summaryrefslogtreecommitdiffstats
path: root/llvm/test/Transforms/LoopVectorize/induction.ll
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/test/Transforms/LoopVectorize/induction.ll')
-rw-r--r--llvm/test/Transforms/LoopVectorize/induction.ll896
1 files changed, 896 insertions, 0 deletions
diff --git a/llvm/test/Transforms/LoopVectorize/induction.ll b/llvm/test/Transforms/LoopVectorize/induction.ll
new file mode 100644
index 00000000000..6bcf03f1b6d
--- /dev/null
+++ b/llvm/test/Transforms/LoopVectorize/induction.ll
@@ -0,0 +1,896 @@
+; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s
+; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND
+; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL
+; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC
+; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE
+
+target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
+
+; Make sure that we can handle multiple integer induction variables.
+;
+; CHECK-LABEL: @multi_int_induction(
+; CHECK: vector.body:
+; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK-NEXT: %vec.ind = phi <2 x i32> [ <i32 190, i32 191>, %vector.ph ], [ %vec.ind.next, %vector.body ]
+; CHECK: [[TMP3:%.*]] = add i64 %index, 0
+; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %A, i64 [[TMP3]]
+; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>*
+; CHECK-NEXT: store <2 x i32> %vec.ind, <2 x i32>* [[TMP6]], align 4
+; CHECK: %index.next = add i64 %index, 2
+; CHECK-NEXT: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
+; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
+define void @multi_int_induction(i32* %A, i32 %N) {
+for.body.lr.ph:
+ br label %for.body
+
+for.body:
+ %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
+ %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ]
+ %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
+ store i32 %count.09, i32* %arrayidx2, align 4
+ %inc = add nsw i32 %count.09, 1
+ %indvars.iv.next = add i64 %indvars.iv, 1
+ %lftr.wideiv = trunc i64 %indvars.iv.next to i32
+ %exitcond = icmp ne i32 %lftr.wideiv, %N
+ br i1 %exitcond, label %for.body, label %for.end
+
+for.end:
+ ret void
+}
+
+; Make sure we remove unneeded vectorization of induction variables.
+; In order for instcombine to cleanup the vectorized induction variables that we
+; create in the loop vectorizer we need to perform some form of redundancy
+; elimination to get rid of multiple uses.
+
+; IND-LABEL: scalar_use
+
+; IND: br label %vector.body
+; IND: vector.body:
+; Vectorized induction variable.
+; IND-NOT: insertelement <2 x i64>
+; IND-NOT: shufflevector <2 x i64>
+; IND: br {{.*}}, label %vector.body
+
+define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
+ %ind.sum = add i64 %iv, %offset
+ %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum
+ %l1 = load float, float* %arr.idx, align 4
+ %ind.sum2 = add i64 %iv, %offset2
+ %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2
+ %l2 = load float, float* %arr.idx2, align 4
+ %m = fmul fast float %b, %l2
+ %ad = fadd fast float %l1, %m
+ store float %ad, float* %arr.idx, align 4
+ %iv.next = add nuw nsw i64 %iv, 1
+ %exitcond = icmp eq i64 %iv.next, %n
+ br i1 %exitcond, label %loopexit, label %for.body
+
+loopexit:
+ ret void
+}
+
+; Make sure we don't create a vector induction phi node that is unused.
+; Scalarize the step vectors instead.
+;
+; for (int i = 0; i < n; ++i)
+; sum += a[i];
+;
+; CHECK-LABEL: @scalarize_induction_variable_01(
+; CHECK: vector.body:
+; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: %[[i0:.+]] = add i64 %index, 0
+; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]]
+;
+; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01(
+; UNROLL-NO-IC: vector.body:
+; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0
+; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2
+; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]]
+; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]]
+;
+; IND-LABEL: @scalarize_induction_variable_01(
+; IND: vector.body:
+; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; IND-NOT: add i64 {{.*}}, 2
+; IND: getelementptr inbounds i64, i64* %a, i64 %index
+;
+; UNROLL-LABEL: @scalarize_induction_variable_01(
+; UNROLL: vector.body:
+; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL-NOT: add i64 {{.*}}, 4
+; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index
+; UNROLL: getelementptr inbounds i64, i64* %[[g1]], i64 2
+
+define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %sum = phi i64 [ %2, %for.body ], [ 0, %entry ]
+ %0 = getelementptr inbounds i64, i64* %a, i64 %i
+ %1 = load i64, i64* %0, align 8
+ %2 = add i64 %1, %sum
+ %i.next = add nuw nsw i64 %i, 1
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ %3 = phi i64 [ %2, %for.body ]
+ ret i64 %3
+}
+
+; Make sure we scalarize the step vectors used for the pointer arithmetic. We
+; can't easily simplify vectorized step vectors.
