+ assert(hasConsistentState());
+ os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds()
+ << " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints()
+ << " constraints)\n";
+ os << "(";
+ for (unsigned i = 0, e = getNumIds(); i < e; i++) {
+ if (ids[i] == None)
+ os << "None ";
+ else
+ os << "Value ";
+ }
+ os << " const)\n";
+ for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
+ for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
+ os << atEq(i, j) << " ";
+ }
+ os << "= 0\n";
+ }
+ for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
+ for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
+ os << atIneq(i, j) << " ";
+ }
+ os << ">= 0\n";
+ }
+ os << '\n';
+}
+
+void FlatAffineConstraints::dump() const { print(llvm::errs()); }
+
+/// Removes duplicate constraints, trivially true constraints, and constraints
+/// that can be detected as redundant as a result of differing only in their
+/// constant term part. A constraint of the form <non-negative constant> >= 0 is
+/// considered trivially true.
+// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
+// remove duplicates in place.
+void FlatAffineConstraints::removeTrivialRedundancy() {
+ SmallDenseSet<ArrayRef<int64_t>, 8> rowSet;
+
+ // A map used to detect redundancy stemming from constraints that only differ
+ // in their constant term. The value stored is <row position, const term>
+ // for a given row.
+ SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>>
+ rowsWithoutConstTerm;
+
+ // Check if constraint is of the form <non-negative-constant> >= 0.
+ auto isTriviallyValid = [&](unsigned r) -> bool {
+ for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
+ if (atIneq(r, c) != 0)
+ return false;
+ }
+ return atIneq(r, getNumCols() - 1) >= 0;
+ };
+
+ // Detect and mark redundant constraints.
+ SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ int64_t *rowStart = inequalities.data() + numReservedCols * r;
+ auto row = ArrayRef<int64_t>(rowStart, getNumCols());
+ if (isTriviallyValid(r) || !rowSet.insert(row).second) {
+ redunIneq[r] = true;
+ continue;
+ }
+
+ // Among constraints that only differ in the constant term part, mark
+ // everything other than the one with the smallest constant term redundant.
+ // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
+ // former two are redundant).
+ int64_t constTerm = atIneq(r, getNumCols() - 1);
+ auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1);
+ const auto &ret =
+ rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
+ if (!ret.second) {
+ // Check if the other constraint has a higher constant term.
+ auto &val = ret.first->second;
+ if (val.second > constTerm) {
+ // The stored row is redundant. Mark it so, and update with this one.
+ redunIneq[val.first] = true;
+ val = {r, constTerm};
+ } else {
+ // The one stored makes this one redundant.
+ redunIneq[r] = true;
+ }
+ }
+ }
+
+ auto copyRow = [&](unsigned src, unsigned dest) {
+ if (src == dest)
+ return;
+ for (unsigned c = 0, e = getNumCols(); c < e; c++) {
+ atIneq(dest, c) = atIneq(src, c);
+ }
+ };
+
+ // Scan to get rid of all rows marked redundant, in-place.
+ unsigned pos = 0;
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ if (!redunIneq[r])
+ copyRow(r, pos++);
+ }
+ inequalities.resize(numReservedCols * pos);
+
+ // TODO(bondhugula): consider doing this for equalities as well, but probably
+ // not worth the savings.
