diff options
Diffstat (limited to 'llvm/utils/TableGen/InstrSelectorEmitter.cpp')
| -rw-r--r-- | llvm/utils/TableGen/InstrSelectorEmitter.cpp | 1287 |
1 files changed, 1287 insertions, 0 deletions
diff --git a/llvm/utils/TableGen/InstrSelectorEmitter.cpp b/llvm/utils/TableGen/InstrSelectorEmitter.cpp new file mode 100644 index 00000000000..a3c535cad4e --- /dev/null +++ b/llvm/utils/TableGen/InstrSelectorEmitter.cpp @@ -0,0 +1,1287 @@ +//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===// +// +// This tablegen backend is responsible for emitting a description of the target +// instruction set for the code generator. +// +//===----------------------------------------------------------------------===// + +#include "InstrSelectorEmitter.h" +#include "CodeGenWrappers.h" +#include "Record.h" +#include "Support/Debug.h" +#include "Support/StringExtras.h" +#include <set> + +NodeType::ArgResultTypes NodeType::Translate(Record *R) { + const std::string &Name = R->getName(); + if (Name == "DNVT_any") return Any; + if (Name == "DNVT_void") return Void; + if (Name == "DNVT_val" ) return Val; + if (Name == "DNVT_arg0") return Arg0; + if (Name == "DNVT_arg1") return Arg1; + if (Name == "DNVT_ptr" ) return Ptr; + if (Name == "DNVT_i8" ) return I8; + throw "Unknown DagNodeValType '" + Name + "'!"; +} + + +//===----------------------------------------------------------------------===// +// TreePatternNode implementation +// + +/// getValueRecord - Returns the value of this tree node as a record. For now +/// we only allow DefInit's as our leaf values, so this is used. +Record *TreePatternNode::getValueRecord() const { + DefInit *DI = dynamic_cast<DefInit*>(getValue()); + assert(DI && "Instruction Selector does not yet support non-def leaves!"); + return DI->getDef(); +} + + +// updateNodeType - Set the node type of N to VT if VT contains information. If +// N already contains a conflicting type, then throw an exception +// +bool TreePatternNode::updateNodeType(MVT::ValueType VT, + const std::string &RecName) { + if (VT == MVT::Other || getType() == VT) return false; + if (getType() == MVT::Other) { + setType(VT); + return true; + } + + throw "Type inferfence contradiction found for pattern " + RecName; +} + +/// InstantiateNonterminals - If this pattern refers to any nonterminals which +/// are not themselves completely resolved, clone the nonterminal and resolve it +/// with the using context we provide. +/// +void TreePatternNode::InstantiateNonterminals(InstrSelectorEmitter &ISE) { + if (!isLeaf()) { + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + getChild(i)->InstantiateNonterminals(ISE); + return; + } + + // If this is a leaf, it might be a reference to a nonterminal! Check now. + Record *R = getValueRecord(); + if (R->isSubClassOf("Nonterminal")) { + Pattern *NT = ISE.getPattern(R); + if (!NT->isResolved()) { + // We found an unresolved nonterminal reference. Ask the ISE to clone + // it for us, then update our reference to the fresh, new, resolved, + // nonterminal. + + Value = new DefInit(ISE.InstantiateNonterminal(NT, getType())); + } + } +} + + +/// clone - Make a copy of this tree and all of its children. +/// +TreePatternNode *TreePatternNode::clone() const { + TreePatternNode *New; + if (isLeaf()) { + New = new TreePatternNode(Value); + } else { + std::vector<std::pair<TreePatternNode*, std::string> > CChildren; + CChildren.reserve(Children.size()); + for (unsigned i = 0, e = getNumChildren(); i != e; ++i) + CChildren.push_back(std::make_pair(getChild(i)->clone(),getChildName(i))); + New = new TreePatternNode(Operator, CChildren); + } + New->setType(Type); + return New; +} + +std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N) { + if (N.isLeaf()) + return OS << N.getType() << ":" << *N.getValue(); + OS << "(" << N.getType() << ":"; + OS << N.getOperator()->getName(); + + if (N.getNumChildren() != 0) { + OS << " " << *N.getChild(0); + for (unsigned i = 1, e = N.getNumChildren(); i != e; ++i) + OS << ", " << *N.getChild(i); + } + return OS << ")"; +} + +void TreePatternNode::dump() const { std::cerr << *this; } + +//===----------------------------------------------------------------------===// +// Pattern implementation +// + +// Parse the specified DagInit into a TreePattern which we can use. +// +Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec, + InstrSelectorEmitter &ise) + : PTy(pty), ResultNode(0), TheRecord(TheRec), ISE(ise) { + + // First, parse the pattern... + Tree = ParseTreePattern(RawPat); + + // Run the type-inference engine... + InferAllTypes(); + + if (PTy == Instruction || PTy == Expander) { + // Check to make sure there is not any unset types in the tree pattern... + if (!isResolved()) { + std::cerr << "In pattern: " << *Tree << "\n"; + error("Could not infer all types!"); + } + + // Check to see if we have a top-level (set) of a register. + if (Tree->getOperator()->getName() == "set") { + assert(Tree->getNumChildren() == 2 && "Set with != 2 arguments?"); + if (!Tree->getChild(0)->isLeaf()) + error("Arg #0 of set should be a register or register class!"); + ResultNode = Tree->getChild(0); + ResultName = Tree->getChildName(0); + Tree = Tree->getChild(1); + } + } + + calculateArgs(Tree, ""); +} + +void Pattern::error(const std::string &Msg) const { + std::string M = "In "; + switch (PTy) { + case Nonterminal: M += "nonterminal "; break; + case Instruction: M += "instruction "; break; + case Expander : M += "expander "; break; + } + throw M + TheRecord->getName() + ": " + Msg; +} + +/// calculateArgs - Compute the list of all of the arguments to this pattern, +/// which are the non-void leaf nodes in this pattern. +/// +void Pattern::calculateArgs(TreePatternNode *N, const