diff options
Diffstat (limited to 'llvm/tools/llvm-mca/SummaryView.cpp')
| -rw-r--r-- | llvm/tools/llvm-mca/SummaryView.cpp | 76 |
1 files changed, 71 insertions, 5 deletions
diff --git a/llvm/tools/llvm-mca/SummaryView.cpp b/llvm/tools/llvm-mca/SummaryView.cpp index 511727bc750..9b6e1d9b183 100644 --- a/llvm/tools/llvm-mca/SummaryView.cpp +++ b/llvm/tools/llvm-mca/SummaryView.cpp @@ -14,6 +14,8 @@ //===----------------------------------------------------------------------===// #include "SummaryView.h" +#include "Support.h" +#include "llvm/ADT/SmallVector.h" #include "llvm/Support/Format.h" namespace mca { @@ -22,19 +24,83 @@ namespace mca { using namespace llvm; +void SummaryView::onInstructionEvent(const HWInstructionEvent &Event) { + // We are only interested in the "instruction dispatched" events generated by + // the dispatch stage for instructions that are part of iteration #0. + if (Event.Type != HWInstructionEvent::Dispatched) + return; + + if (Event.IR.getSourceIndex() >= Source.size()) + return; + + // Update the cumulative number of resource cycles based on the processor + // resource usage information available from the instruction descriptor. We need to + // compute the cumulative number of resource cycles for every processor + // resource which is consumed by an instruction of the block. + const Instruction &Inst = *Event.IR.getInstruction(); + const InstrDesc &Desc = Inst.getDesc(); + NumMicroOps += Desc.NumMicroOps; + for (const std::pair<uint64_t, const ResourceUsage> &RU : Desc.Resources) { + if (!RU.second.size()) + continue; + + assert(RU.second.NumUnits && "Expected more than one unit used!"); + if (ProcResourceUsage.find(RU.first) == ProcResourceUsage.end()) { + ProcResourceUsage[RU.first] = RU.second.size(); + continue; + } + + ProcResourceUsage[RU.first] += RU.second.size(); + } +} + +double SummaryView::getBlockRThroughput() const { + assert(NumMicroOps && "Expected at least one micro opcode!"); + + SmallVector<uint64_t, 8> Masks(SM.getNumProcResourceKinds()); + computeProcResourceMasks(SM, Masks); + + // The block throughput is bounded from above by the hardware dispatch + // throughput. That is because the DispatchWidth is an upper bound on the + // number of opcodes that can be part of a single dispatch group. + double Max = static_cast<double>(NumMicroOps) / DispatchWidth; + + // The block throughput is also limited by the amount of hardware parallelism. + // The number of available resource units affects the resource pressure + // distributed, as well as how many blocks can be executed every cycle. + for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { + uint64_t Mask = Masks[I]; + const auto It = ProcResourceUsage.find_as(Mask); + if (It != ProcResourceUsage.end()) { + const MCProcResourceDesc &MCDesc = *SM.getProcResource(I); + unsigned NumUnits = MCDesc.NumUnits; + double Throughput = static_cast<double>(It->second) / NumUnits; + Max = std::max(Max, Throughput); + } + } + + // The block reciprocal throughput is computed as the MAX of: + // - (#uOps / DispatchWidth) + // - (#units / resource cycles) for every consumed processor resource. + return Max; +} + void SummaryView::printView(raw_ostream &OS) const { unsigned Iterations = Source.getNumIterations(); unsigned Instructions = Source.size(); unsigned TotalInstructions = Instructions * Iterations; double IPC = (double)TotalInstructions / TotalCycles; + double BlockRThroughput = getBlockRThroughput(); std::string Buffer; raw_string_ostream TempStream(Buffer); - TempStream << "Iterations: " << Iterations; - TempStream << "\nInstructions: " << TotalInstructions; - TempStream << "\nTotal Cycles: " << TotalCycles; - TempStream << "\nDispatch Width: " << DispatchWidth; - TempStream << "\nIPC: " << format("%.2f", IPC) << '\n'; + TempStream << "Iterations: " << Iterations; + TempStream << "\nInstructions: " << TotalInstructions; + TempStream << "\nTotal Cycles: " << TotalCycles; + TempStream << "\nDispatch Width: " << DispatchWidth; + TempStream << "\nIPC: " << format("%.2f", IPC); + TempStream << "\nBlock RThroughput: " << format("%.1f", BlockRThroughput) + << '\n'; TempStream.flush(); OS << Buffer; } |