+}
+
+void FlatAffineConstraints::clearAndCopyFrom(
+ const FlatAffineConstraints &other) {
+ FlatAffineConstraints copy(other);
+ std::swap(*this, copy);
+ assert(copy.getNumIds() == copy.getIds().size());
+}
+
+void FlatAffineConstraints::removeId(unsigned pos) {
+ removeIdRange(pos, pos + 1);
+}
+
+static std::pair<unsigned, unsigned>
+getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
+ unsigned numDims = cst.getNumDimIds();
+ unsigned numSymbols = cst.getNumSymbolIds();
+ unsigned newNumDims, newNumSymbols;
+ if (pos < numDims) {
+ newNumDims = numDims - 1;
+ newNumSymbols = numSymbols;
+ } else if (pos < numDims + numSymbols) {
+ assert(numSymbols >= 1);
+ newNumDims = numDims;
+ newNumSymbols = numSymbols - 1;
+ } else {
+ newNumDims = numDims;
+ newNumSymbols = numSymbols;
+ }
+ return {newNumDims, newNumSymbols};
+}
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "fm"
+
+/// Eliminates identifier at the specified position using Fourier-Motzkin
+/// variable elimination. This technique is exact for rational spaces but
+/// conservative (in "rare" cases) for integer spaces. The operation corresponds
+/// to a projection operation yielding the (convex) set of integer points
+/// contained in the rational shadow of the set. An emptiness test that relies
+/// on this method will guarantee emptiness, i.e., it disproves the existence of
+/// a solution if it says it's empty.
+/// If a non-null isResultIntegerExact is passed, it is set to true if the
+/// result is also integer exact. If it's set to false, the obtained solution
+/// *may* not be exact, i.e., it may contain integer points that do not have an
+/// integer pre-image in the original set.
+///
+/// Eg:
+/// j >= 0, j <= i + 1
+/// i >= 0, i <= N + 1
+/// Eliminating i yields,
+/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
+///
+/// If darkShadow = true, this method computes the dark shadow on elimination;
+/// the dark shadow is a convex integer subset of the exact integer shadow. A
+/// non-empty dark shadow proves the existence of an integer solution. The
+/// elimination in such a case could however be an under-approximation, and thus
+/// should not be used for scanning sets or used by itself for dependence
+/// checking.
+///
+/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
+/// ^
+/// |
+/// | * * * * o o
+/// i | * * o o o o
+/// | o * * * * *
+/// --------------->
+/// j ->
+///
+/// Eliminating i from this system (projecting on the j dimension):
+/// rational shadow / integer light shadow: 1 <= j <= 6
+/// dark shadow: 3 <= j <= 6
+/// exact integer shadow: j = 1 \union 3 <= j <= 6
+/// holes/splinters: j = 2
+///
+/// darkShadow = false, isResultIntegerExact = nullptr are default values.
+// TODO(bondhugula): a slight modification to yield dark shadow version of FM
+// (tightened), which can prove the existence of a solution if there is one.
+void FlatAffineConstraints::FourierMotzkinEliminate(
+ unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
+ LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
+ LLVM_DEBUG(dump());
+ assert(pos < getNumIds() && "invalid position");
+ assert(hasConsistentState());
+
+ // Check if this identifier can be eliminated through a substitution.
+ for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
+ if (atEq(r, pos) != 0) {
+ // Use Gaussian elimination here (since we have an equality).
+ LogicalResult ret = gaussianEliminateId(pos);
+ (void)ret;
+ assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed");
+ LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
+ LLVM_DEBUG(dump());
+ return;
+ }
+ }
+
+ // A fast linear time tightening.
+ GCDTightenInequalities();
+
+ // Check if the identifier appears at all in any of the inequalities.
+ unsigned r, e;
+ for (r = 0, e = getNumInequalities(); r < e; r++) {
+ if (atIneq(r, pos) != 0)
+ break;
+ }
+ if (r == getNumInequalities()) {
+ // If it doesn't appear, just remove the column and return.
+ // TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
+ removeId(pos);
+ LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
+ LLVM_DEBUG(dump());
+ return;
+ }
+
+ // Positions of constraints that are lower bounds on the variable.
+ SmallVector<unsigned, 4> lbIndices;
+ // Positions of constraints that are lower bounds on the variable.
+ SmallVector<unsigned, 4> ubIndices;
+ // Positions of constraints that do not involve the variable.