std::string &Name) { + if (N->isLeaf() || N->getNumChildren() == 0) { + if (N->getType() != MVT::isVoid) + Args.push_back(std::make_pair(N, Name)); + } else { + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + calculateArgs(N->getChild(i), N->getChildName(i)); + } +} + +/// getIntrinsicType - Check to see if the specified record has an intrinsic +/// type which should be applied to it. This infer the type of register +/// references from the register file information, for example. +/// +MVT::ValueType Pattern::getIntrinsicType(Record *R) const { + // Check to see if this is a register or a register class... + if (R->isSubClassOf("RegisterClass")) + return getValueType(R->getValueAsDef("RegType")); + else if (R->isSubClassOf("Nonterminal")) + return ISE.ReadNonterminal(R)->getTree()->getType(); + else if (R->isSubClassOf("Register")) { + std::cerr << "WARNING: Explicit registers not handled yet!\n"; + return MVT::Other; + } + + error("Unknown value used: " + R->getName()); + return MVT::Other; +} + +TreePatternNode *Pattern::ParseTreePattern(DagInit *Dag) { + Record *Operator = Dag->getNodeType(); + + if (Operator->isSubClassOf("ValueType")) { + // If the operator is a ValueType, then this must be "type cast" of a leaf + // node. + if (Dag->getNumArgs() != 1) + error("Type cast only valid for a leaf node!"); + + Init *Arg = Dag->getArg(0); + TreePatternNode *New; + if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { + New = new TreePatternNode(DI); + // If it's a regclass or something else known, set the type. + New->setType(getIntrinsicType(DI->getDef())); + } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { + New = ParseTreePattern(DI); + } else { + Arg->dump(); + error("Unknown leaf value for tree pattern!"); + return 0; + } + + // Apply the type cast... + New->updateNodeType(getValueType(Operator), TheRecord->getName()); + return New; + } + + if (!ISE.getNodeTypes().count(Operator)) + error("Unrecognized node '" + Operator->getName() + "'!"); + + std::vector<std::pair<TreePatternNode*, std::string> > Children; + + for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { + Init *Arg = Dag->getArg(i); + if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { + Children.push_back(std::make_pair(ParseTreePattern(DI), + Dag->getArgName(i))); + } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { + Record *R = DefI->getDef(); + // Direct reference to a leaf DagNode? Turn it into a DagNode if its own. + if (R->isSubClassOf("DagNode")) { + Dag->setArg(i, new DagInit(R, + std::vector<std::pair<Init*, std::string> >())); + --i; // Revisit this node... + } else { + Children.push_back(std::make_pair(new TreePatternNode(DefI), + Dag->getArgName(i))); + // If it's a regclass or something else known, set the type. + Children.back().first->setType(getIntrinsicType(R)); + } + } else { + Arg->dump(); + error("Unknown leaf value for tree pattern!"); + } + } + + return new TreePatternNode(Operator, Children); +} + +void Pattern::InferAllTypes() { + bool MadeChange, AnyUnset; + do { + MadeChange = false; + AnyUnset = InferTypes(Tree, MadeChange); + } while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange)); + Resolved = !AnyUnset; +} + + +// InferTypes - Perform type inference on the tree, returning true if there +// are any remaining untyped nodes and setting MadeChange if any changes were +// made. +bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) { + if (N->isLeaf()) return N->getType() == MVT::Other; + + bool AnyUnset = false; + Record *Operator = N->getOperator(); + const NodeType &NT = ISE.getNodeType(Operator); + + // Check to see if we can infer anything about the argument types from the + // return types... + if (N->getNumChildren() != NT.ArgTypes.size()) + error("Incorrect number of children for " + Operator->getName() + " node!"); + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + AnyUnset |= InferTypes(Child, MadeChange); + + switch (NT.ArgTypes[i]) { + case NodeType::Any: break; + case NodeType::I8: + MadeChange |= Child->updateNodeType(MVT::i1, TheRecord->getName()); + break; + case NodeType::Arg0: + MadeChange |= Child->updateNodeType(N->getChild(0)->getType(), + TheRecord->getName()); + break; + case NodeType::Arg1: + MadeChange |= Child->updateNodeType(N->getChild(1)->getType(), + TheRecord->getName()); + break; + case NodeType::Val: + if (Child->getType() == MVT::isVoid) + error("Inferred a void node in an illegal place!"); + break; + case NodeType::Ptr: + MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(), + TheRecord->getName()); + break; + case NodeType::Void: + MadeChange |= Child->updateNodeType(MVT::isVoid, TheRecord->getName()); + break; + default: assert(0 && "Invalid argument ArgType!"); + } + } + + // See if we can infer anything about the return type now... + switch (NT.ResultType) { + case NodeType::Any: break; + case NodeType::Void: + MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName()); + break; + case NodeType::I8: + MadeChange |= N->updateNodeType(MVT::i1, TheRecord->getName()); + break; + case NodeType::Arg0: + MadeChange |= N->updateNodeType(N->getChild(0)->getType(), + TheRecord->getName()); + break; + case NodeType::Arg1: + MadeChange |= N->updateNodeType(N->getChild(1)->getType(), + TheRecord->getName()); + break; + case NodeType::Ptr: + MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(), + TheRecord->getName()); + break; + case NodeType::Val: + if (N->getType() == MVT::isVoid) + error("Inferred a void node in an illegal place!"); + break; + default: + assert(0 && "Unhandled type constraint!"); + break; + } + + return AnyUnset | N->getType() == MVT::Other; +} + +/// clone - This method is used to make an exact copy of the current