+;
+; float s = 0;
+; for (int i ; 0; i < n; i += 8)
+; s += (a[i] + b[i] + 1.0f);
+;
+; CHECK-LABEL: @scalarize_induction_variable_02(
+; CHECK: vector.body:
+; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: %offset.idx = mul i64 %index, 8
+; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0
+; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8
+; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]]
+; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]]
+; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]]
+; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]]
+;
+; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02(
+; UNROLL-NO-IC: vector.body:
+; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL-NO-IC: %offset.idx = mul i64 %index, 8
+; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0
+; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8
+; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16
+; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24
+; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]]
+; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]]
+;
+; IND-LABEL: @scalarize_induction_variable_02(
+; IND: vector.body:
+; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; IND: %[[i0:.+]] = shl i64 %index, 3
+; IND: %[[i1:.+]] = or i64 %[[i0]], 8
+; IND: getelementptr inbounds float, float* %a, i64 %[[i0]]
+; IND: getelementptr inbounds float, float* %a, i64 %[[i1]]
+;
+; UNROLL-LABEL: @scalarize_induction_variable_02(
+; UNROLL: vector.body:
+; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL: %[[i0:.+]] = shl i64 %index, 3
+; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8
+; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16
+; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24
+; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]]
+; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]]
+; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]]
+; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]]
+
+define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
+ %s = phi float [ 0.0, %entry ], [ %6, %for.body ]
+ %0 = getelementptr inbounds float, float* %a, i64 %i
+ %1 = load float, float* %0, align 4
+ %2 = getelementptr inbounds float, float* %b, i64 %i
+ %3 = load float, float* %2, align 4
+ %4 = fadd fast float %s, 1.0
+ %5 = fadd fast float %4, %1
+ %6 = fadd fast float %5, %3
+ %i.next = add nuw nsw i64 %i, 8
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ %s.lcssa = phi float [ %6, %for.body ]
+ ret float %s.lcssa
+}
+
+; Make sure we scalarize the step vectors used for the pointer arithmetic. We
+; can't easily simplify vectorized step vectors. (Interleaved accesses.)
+;
+; for (int i = 0; i < n; ++i)
+; a[i].f ^= y;
+;
+; INTERLEAVE-LABEL: @scalarize_induction_variable_03(
+; INTERLEAVE: vector.body:
+; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1
+; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2
+; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3
+; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4
+; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5
+; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6
+; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1
+
+%pair.i32 = type { i32, i32 }
+define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1
+ %0 = load i32, i32* %f, align 8
+ %1 = xor i32 %0, %y
+ store i32 %1, i32* %f, align 8
+ %i.next = add nuw nsw i64 %i, 1
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ ret void
+}
+
+; Make sure we scalarize the step vectors used for the pointer arithmetic. We
+; can't easily simplify vectorized step vectors. (Interleaved accesses.)
+;
+; for (int i = 0; i < n; ++i)
+; p[i].f = a[i * 4]
+;
+; INTERLEAVE-LABEL: @scalarize_induction_variable_04(
+; INTERLEAVE: vector.body:
+; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1
+; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2
+; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3
+; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4
+; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5
+; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6
+; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1
+; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1
+
+define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry]
+ %0 = shl nsw i64 %i, 2
+ %1 = getelementptr inbounds i32, i32* %a, i64 %0
+ %2 = load i32, i32* %1, align 1
+ %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1
+ store i32 %2, i32* %3, align 1
+ %i.next = add nuw nsw i64 %i, 1
+ %4 = trunc i64 %i.next to i32
+ %cond = icmp eq i32 %4, %n
+ br i1 %cond, label %for.end, label %for.body
+
+for.end:
+ ret void
+}
+
+; PR30542. Ensure we generate all the scalar steps for the induction variable.
+; The scalar induction variable is used by a getelementptr instruction
+; (uniform), and a udiv (non-uniform).