+ std::vector<unsigned> nbIndices;
+ nbIndices.reserve(getNumInequalities());
+
+ // Gather all lower bounds and upper bounds of the variable. Since the
+ // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
+ // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
+ for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
+ if (atIneq(r, pos) == 0) {
+ // Id does not appear in bound.
+ nbIndices.push_back(r);
+ } else if (atIneq(r, pos) >= 1) {
+ // Lower bound.
+ lbIndices.push_back(r);
+ } else {
+ // Upper bound.
+ ubIndices.push_back(r);
+ }
+ }
+
+ // Set the number of dimensions, symbols in the resulting system.
+ const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this);
+ unsigned newNumDims = dimsSymbols.first;
+ unsigned newNumSymbols = dimsSymbols.second;
+
+ SmallVector<Optional<Value>, 8> newIds;
+ newIds.reserve(numIds - 1);
+ newIds.append(ids.begin(), ids.begin() + pos);
+ newIds.append(ids.begin() + pos + 1, ids.end());
+
+ /// Create the new system which has one identifier less.
+ FlatAffineConstraints newFac(
+ lbIndices.size() * ubIndices.size() + nbIndices.size(),
+ getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols,
+ /*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds);
+
+ assert(newFac.getIds().size() == newFac.getNumIds());
+
+ // This will be used to check if the elimination was integer exact.
+ unsigned lcmProducts = 1;
+
+ // Let x be the variable we are eliminating.
+ // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
+ // that c_l, c_u >= 1) we have:
+ // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
+ // We thus generate a constraint:
+ // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
+ // Note if c_l = c_u = 1, all integer points captured by the resulting
+ // constraint correspond to integer points in the original system (i.e., they
+ // have integer pre-images). Hence, if the lcm's are all 1, the elimination is
+ // integer exact.
+ for (auto ubPos : ubIndices) {
+ for (auto lbPos : lbIndices) {
+ SmallVector<int64_t, 4> ineq;
+ ineq.reserve(newFac.getNumCols());
+ int64_t lbCoeff = atIneq(lbPos, pos);
+ // Note that in the comments above, ubCoeff is the negation of the
+ // coefficient in the canonical form as the view taken here is that of the
+ // term being moved to the other size of '>='.
+ int64_t ubCoeff = -atIneq(ubPos, pos);
+ // TODO(bondhugula): refactor this loop to avoid all branches inside.
+ for (unsigned l = 0, e = getNumCols(); l < e; l++) {
+ if (l == pos)
+ continue;
+ assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
+ int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
+ ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
+ atIneq(lbPos, l) * (lcm / lbCoeff));
+ lcmProducts *= lcm;
+ }
+ if (darkShadow) {
+ // The dark shadow is a convex subset of the exact integer shadow. If
+ // there is a point here, it proves the existence of a solution.
+ ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
+ }
+ // TODO: we need to have a way to add inequalities in-place in
+ // FlatAffineConstraints instead of creating and copying over.
+ newFac.addInequality(ineq);
+ }
+ }
+
+ LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1)
+ << "\n");
+ if (lcmProducts == 1 && isResultIntegerExact)
+ *isResultIntegerExact = true;
+
+ // Copy over the constraints not involving this variable.
+ for (auto nbPos : nbIndices) {
+ SmallVector<int64_t, 4> ineq;
+ ineq.reserve(getNumCols() - 1);
+ for (unsigned l = 0, e = getNumCols(); l < e; l++) {
+ if (l == pos)
+ continue;
+ ineq.push_back(atIneq(nbPos, l));
+ }
+ newFac.addInequality(ineq);
+ }
+
+ assert(newFac.getNumConstraints() ==
+ lbIndices.size() * ubIndices.size() + nbIndices.size());
+
+ // Copy over the equalities.
+ for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
+ SmallVector<int64_t, 4> eq;
+ eq.reserve(newFac.getNumCols());
+ for (unsigned l = 0, e = getNumCols(); l < e; l++) {
+ if (l == pos)
+ continue;
+ eq.push_back(atEq(r, l));
+ }
+ newFac.addEquality(eq);
+ }
+
+ // GCD tightening and normalization allows detection of more trivially
+ // redundant constraints.