pattern, +/// then change the "TheRecord" instance variable to the specified record. +/// +Pattern *Pattern::clone(Record *R) const { + assert(PTy == Nonterminal && "Can only clone nonterminals"); + return new Pattern(Tree->clone(), R, Resolved, ISE); +} + + + +std::ostream &operator<<(std::ostream &OS, const Pattern &P) { + switch (P.getPatternType()) { + case Pattern::Nonterminal: OS << "Nonterminal pattern "; break; + case Pattern::Instruction: OS << "Instruction pattern "; break; + case Pattern::Expander: OS << "Expander pattern "; break; + } + + OS << P.getRecord()->getName() << ":\t"; + + if (Record *Result = P.getResult()) + OS << Result->getName() << " = "; + OS << *P.getTree(); + + if (!P.isResolved()) + OS << " [not completely resolved]"; + return OS; +} + +void Pattern::dump() const { std::cerr << *this; } + + + +/// getSlotName - If this is a leaf node, return the slot name that the operand +/// will update. +std::string Pattern::getSlotName() const { + if (getPatternType() == Pattern::Nonterminal) { + // Just use the nonterminal name, which will already include the type if + // it has been cloned. + return getRecord()->getName(); + } else { + std::string SlotName; + if (getResult()) + SlotName = getResult()->getName()+"_"; + else + SlotName = "Void_"; + return SlotName + getName(getTree()->getType()); + } +} + +/// getSlotName - If this is a leaf node, return the slot name that the +/// operand will update. +std::string Pattern::getSlotName(Record *R) { + if (R->isSubClassOf("Nonterminal")) { + // Just use the nonterminal name, which will already include the type if + // it has been cloned. + return R->getName(); + } else if (R->isSubClassOf("RegisterClass")) { + MVT::ValueType Ty = getValueType(R->getValueAsDef("RegType")); + return R->getName() + "_" + getName(Ty); + } else { + assert(0 && "Don't know how to get a slot name for this!"); + } + return ""; +} + +//===----------------------------------------------------------------------===// +// PatternOrganizer implementation +// + +/// addPattern - Add the specified pattern to the appropriate location in the +/// collection. +void PatternOrganizer::addPattern(Pattern *P) { + NodesForSlot &Nodes = AllPatterns[P->getSlotName()]; + if (!P->getTree()->isLeaf()) + Nodes[P->getTree()->getOperator()].push_back(P); + else { + // Right now we only support DefInit's with node types... + Nodes[P->getTree()->getValueRecord()].push_back(P); + } +} + + + +//===----------------------------------------------------------------------===// +// InstrSelectorEmitter implementation +// + +/// ReadNodeTypes - Read in all of the node types in the current RecordKeeper, +/// turning them into the more accessible NodeTypes data structure. +/// +void InstrSelectorEmitter::ReadNodeTypes() { + std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("DagNode"); + DEBUG(std::cerr << "Getting node types: "); + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + Record *Node = Nodes[i]; + + // Translate the return type... + NodeType::ArgResultTypes RetTy = + NodeType::Translate(Node->getValueAsDef("RetType")); + + // Translate the arguments... + ListInit *Args = Node->getValueAsListInit("ArgTypes"); + std::vector<NodeType::ArgResultTypes> ArgTypes; + + for (unsigned a = 0, e = Args->getSize(); a != e; ++a) { + if (DefInit *DI = dynamic_cast<DefInit*>(Args->getElement(a))) + ArgTypes.push_back(NodeType::Translate(DI->getDef())); + else + throw "In node " + Node->getName() + ", argument is not a Def!"; + + if (a == 0 && ArgTypes.back() == NodeType::Arg0) + throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!"; + if (a == 1 && ArgTypes.back() == NodeType::Arg1) + throw "In node " + Node->getName() + ", arg 1 cannot have type 'arg1'!"; + } + if ((RetTy == NodeType::Arg0 && Args->getSize() == 0) || + (RetTy == NodeType::Arg1 && Args->getSize() < 2)) + throw "In node " + Node->getName() + + ", invalid return type for node with this many operands!"; + + // Add the node type mapping now... + NodeTypes[Node] = NodeType(RetTy, ArgTypes); + DEBUG(std::cerr << Node->getName() << ", "); + } + DEBUG(std::cerr << "DONE!\n"); +} + +Pattern *InstrSelectorEmitter::ReadNonterminal(Record *R) { + Pattern *&P = Patterns[R]; + if (P) return P; // Don't reread it! + + DagInit *DI = R->getValueAsDag("Pattern"); + P = new Pattern(Pattern::Nonterminal, DI, R, *this); + DEBUG(std::cerr << "Parsed " << *P << "\n"); + return P; +} + + +// ReadNonTerminals - Read in all nonterminals and incorporate them into our +// pattern database. +void InstrSelectorEmitter::ReadNonterminals() { + std::vector<Record*> NTs = Records.getAllDerivedDefinitions("Nonterminal"); + for (unsigned i = 0, e = NTs.size(); i != e; ++i) + ReadNonterminal(NTs[i]); +} + + +/// ReadInstructionPatterns - Read in all subclasses of Instruction, and process +/// those with a useful Pattern field. +/// +void InstrSelectorEmitter::ReadInstructionPatterns() { + std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); + for (unsigned i = 0, e = Insts.size(); i != e; ++i) { + Record *Inst = Insts[i]; + if (DagInit *DI = dynamic_cast<DagInit*>(Inst->getValueInit("Pattern"))) { + Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this); + DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n"); + } + } +} + +/// ReadExpanderPatterns - Read in all expander patterns... +/// +void InstrSelectorEmitter::ReadExpanderPatterns() { + std::vector<Record*> Expanders = Records.getAllDerivedDefinitions("Expander"); + for (unsigned i = 0, e = Expanders.size(); i != e; ++i) { + Record *Expander = Expanders[i]; + DagInit *DI = Expander->getValueAsDag("Pattern"); + Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this); + DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n"); + } +} + + +// InstantiateNonterminals - Instantiate any unresolved nonterminals with +// information from the context that they are used in. +// +void InstrSelectorEmitter::InstantiateNonterminals() { + DEBUG(std::cerr << "Instantiating nonterminals:\n"); + for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(), + E = Patterns.end(); I != E; ++I) + if (I->second->isResolved()) + I->second->InstantiateNonterminals(); +} + +/// InstantiateNonterminal - This method takes the nonterminal specified by +/// NT, which should not be completely resolved, clones it, applies ResultTy +/// to its root, then runs the type inference stuff on it. This should +/// produce a newly resolved nonterminal, which we make a record for and +/// return. To be extra fancy and efficient, this only makes one clone for +/// each type it is instantiated with. +Record *InstrSelectorEmitter::InstantiateNonterminal(Pattern *NT, + MVT::ValueType ResultTy) { + assert(!NT->isResolved() && "Nonterminal is already resolved!"); + + // Check to see if we have already instantiated this pair... + Record* &Slot = InstantiatedNTs[std::make_pair(NT, ResultTy)]; + if (Slot) return Slot; + + Record *New = new Record(NT->getRecord()->getName()+"_"+getName(ResultTy)); + + // Copy over the superclasses... + const std::vector<Record*> &SCs = NT->getRecord()->getSuperClasses(); + for (unsigned i = 0, e = SCs.size(); i != e; ++i) + New->addSuperClass(SCs[i]); + + DEBUG(std::cerr << " Nonterminal '" << NT->getRecord()->getName() + << "' for type '" << getName(ResultTy) << "', producing '" + << New->getName() << "'\n"); + + // Copy the pattern... + Pattern *NewPat = NT->clone(New); + + // Apply the type to the root... + NewPat->getTree()->updateNodeType(ResultTy, New->getName()); + + // Infer types... + NewPat->InferAllTypes(); + + // Make sure everything is good to go now... + if (!NewPat->isResolved()) + NewPat->error("Instantiating nonterminal did not resolve all types!"); + + // Add the pattern to the patterns map, add the record to the RecordKeeper, + // return the new record. + Patterns[New] = NewPat; + Records.addDef(New); + return Slot = New; +} + +// CalculateComputableValues - Fill in the ComputableValues map through +// analysis of the patterns we are playing with. +void InstrSelectorEmitter::CalculateComputableValues() { + // Loop over all of the patterns, adding them to the ComputableValues map + for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(), + E = Patterns.end(); I != E; ++I) + if (I->second->isResolved()) { + // We don't want to add patterns like R32 = R32. This is a hack working + // around a special case of a general problem, but for now we explicitly + // forbid these patterns. They can never match anyway. + Pattern *P = I->second; + if (!P->getResult() || !P->getTree()->isLeaf() || + P->getResult() != P->getTree()->getValueRecord()) + ComputableValues.addPattern(P); + } +} + +#if 0 +// MoveIdenticalPatterns - Given a tree pattern 'P', move all of the tree +// patterns which have the same top-level structure as P from the 'From' list to +// the 'To' list. +static void MoveIdenticalPatterns(TreePatternNode *P, + std::vector<std::pair<Pattern*, TreePatternNode*> > &From, + std::vector<std::pair<Pattern*, TreePatternNode*> > &To) { + assert(!P->isLeaf() && "All leaves are identical!"); + + const std::vector<TreePatternNode*> &PChildren = P->getChildren(); + for (unsigned i = 0; i != From.size(); ++i) { + TreePatternNode *N = From[i].second; + assert(P->getOperator() == N->getOperator() &&"Differing operators?"); + assert(PChildren.size() == N->getChildren().size() && + "Nodes with different arity??"); + bool isDifferent = false; + for (unsigned c = 0, e = PChildren.size(); c != e; ++c) { + TreePatternNode *PC = PChildren[c]; + TreePatternNode *NC = N->getChild(c); + if (PC->isLeaf() != NC->isLeaf()) { + isDifferent = true; + break; + } + + if (!PC->isLeaf()) { + if (PC->getOperator() != NC->getOperator()) { + isDifferent = true; + break; + } + } else { // It's a leaf! + if (PC->getValueRecord() != NC->getValueRecord()) { + isDifferent = true; + break; + } + } + } + // If it's the same as the reference one, move it over now... + if (!isDifferent) { + To.push_back(std::make_pair(From[i].first, N)); + From.erase(From.begin()+i); + --i; // Don't skip an entry... + } + } +} +#endif + +static std::string getNodeName(Record *R) { + RecordVal *RV = R->getValue("EnumName"); + if (RV) + if (Init *I = RV->getValue()) + if (StringInit *SI = dynamic_cast<StringInit*>(I)) + return SI->getValue(); + return R->getName(); +} + + +static void EmitPatternPredicates(TreePatternNode *Tree, + const std::string &VarName, std::ostream &OS){ + OS << " && " << VarName << "->getNodeType() == ISD::" + << getNodeName(Tree->getOperator()); + + for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c) + if (!Tree->getChild(c)->isLeaf()) + EmitPatternPredicates(Tree->getChild(c), + VarName + "->getUse(" + utostr(c)+")", OS); +} + +static void EmitPatternCosts(TreePatternNode *Tree, const std::string &VarName, + std::ostream &OS) { + for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c) + if (Tree->getChild(c)->isLeaf()) { + OS << " + Match_" + << Pattern::getSlotName(Tree->getChild(c)->getValueRecord()) << "(" + << VarName << "->getUse(" << c << "))"; + } else { + EmitPatternCosts(Tree->getChild(c), + VarName + "->getUse(" + utostr(c) + ")", OS); + } +} + + +// EmitMatchCosters - Given a list of patterns, which all have the same root +// pattern operator, emit an efficient decision tree to decide which one to +// pick. This is structured this way to avoid reevaluations of non-obvious +// subexpressions. +void InstrSelectorEmitter::EmitMatchCosters(std::ostream &OS, + const std::vector<std::pair<Pattern*, TreePatternNode*> > &Patterns, + const std::string &VarPrefix, + unsigned IndentAmt) { + assert(!Patterns.empty() && "No patterns to emit matchers for!"); + std::string Indent(IndentAmt, ' '); + + // Load all of the operands of the root node into scalars for fast access + const NodeType &ONT = getNodeType(Patterns[0].second->getOperator()); + for (unsigned i = 0, e = ONT.ArgTypes.size(); i != e; ++i) + OS << Indent << "SelectionDAGNode *" << VarPrefix << "_Op" << i + << " = N->getUse(" << i << ");\n"; + + // Compute the costs of computing the various nonterminals/registers, which + // are directly used at this level. + OS << "\n" << Indent << "// Operand matching costs...