+;
+; int sum = 0;
+; for (int i = 0; i < n; ++i) {
+; int x = a[i];
+; if (c)
+; x /= i;
+; sum += x;
+; }
+;
+; CHECK-LABEL: @scalarize_induction_variable_05(
+; CHECK: vector.body:
+; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
+; CHECK: %[[I0:.+]] = add i32 %index, 0
+; CHECK: getelementptr inbounds i32, i32* %a, i32 %[[I0]]
+; CHECK: pred.udiv.if:
+; CHECK: udiv i32 {{.*}}, %[[I0]]
+; CHECK: pred.udiv.if{{[0-9]+}}:
+; CHECK: %[[I1:.+]] = add i32 %index, 1
+; CHECK: udiv i32 {{.*}}, %[[I1]]
+;
+; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05(
+; UNROLL-NO-IC: vector.body:
+; UNROLL-NO-IC: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
+; UNROLL-NO-IC: %[[I0:.+]] = add i32 %index, 0
+; UNROLL-NO-IC: %[[I2:.+]] = add i32 %index, 2
+; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I0]]
+; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I2]]
+; UNROLL-NO-IC: pred.udiv.if:
+; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I0]]
+; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}:
+; UNROLL-NO-IC: %[[I1:.+]] = add i32 %index, 1
+; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I1]]
+; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}:
+; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I2]]
+; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}:
+; UNROLL-NO-IC: %[[I3:.+]] = add i32 %index, 3
+; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I3]]
+;
+; IND-LABEL: @scalarize_induction_variable_05(
+; IND: vector.body:
+; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
+; IND: %[[E0:.+]] = sext i32 %index to i64
+; IND: getelementptr inbounds i32, i32* %a, i64 %[[E0]]
+; IND: pred.udiv.if:
+; IND: udiv i32 {{.*}}, %index
+; IND: pred.udiv.if{{[0-9]+}}:
+; IND: %[[I1:.+]] = or i32 %index, 1
+; IND: udiv i32 {{.*}}, %[[I1]]
+;
+; UNROLL-LABEL: @scalarize_induction_variable_05(
+; UNROLL: vector.body:
+; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ]
+; UNROLL: %[[I2:.+]] = or i32 %index, 2
+; UNROLL: %[[E0:.+]] = sext i32 %index to i64
+; UNROLL: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]]
+; UNROLL: getelementptr inbounds i32, i32* %[[G0]], i64 2
+; UNROLL: pred.udiv.if:
+; UNROLL: udiv i32 {{.*}}, %index
+; UNROLL: pred.udiv.if{{[0-9]+}}:
+; UNROLL: %[[I1:.+]] = or i32 %index, 1
+; UNROLL: udiv i32 {{.*}}, %[[I1]]
+; UNROLL: pred.udiv.if{{[0-9]+}}:
+; UNROLL: udiv i32 {{.*}}, %[[I2]]
+; UNROLL: pred.udiv.if{{[0-9]+}}:
+; UNROLL: %[[I3:.+]] = or i32 %index, 3
+; UNROLL: udiv i32 {{.*}}, %[[I3]]
+
+define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ]
+ %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ]
+ %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i
+ %tmp1 = load i32, i32* %tmp0, align 4
+ br i1 %c, label %if.then, label %if.end
+
+if.then:
+ %tmp2 = udiv i32 %tmp1, %i
+ br label %if.end
+
+if.end:
+ %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ]
+ %tmp4 = add i32 %tmp3, %sum
+ %i.next = add nuw nsw i32 %i, 1
+ %cond = icmp slt i32 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ %tmp5 = phi i32 [ %tmp4, %if.end ]
+ ret i32 %tmp5
+}
+
+; Ensure we generate both a vector and a scalar induction variable. In this
+; test, the induction variable is used by an instruction that will be
+; vectorized (trunc) as well as an instruction that will remain in scalar form
+; (gepelementptr).
+;
+; CHECK-LABEL: @iv_vector_and_scalar_users(
+; CHECK: vector.body:
+; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
+; CHECK: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ]
+; CHECK: %[[i0:.+]] = add i64 %index, 0
+; CHECK: %[[i1:.+]] = add i64 %index, 1
+; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1
+; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
+; CHECK: %index.next = add i64 %index, 2
+; CHECK: %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2>
+; CHECK: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2>
+;
+; IND-LABEL: @iv_vector_and_scalar_users(
+; IND: vector.body:
+; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; IND: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ]
+; IND: %[[i1:.+]] = or i64 %index, 1
+; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1
+; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
+; IND: %index.next = add i64 %index, 2
+; IND: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2>
+;
+; UNROLL-LABEL: @iv_vector_and_scalar_users(
+; UNROLL: vector.body:
+; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL: %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ]
+; UNROLL: %[[i1:.+]] = or i64 %index, 1
+; UNROLL: %[[i2:.+]] = or i64 %index, 2
+; UNROLL: %[[i3:.+]] = or i64 %index, 3
+; UNROLL: %step.add3 = add <2 x i32> %vec.ind2, <i32 2, i32 2>
+; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1
+; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1
+; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1
+; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1
+; UNROLL: %index.next = add i64 %index, 4
+; UNROLL: %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4>
+
+%pair.i16 = type { i16, i16 }
+define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %0 = trunc i64 %i to i32
+ %1 = add i32 %a, %0
+ %2 = trunc i32 %1 to i16
+ %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1
+ store i16 %2, i16* %3, align 2
+ %i.next = add nuw nsw i64 %i, 1
+ %4 = trunc i64 %i.next to i32
+ %cond = icmp eq i32 %4, %n
+ br i1 %cond, label %for.end, label %for.body
+
+for.end:
+ ret void
+}
+
+; Make sure that the loop exit count computation does not overflow for i8 and
+; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the
+; induction variable to a bigger type the exit count computation will overflow
+; to 0.