+ newFac.GCDTightenInequalities();
+ newFac.normalizeConstraintsByGCD();
+ newFac.removeTrivialRedundancy();
+ clearAndCopyFrom(newFac);
+ LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
+ LLVM_DEBUG(dump());
+}
+
+#undef DEBUG_TYPE
+#define DEBUG_TYPE "affine-structures"
+
+void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) {
+ if (num == 0)
+ return;
+
+ // 'pos' can be at most getNumCols() - 2 if num > 0.
+ assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
+ assert(pos + num < getNumCols() && "invalid range");
+
+ // Eliminate as many identifiers as possible using Gaussian elimination.
+ unsigned currentPos = pos;
+ unsigned numToEliminate = num;
+ unsigned numGaussianEliminated = 0;
+
+ while (currentPos < getNumIds()) {
+ unsigned curNumEliminated =
+ gaussianEliminateIds(currentPos, currentPos + numToEliminate);
+ ++currentPos;
+ numToEliminate -= curNumEliminated + 1;
+ numGaussianEliminated += curNumEliminated;
+ }
+
+ // Eliminate the remaining using Fourier-Motzkin.
+ for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
+ unsigned numToEliminate = num - numGaussianEliminated - i;
+ FourierMotzkinEliminate(
+ getBestIdToEliminate(*this, pos, pos + numToEliminate));
+ }
+
+ // Fast/trivial simplifications.
+ GCDTightenInequalities();
+ // Normalize constraints after tightening since the latter impacts this, but
+ // not the other way round.
+ normalizeConstraintsByGCD();
+}
+
+void FlatAffineConstraints::projectOut(Value id) {
+ unsigned pos;
+ bool ret = findId(*id, &pos);
+ assert(ret);
+ (void)ret;
+ FourierMotzkinEliminate(pos);
+}
+
+void FlatAffineConstraints::clearConstraints() {
+ equalities.clear();
+ inequalities.clear();
+}
+
+namespace {
+
+enum BoundCmpResult { Greater, Less, Equal, Unknown };
+
+/// Compares two affine bounds whose coefficients are provided in 'first' and
+/// 'second'. The last coefficient is the constant term.
+static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
+ assert(a.size() == b.size());
+
+ // For the bounds to be comparable, their corresponding identifier
+ // coefficients should be equal; the constant terms are then compared to
+ // determine less/greater/equal.
+
+ if (!std::equal(a.begin(), a.end() - 1, b.begin()))
+ return Unknown;
+
+ if (a.back() == b.back())
+ return Equal;
+
+ return a.back() < b.back() ? Less : Greater;
+}
+} // namespace
+
+// Computes the bounding box with respect to 'other' by finding the min of the
+// lower bounds and the max of the upper bounds along each of the dimensions.
+LogicalResult
+FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) {
+ assert(otherCst.getNumDimIds() == numDims && "dims mismatch");
+ assert(otherCst.getIds()
+ .slice(0, getNumDimIds())
+ .equals(getIds().slice(0, getNumDimIds())) &&
+ "dim values mismatch");
+ assert(otherCst.getNumLocalIds() == 0 && "local ids not supported here");
+ assert(getNumLocalIds() == 0 && "local ids not supported yet here");
+
+ Optional<FlatAffineConstraints> otherCopy;
+ if (!areIdsAligned(*this, otherCst)) {
+ otherCopy.emplace(FlatAffineConstraints(otherCst));
+ mergeAndAlignIds(/*offset=*/numDims, this, &otherCopy.getValue());
+ }
+
+ const auto &other = otherCopy ? *otherCopy : otherCst;
+
+ std::vector<SmallVector<int64_t, 8>> boundingLbs;
+ std::vector<SmallVector<int64_t, 8>> boundingUbs;
+ boundingLbs.reserve(2 * getNumDimIds());
+ boundingUbs.reserve(2 * getNumDimIds());
+
+ // To hold lower and upper bounds for each dimension.