\n"; + std::set<std::string> ComputedValues; // Avoid duplicate computations... + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + TreePatternNode *NParent = Patterns[i].second; + for (unsigned c = 0, e = NParent->getNumChildren(); c != e; ++c) { + TreePatternNode *N = NParent->getChild(c); + if (N->isLeaf()) { + Record *VR = N->getValueRecord(); + const std::string &LeafName = VR->getName(); + std::string OpName = VarPrefix + "_Op" + utostr(c); + std::string ValName = OpName + "_" + LeafName + "_Cost"; + if (!ComputedValues.count(ValName)) { + OS << Indent << "unsigned " << ValName << " = Match_" + << Pattern::getSlotName(VR) << "(" << OpName << ");\n"; + ComputedValues.insert(ValName); + } + } + } + } + OS << "\n"; + + + std::string LocCostName = VarPrefix + "_Cost"; + OS << Indent << "unsigned " << LocCostName << "Min = ~0U >> 1;\n" + << Indent << "unsigned " << VarPrefix << "_PatternMin = NoMatchPattern;\n"; + +#if 0 + // Separate out all of the patterns into groups based on what their top-level + // signature looks like... + std::vector<std::pair<Pattern*, TreePatternNode*> > PatternsLeft(Patterns); + while (!PatternsLeft.empty()) { + // Process all of the patterns that have the same signature as the last + // element... + std::vector<std::pair<Pattern*, TreePatternNode*> > Group; + MoveIdenticalPatterns(PatternsLeft.back().second, PatternsLeft, Group); + assert(!Group.empty() && "Didn't at least pick the source pattern?"); + +#if 0 + OS << "PROCESSING GROUP:\n"; + for (unsigned i = 0, e = Group.size(); i != e; ++i) + OS << " " << *Group[i].first << "\n"; + OS << "\n\n"; +#endif + + OS << Indent << "{ // "; + + if (Group.size() != 1) { + OS << Group.size() << " size group...\n"; + OS << Indent << " unsigned " << VarPrefix << "_Pattern = NoMatch;\n"; + } else { + OS << *Group[0].first << "\n"; + OS << Indent << " unsigned " << VarPrefix << "_Pattern = " + << Group[0].first->getRecord()->getName() << "_Pattern;\n"; + } + + OS << Indent << " unsigned " << LocCostName << " = "; + if (Group.size() == 1) + OS << "1;\n"; // Add inst cost if at individual rec + else + OS << "0;\n"; + + // Loop over all of the operands, adding in their costs... + TreePatternNode *N = Group[0].second; + const std::vector<TreePatternNode*> &Children = N->getChildren(); + + // If necessary, emit conditionals to check for the appropriate tree + // structure here... + for (unsigned i = 0, e = Children.size(); i != e; ++i) { + TreePatternNode *C = Children[i]; + if (C->isLeaf()) { + // We already calculated the cost for this leaf, add it in now... + OS << Indent << " " << LocCostName << " += " + << VarPrefix << "_Op" << utostr(i) << "_" + << C->getValueRecord()->getName() << "_Cost;\n"; + } else { + // If it's not a leaf, we have to check to make sure that the current + // node has the appropriate structure, then recurse into it... + OS << Indent << " if (" << VarPrefix << "_Op" << i + << "->getNodeType() == ISD::" << getNodeName(C->getOperator()) + << ") {\n"; + std::vector<std::pair<Pattern*, TreePatternNode*> > SubPatterns; + for (unsigned n = 0, e = Group.size(); n != e; ++n) + SubPatterns.push_back(std::make_pair(Group[n].first, + Group[n].second->getChild(i))); + EmitMatchCosters(OS, SubPatterns, VarPrefix+"_Op"+utostr(i), + IndentAmt + 4); + OS << Indent << " }\n"; + } + } + + // If the cost for this match is less than the minimum computed cost so far, + // update the minimum cost and selected pattern. + OS << Indent << " if (" << LocCostName << " < " << LocCostName << "Min) { " + << LocCostName << "Min = " << LocCostName << "; " << VarPrefix + << "_PatternMin = " << VarPrefix << "_Pattern; }\n"; + + OS << Indent << "}\n"; + } +#endif + + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + Pattern *P = Patterns[i].first; + TreePatternNode *PTree = P->getTree(); + unsigned PatternCost = 1; + + // Check to see if there are any non-leaf elements in the pattern. If so, + // we need to emit a predicate for this match. + bool AnyNonLeaf = false; + for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) + if (!PTree->getChild(c)->isLeaf()) { + AnyNonLeaf = true; + break; + } + + if (!AnyNonLeaf) { // No predicate necessary, just output a scope... + OS << " {// " << *P << "\n"; + } else { + // We need to emit a predicate to make sure the tree pattern matches, do + // so now... + OS << " if (1"; + for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) + if (!PTree->getChild(c)->isLeaf()) + EmitPatternPredicates(PTree->getChild(c), + VarPrefix + "_Op" + utostr(c), OS); + + OS << ") {\n // " << *P << "\n"; + } + + OS << " unsigned PatCost = " << PatternCost; + + for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c) + if (PTree->getChild(c)->isLeaf()) { + OS << " + " << VarPrefix << "_Op" << c << "_" + << PTree->getChild(c)->getValueRecord()->getName() << "_Cost"; + } else { + EmitPatternCosts(PTree->getChild(c), VarPrefix + "_Op" + utostr(c), OS); + } + OS << ";\n"; + OS << " if (PatCost < MinCost) { MinCost = PatCost; Pattern = " + << P->getRecord()->getName() << "_Pattern; }\n" + << " }\n"; + } +} + +static void ReduceAllOperands(TreePatternNode *N, const std::string &Name, + std::vector<std::pair<TreePatternNode*, std::string> > &Operands, + std::ostream &OS) { + if (N->isLeaf()) { + // If this is a leaf, register or nonterminal reference... + std::string SlotName = Pattern::getSlotName(N->getValueRecord()); + OS << " ReducedValue_" << SlotName << " *" << Name << "Val = Reduce_" + << SlotName << "(" << Name << ", MBB);\n"; + Operands.push_back(std::make_pair(N, Name+"Val")); + } else if (N->getNumChildren() == 0) { + // This is a reference to a leaf tree node, like an immediate or frame + // index. + if (N->getType() != MVT::isVoid) { + std::string SlotName = + getNodeName(N->getOperator()) + "_" + getName(N->getType()); + OS << " ReducedValue_" << SlotName << " *" << Name << "Val = " + << Name << "->getValue<ReducedValue_" << SlotName << ">(ISD::" + << SlotName << "_Slot);\n"; + Operands.push_back(std::make_pair(N, Name+"Val")); + } + } else { + // Otherwise this is an interior node... + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + std::string ChildName = Name + "_Op" + utostr(i); + OS << " SelectionDAGNode *" << ChildName << " = " << Name + << "->getUse(" << i << ");\n"; + ReduceAllOperands(N->getChild(i), ChildName, Operands, OS); + } + } +} + +/// PrintExpanderOperand - Print out Arg as part of the instruction emission +/// process for the expander pattern P. This argument may be referencing some +/// values defined in P, or may just be physical register references or +/// something like that. If PrintArg is true, we are printing out arguments to +/// the BuildMI call. If it is false, we are printing the result register +/// name. +void InstrSelectorEmitter::PrintExpanderOperand(Init *Arg, + const std::string &NameVar, + TreePatternNode *ArgDeclNode, + Pattern *P, bool PrintArg, + std::ostream &OS) { + if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { + Record *Arg = DI->getDef(); + if (!ArgDeclNode->isLeaf() && ArgDeclNode->getNumChildren() != 0) + P->error("Expected leaf node as argument!"); + Record *ArgDecl = ArgDeclNode->isLeaf() ? ArgDeclNode->getValueRecord() : + ArgDeclNode->getOperator(); + if (Arg->isSubClassOf("Register")) { + // This is a physical register reference... make sure that the instruction + // requested a register! + if (!ArgDecl->isSubClassOf("RegisterClass")) + P->error("Argument mismatch for instruction pattern!"); + + // FIXME: This should check to see if the register is in the specified + // register class! + if (PrintArg) OS << ".addReg("; + OS << getQualifiedName(Arg); + if (PrintArg) OS << ")"; + return; + } else if (Arg->isSubClassOf("RegisterClass")) { + // If this is a symbolic register class reference, we must be using a + // named value. + if (NameVar.empty()) P->error("Did not specify WHICH register to pass!"); + if (Arg != ArgDecl) P->error("Instruction pattern mismatch!"); + + if (PrintArg) OS << ".addReg("; + OS << NameVar; + if (PrintArg) OS << ")"; + return; + } else if (Arg->getName() == "frameidx") { + if (!PrintArg) P->error("Cannot define a new frameidx value!"); + OS << ".addFrameIndex(" << NameVar << ")"; + return; + } else if (Arg->getName() == "basicblock") { + if (!PrintArg) P->error("Cannot define a new basicblock value!"); + OS << ".addMBB(" << NameVar << ")"; + return; + } + P->error("Unknown operand type '" + Arg->getName() + "' to expander!"); + } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { + if (!NameVar.empty()) + P->error("Illegal to specify a name for a constant initializer arg!"); + + // Hack this check to allow R32 values with 0 as the initializer for memory + // references... FIXME! + if (ArgDeclNode->isLeaf() && II->getValue() == 0 && + ArgDeclNode->getValueRecord()->getName() == "R32") { + OS << ".addReg(0)"; + } else { + if (ArgDeclNode->isLeaf() || ArgDeclNode->getOperator()->getName()!="imm") + P->error("Illegal immediate int value '" + itostr(II->getValue()) + + "' operand!"); + OS << ".addZImm(" << II->getValue() << ")"; + } + return; + } + P->error("Unknown operand type to expander!"); +} + +static std::string getArgName(Pattern *P, const std::string &ArgName, + const std::vector<std::pair<TreePatternNode*, std::string> > &Operands) { + assert(P->getNumArgs() == Operands.size() &&"Argument computation mismatch!"); + if (ArgName.empty()) return ""; + + for (unsigned i = 0, e = P->getNumArgs(); i != e; ++i) + if (P->getArgName(i) == ArgName) + return Operands[i].second + "->Val"; + + if (ArgName == P->getResultName()) + return "NewReg"; + P->error("Pattern does not define a value named $" + ArgName + "!"); + return ""; +} + + +void InstrSelectorEmitter::run(std::ostream &OS) { + // Type-check all of the node types to ensure we "understand" them. + ReadNodeTypes(); + + // Read in all of the nonterminals, instructions, and expanders... + ReadNonterminals(); + ReadInstructionPatterns(); + ReadExpanderPatterns(); + + // Instantiate any unresolved nonterminals with information from the context + // that they are used in. + InstantiateNonterminals(); + + // Clear InstantiatedNTs, we don't need it anymore... + InstantiatedNTs.clear(); + + DEBUG(std::cerr << "Patterns acquired:\n"); + for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(), + E = Patterns.end(); I != E; ++I) + if (I->second->isResolved()) + DEBUG(std::cerr << " " << *I->second << "\n"); + + CalculateComputableValues(); + + EmitSourceFileHeader("Instruction Selector for the " + Target.getName() + + " target", OS); + OS << "#include \"llvm/CodeGen/MachineInstrBuilder.h\"\n"; + + // Output the slot number enums... + OS << "\nenum { // Slot numbers...