+; PR17532
+
+; CHECK-LABEL: i8_loop
+; CHECK: icmp eq i32 {{.*}}, 256
+define i32 @i8_loop() nounwind readnone ssp uwtable {
+ br label %1
+
+; <label>:1 ; preds = %1, %0
+ %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
+ %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ]
+ %2 = and i32 %a.0, 4
+ %3 = add i8 %b.0, -1
+ %4 = icmp eq i8 %3, 0
+ br i1 %4, label %5, label %1
+
+; <label>:5 ; preds = %1
+ ret i32 %2
+}
+
+; CHECK-LABEL: i16_loop
+; CHECK: icmp eq i32 {{.*}}, 65536
+
+define i32 @i16_loop() nounwind readnone ssp uwtable {
+ br label %1
+
+; <label>:1 ; preds = %1, %0
+ %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
+ %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ]
+ %2 = and i32 %a.0, 4
+ %3 = add i16 %b.0, -1
+ %4 = icmp eq i16 %3, 0
+ br i1 %4, label %5, label %1
+
+; <label>:5 ; preds = %1
+ ret i32 %2
+}
+
+; This loop has a backedge taken count of i32_max. We need to check for this
+; condition and branch directly to the scalar loop.
+
+; CHECK-LABEL: max_i32_backedgetaken
+; CHECK: br i1 true, label %scalar.ph, label %vector.ph
+
+; CHECK: middle.block:
+; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0
+; CHECK: scalar.ph:
+; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ]
+; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ %[[v9]], %middle.block ]
+
+define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable {
+
+ br label %1
+
+; <label>:1 ; preds = %1, %0
+ %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ]
+ %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ]
+ %2 = and i32 %a.0, 4
+ %3 = add i32 %b.0, -1
+ %4 = icmp eq i32 %3, 0
+ br i1 %4, label %5, label %1
+
+; <label>:5 ; preds = %1
+ ret i32 %2
+}
+
+; When generating the overflow check we must sure that the induction start value
+; is defined before the branch to the scalar preheader.
+
+; CHECK-LABEL: testoverflowcheck
+; CHECK: entry
+; CHECK: %[[LOAD:.*]] = load i8
+; CHECK: br
+
+; CHECK: scalar.ph
+; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ]
+
+@e = global i8 1, align 1
+@d = common global i32 0, align 4
+@c = common global i32 0, align 4
+define i32 @testoverflowcheck() {
+entry:
+ %.pr.i = load i8, i8* @e, align 1
+ %0 = load i32, i32* @d, align 4
+ %c.promoted.i = load i32, i32* @c, align 4
+ br label %cond.end.i
+
+cond.end.i:
+ %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ]
+ %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ]
+ %and.i = and i32 %0, %and3.i
+ %inc.i = add i8 %inc4.i, 1
+ %tobool.i = icmp eq i8 %inc.i, 0
+ br i1 %tobool.i, label %loopexit, label %cond.end.i
+
+loopexit:
+ ret i32 %and.i
+}
+
+; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32)
+; In order to recognize %sphi as an induction PHI and vectorize this loop,
+; we need to convert the SCEV expression into an AddRecExpr.
+; The expression gets converted to {zext i8 %t to i32,+,1}.