+ SmallVector<int64_t, 4> lb, otherLb, ub, otherUb;
+ // To compute min of lower bounds and max of upper bounds for each dimension.
+ SmallVector<int64_t, 4> minLb(getNumSymbolIds() + 1);
+ SmallVector<int64_t, 4> maxUb(getNumSymbolIds() + 1);
+ // To compute final new lower and upper bounds for the union.
+ SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols());
+
+ int64_t lbFloorDivisor, otherLbFloorDivisor;
+ for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
+ auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
+ if (!extent.hasValue())
+ // TODO(bondhugula): symbolic extents when necessary.
+ // TODO(bondhugula): handle union if a dimension is unbounded.
+ return failure();
+
+ auto otherExtent = other.getConstantBoundOnDimSize(
+ d, &otherLb, &otherLbFloorDivisor, &otherUb);
+ if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor)
+ // TODO(bondhugula): symbolic extents when necessary.
+ return failure();
+
+ assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
+
+ auto res = compareBounds(lb, otherLb);
+ // Identify min.
+ if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
+ minLb = lb;
+ // Since the divisor is for a floordiv, we need to convert to ceildiv,
+ // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
+ // div * i >= expr - div + 1.
+ minLb.back() -= lbFloorDivisor - 1;
+ } else if (res == BoundCmpResult::Greater) {
+ minLb = otherLb;
+ minLb.back() -= otherLbFloorDivisor - 1;
+ } else {
+ // Uncomparable - check for constant lower/upper bounds.
+ auto constLb = getConstantLowerBound(d);
+ auto constOtherLb = other.getConstantLowerBound(d);
+ if (!constLb.hasValue() || !constOtherLb.hasValue())
+ return failure();
+ std::fill(minLb.begin(), minLb.end(), 0);
+ minLb.back() = std::min(constLb.getValue(), constOtherLb.getValue());
+ }
+
+ // Do the same for ub's but max of upper bounds. Identify max.
+ auto uRes = compareBounds(ub, otherUb);
+ if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
+ maxUb = ub;
+ } else if (uRes == BoundCmpResult::Less) {
+ maxUb = otherUb;
+ } else {
+ // Uncomparable - check for constant lower/upper bounds.
+ auto constUb = getConstantUpperBound(d);
+ auto constOtherUb = other.getConstantUpperBound(d);
+ if (!constUb.hasValue() || !constOtherUb.hasValue())
+ return failure();
+ std::fill(maxUb.begin(), maxUb.end(), 0);
+ maxUb.back() = std::max(constUb.getValue(), constOtherUb.getValue());
+ }
+
+ std::fill(newLb.begin(), newLb.end(), 0);
+ std::fill(newUb.begin(), newUb.end(), 0);
+
+ // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
+ // and so it's the divisor for newLb and newUb as well.
+ newLb[d] = lbFloorDivisor;
+ newUb[d] = -lbFloorDivisor;
+ // Copy over the symbolic part + constant term.
+ std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds());
+ std::transform(newLb.begin() + getNumDimIds(), newLb.end(),
+ newLb.begin() + getNumDimIds(), std::negate<int64_t>());
+ std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds());
+
+ boundingLbs.push_back(newLb);
+ boundingUbs.push_back(newUb);
+ }
+
+ // Clear all constraints and add the lower/upper bounds for the bounding box.
+ clearConstraints();
+ for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) {
+ addInequality(boundingLbs[d]);
+ addInequality(boundingUbs[d]);
+ }
+ // TODO(mlir-team): copy over pure symbolic constraints from this and 'other'
+ // over to the union (since the above are just the union along dimensions); we
+ // shouldn't be discarding any other constraints on the symbols.
+
+ return success();
+}
OpenPOWER on IntegriCloud