\n" + << " LastBuiltinSlot = ISD::NumBuiltinSlots-1, // Start numbering here\n"; + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) + OS << " " << I->first << "_Slot,\n"; + OS << " NumSlots\n};\n\n// Reduction value typedefs...\n"; + + // Output the reduction value typedefs... + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) { + + OS << "typedef ReducedValue<unsigned, " << I->first + << "_Slot> ReducedValue_" << I->first << ";\n"; + } + + // Output the pattern enums... + OS << "\n\n" + << "enum { // Patterns...\n" + << " NotComputed = 0,\n" + << " NoMatchPattern, \n"; + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) { + OS << " // " << I->first << " patterns...\n"; + for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), + E = I->second.end(); J != E; ++J) + for (unsigned i = 0, e = J->second.size(); i != e; ++i) + OS << " " << J->second[i]->getRecord()->getName() << "_Pattern,\n"; + } + OS << "};\n\n"; + + //===--------------------------------------------------------------------===// + // Emit the class definition... + // + OS << "namespace {\n" + << " class " << Target.getName() << "ISel {\n" + << " SelectionDAG &DAG;\n" + << " public:\n" + << " X86ISel(SelectionDAG &D) : DAG(D) {}\n" + << " void generateCode();\n" + << " private:\n" + << " unsigned makeAnotherReg(const TargetRegisterClass *RC) {\n" + << " return DAG.getMachineFunction().getSSARegMap()->createVirt" + "ualRegister(RC);\n" + << " }\n\n" + << " // DAG matching methods for classes... all of these methods" + " return the cost\n" + << " // of producing a value of the specified class and type, which" + " also gets\n" + << " // added to the DAG node.\n"; + + // Output all of the matching prototypes for slots... + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) + OS << " unsigned Match_" << I->first << "(SelectionDAGNode *N);\n"; + OS << "\n // DAG matching methods for DAG nodes...\n"; + + // Output all of the matching prototypes for slot/node pairs + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) + for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), + E = I->second.end(); J != E; ++J) + OS << " unsigned Match_" << I->first << "_" << getNodeName(J->first) + << "(SelectionDAGNode *N);\n"; + + // Output all of the dag reduction methods prototypes... + OS << "\n // DAG reduction methods...\n"; + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) + OS << " ReducedValue_" << I->first << " *Reduce_" << I->first + << "(SelectionDAGNode *N,\n" << std::string(27+2*I->first.size(), ' ') + << "MachineBasicBlock *MBB);\n"; + OS << " };\n}\n\n"; + + // Emit the generateCode entry-point... + OS << "void X86ISel::generateCode() {\n" + << " SelectionDAGNode *Root = DAG.getRoot();\n" + << " assert(Root->getValueType() == MVT::isVoid && " + "\"Root of DAG produces value??\");\n\n" + << " std::cerr << \"\\n\";\n" + << " unsigned Cost = Match_Void_void(Root);\n" + << " if (Cost >= ~0U >> 1) {\n" + << " std::cerr << \"Match failed!\\n\";\n" + << " Root->dump();\n" + << " abort();\n" + << " }\n\n" + << " std::cerr << \"Total DAG Cost: \" << Cost << \"\\n\\n\";\n\n" + << " Reduce_Void_void(Root, 0);\n" + << "}\n\n" + << "//===" << std::string(70, '-') << "===//\n" + << "// Matching methods...\n" + << "//\n\n"; + + //===--------------------------------------------------------------------===// + // Emit all of the matcher methods... + // + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) { + const std::string &SlotName = I->first; + OS << "unsigned " << Target.getName() << "ISel::Match_" << SlotName + << "(SelectionDAGNode *N) {\n" + << " assert(N->getValueType() == MVT::" + << getEnumName((*I->second.begin()).second[0]->getTree()->getType()) + << ");\n" << " // If we already have a cost available for " << SlotName + << " use it!\n" + << " if (N->getPatternFor(" << SlotName << "_Slot))\n" + << " return N->getCostFor(" << SlotName << "_Slot);\n\n" + << " unsigned Cost;\n" + << " switch (N->getNodeType()) {\n" + << " default: Cost = ~0U >> 1; // Match failed\n" + << " N->setPatternCostFor(" << SlotName << "_Slot, NoMatchPattern, Cost, NumSlots);\n" + << " break;\n"; + + for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), + E = I->second.end(); J != E; ++J) + if (!J->first->isSubClassOf("Nonterminal")) + OS << " case ISD::" << getNodeName(J->first) << ":\tCost = Match_" + << SlotName << "_" << getNodeName(J->first) << "(N); break;\n"; + OS << " }\n"; // End of the switch statement + + // Emit any patterns which have a nonterminal leaf as the RHS. These may + // match multiple root nodes, so they cannot be handled with the switch... + for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), + E = I->second.end(); J != E; ++J) + if (J->first->isSubClassOf("Nonterminal")) { + OS << " unsigned " << J->first->getName() << "_Cost = Match_" + << getNodeName(J->first) << "(N);\n" + << " if (" << getNodeName(J->first) << "_Cost < Cost) Cost = " + << getNodeName(J->first) << "_Cost;\n"; + } + + OS << " return Cost;\n}\n\n"; + + for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(), + E = I->second.end(); J != E; ++J) { + Record *Operator = J->first; + bool isNonterm = Operator->isSubClassOf("Nonterminal"); + if (!isNonterm) { + OS << "unsigned " << Target.getName() << "ISel::Match_"; + if (!isNonterm) OS << SlotName << "_"; + OS << getNodeName(Operator) << "(SelectionDAGNode *N) {\n" + << " unsigned Pattern = NoMatchPattern;\n" + << " unsigned MinCost = ~0U >> 1;\n"; + + std::vector<std::pair<Pattern*, TreePatternNode*> > Patterns; + for (unsigned i = 0, e = J->second.size(); i != e; ++i) + Patterns.push_back(std::make_pair(J->second[i], + J->second[i]->getTree())); + EmitMatchCosters(OS, Patterns, "N", 2); + + OS << "\n N->setPatternCostFor(" << SlotName + << "_Slot, Pattern, MinCost, NumSlots);\n" + << " return MinCost;\n" + << "}\n"; + } + } + } + + //===--------------------------------------------------------------------===// + // Emit all of the reducer methods... + // + OS << "\n\n//===" << std::string(70, '-') << "===//\n" + << "// Reducer methods...\n" + << "//\n"; + + for (PatternOrganizer::iterator I = ComputableValues.begin(), + E = ComputableValues.end(); I != E; ++I) { + const std::string &SlotName = I->first; + OS << "ReducedValue_" << SlotName << " *" << Target.getName() + << "ISel::Reduce_" << SlotName + << "(SelectionDAGNode *N, MachineBasicBlock *MBB) {\n" + << " ReducedValue_" << SlotName << " *Val = N->hasValue<ReducedValue_" + << SlotName << ">(" << SlotName << "_Slot);\n" + << " if (Val) return Val;\n" + << " if (N->getBB()) MBB = N->getBB();\n\n" + << " switch (N->getPatternFor(" << SlotName << "_Slot)) {\n"; + + // Loop over all of the patterns that can produce a value for this slot... + PatternOrganizer::NodesForSlot &NodesForSlot = I->second; + for (PatternOrganizer::NodesForSlot::iterator J = NodesForSlot.begin(), + E = NodesForSlot.end(); J != E; ++J) + for (unsigned i = 0, e = J->second.size(); i != e; ++i) { + Pattern *P = J->second[i]; + OS << " case " << P->getRecord()->getName() << "_Pattern: {\n" + << " // " << *P << "\n"; + // Loop over the operands, reducing them... + std::vector<std::pair<TreePatternNode*, std::string> > Operands; + ReduceAllOperands(P->getTree(), "N", Operands, OS); + + // Now that we have reduced all of our operands, and have the values + // that reduction produces, perform the reduction action for this + // pattern. + std::string Result; + + // If the pattern produces a register result, generate a new register + // now. + if (Record *R = P->getResult()) { + assert(R->isSubClassOf("RegisterClass") && + "Only handle register class results so far!"); + OS << " unsigned NewReg = makeAnotherReg(" << Target.getName() + << "::" << R->getName() << "RegisterClass);\n"; + Result = "NewReg"; + DEBUG(OS << " std::cerr << \"%reg\" << NewReg << \" =\t\";\n"); + } else { + DEBUG(OS << " std::cerr << \"\t\t\";\n"); + Result = "0"; + } + + // Print out the pattern that matched... + DEBUG(OS << " std::cerr << \" " << P->getRecord()->getName() <<'"'); + DEBUG(for (unsigned i = 0, e = Operands.size(); i != e; ++i) + if (Operands[i].first->isLeaf()) { + Record *RV = Operands[i].first->getValueRecord(); + assert(RV->isSubClassOf("RegisterClass") && + "Only handles registers here so far!"); + OS << " << \" %reg\" << " << Operands[i].second + << "->Val"; + } else { + OS << " << ' ' << " << Operands[i].second + << "->Val"; + }); + DEBUG(OS << " << \"\\n\";\n"); + + // Generate the reduction code appropriate to the particular type of + // pattern that this is... + switch (P->getPatternType()) { + case Pattern::Instruction: + // Instruction patterns just emit a single MachineInstr, using BuildMI + OS << " BuildMI(MBB, " << Target.getName() << "::" + << P->getRecord()->getName() << ", " << Operands.size(); + if (P->getResult()) OS << ", NewReg"; + OS << ")"; + + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + TreePatternNode *Op = Operands[i].first; + if (Op->isLeaf()) { + Record *RV = Op->getValueRecord(); + assert(RV->isSubClassOf("RegisterClass") && + "Only handles registers here so far!"); + OS << ".addReg(" << Operands[i].second << "->Val)"; + } else if (Op->getOperator()->getName() == "imm") { + OS << ".addZImm(" << Operands[i].second << "->Val)"; + } else if (Op->getOperator()->getName() == "basicblock") { + OS << ".addMBB(" << Operands[i].second << "->Val)"; + } else { + assert(0 && "Unknown value type!"); + } + } + OS << ";\n"; + break; + case Pattern::Expander: { + // Expander patterns emit one machine instr for each instruction in + // the list of instructions expanded to. + ListInit *Insts = P->getRecord()->getValueAsListInit("Result"); + for (unsigned IN = 0, e = Insts->getSize(); IN != e; ++IN) { + DagInit *DIInst = dynamic_cast<DagInit*>(Insts->getElement(IN)); + if (!DIInst) P->error("Result list must contain instructions!"); + Record *InstRec = DIInst->getNodeType(); + Pattern *InstPat = getPattern(InstRec); + if (!InstPat || InstPat->getPatternType() != Pattern::Instruction) + P->error("Instruction list must contain Instruction patterns!"); + + bool hasResult = InstPat->getResult() != 0; + if (InstPat->getNumArgs() != DIInst->getNumArgs()-hasResult) { + P->error("Incorrect number of arguments specified for inst '" + + InstPat->getRecord()->getName() + "' in result list!"); + } + + // Start emission of the instruction... + OS << " BuildMI(MBB, " << Target.getName() << "::" + << InstRec->getName() << ", " + << DIInst->getNumArgs()-hasResult; + // Emit register result if necessary.. + if (hasResult) { + std::string ArgNameVal = + getArgName(P, DIInst->getArgName(0), Operands); + PrintExpanderOperand(DIInst->getArg(0), ArgNameVal, + InstPat->getResultNode(), P, false, + OS << ", "); + } + OS << ")"; + + for (unsigned i = hasResult, e = DIInst->getNumArgs(); i != e; ++i){ + std::string ArgNameVal = + getArgName(P, DIInst->getArgName(i), Operands); + + PrintExpanderOperand(DIInst->getArg(i), ArgNameVal, + InstPat->getArg(i-hasResult), P, true, OS); + } + + OS << ";\n"; + } + break; + } + default: + assert(0 && "Reduction of this type of pattern not implemented!"); + } + + OS << " Val = new ReducedValue_" << SlotName << "(" << Result<<");\n" + << " break;\n" + << " }\n"; + } + + + OS << " default: assert(0 && \"Unknown " << SlotName << " pattern!\");\n" + << " }\n\n N->addValue(Val); // Do not ever recalculate this\n" + << " return Val;\n}\n\n"; + } +} + |