+
+; CHECK-LABEL: wrappingindvars1
+; CHECK-LABEL: vector.scevcheck
+; CHECK-LABEL: vector.ph
+; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1>
+; CHECK-LABEL: vector.body
+; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
+; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2>
+define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) {
+ entry:
+ %st = zext i8 %t to i16
+ %ext = zext i8 %t to i32
+ %ecmp = icmp ult i16 %st, 42
+ br i1 %ecmp, label %loop, label %exit
+
+ loop:
+
+ %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
+ %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
+ %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop]
+
+ %ptr = getelementptr inbounds i32, i32* %A, i8 %idx
+ store i32 %sphi, i32* %ptr
+
+ %idx.inc = add i8 %idx, 1
+ %idx.inc.ext = zext i8 %idx.inc to i32
+ %idx.b.inc = add nuw nsw i32 %idx.b, 1
+
+ %c = icmp ult i32 %idx.b, %len
+ br i1 %c, label %loop, label %exit
+
+ exit:
+ ret void
+}
+
+; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32))
+; In order to recognize %sphi as an induction PHI and vectorize this loop,
+; we need to convert the SCEV expression into an AddRecExpr.
+; The expression gets converted to ({4 * (zext %t to i32),+,4}).
+; CHECK-LABEL: wrappingindvars2
+; CHECK-LABEL: vector.scevcheck
+; CHECK-LABEL: vector.ph
+; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4>
+; CHECK-LABEL: vector.body
+; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ]
+; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8>
+define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) {
+
+entry:
+ %st = zext i8 %t to i16
+ %ext = zext i8 %t to i32
+ %ext.mul = mul i32 %ext, 4
+
+ %ecmp = icmp ult i16 %st, 42
+ br i1 %ecmp, label %loop, label %exit
+
+ loop:
+
+ %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ]
+ %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop]
+ %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ]
+
+ %ptr = getelementptr inbounds i32, i32* %A, i8 %idx
+ store i32 %sphi, i32* %ptr
+
+ %idx.inc = add i8 %idx, 1
+ %idx.inc.ext = zext i8 %idx.inc to i32
+ %mul = mul i32 %idx.inc.ext, 4
+ %idx.b.inc = add nuw nsw i32 %idx.b, 1
+
+ %c = icmp ult i32 %idx.b, %len
+ br i1 %c, label %loop, label %exit
+
+ exit:
+ ret void
+}
+
+; Check that we generate vectorized IVs in the pre-header
+; instead of widening the scalar IV inside the loop, when
+; we know how to do that.
+; IND-LABEL: veciv
+; IND: vector.body:
+; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
+; IND: %index.next = add i32 %index, 2
+; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
+; IND: %[[CMP:.*]] = icmp eq i32 %index.next
+; IND: br i1 %[[CMP]]
+; UNROLL-LABEL: veciv
+; UNROLL: vector.body:
+; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ]
+; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
+; UNROLL: %index.next = add i32 %index, 4
+; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4>
+; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next
+; UNROLL: br i1 %[[CMP]]
+define void @veciv(i32* nocapture %a, i32 %start, i32 %k) {
+for.body.preheader:
+ br label %for.body
+
+for.body:
+ %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
+ %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
+ store i32 %indvars.iv, i32* %arrayidx, align 4
+ %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
+ %exitcond = icmp eq i32 %indvars.iv.next, %k
+ br i1 %exitcond, label %exit, label %for.body
+
+exit:
+ ret void
+}
+
+; IND-LABEL: trunciv
+; IND: vector.body:
+; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ]
+; IND: %index.next = add i64 %index, 2
+; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2>
+; IND: %[[CMP:.*]] = icmp eq i64 %index.next
+; IND: br i1 %[[CMP]]
+define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) {
+for.body.preheader:
+ br label %for.body
+
+for.body:
+ %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
+ %trunc.iv = trunc i64 %indvars.iv to i32
+ %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv
+ store i32 %trunc.iv, i32* %arrayidx, align 4
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
+ %exitcond = icmp eq i64 %indvars.iv.next, %k
+ br i1 %exitcond, label %exit, label %for.body
+
+exit:
+ ret void
+}
+
+; CHECK-LABEL: @nonprimary(
+; CHECK: vector.ph:
+; CHECK: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
+; CHECK: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
+; CHECK: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
+; CHECK: vector.body:
+; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
+; CHECK: %offset.idx = add i32 %i, %index
+; CHECK: %[[A1:.*]] = add i32 %offset.idx, 0
+; CHECK: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]]
+; CHECK: %[[G3:.*]] = getelementptr inbounds i32, i32* %[[G1]], i32 0
+; CHECK: %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>*
+; CHECK: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
+; CHECK: %index.next = add i32 %index, 2
+; CHECK: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
+; CHECK: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
+; CHECK: br i1 %[[CMP]]
+;
+; IND-LABEL: @nonprimary(
+; IND: vector.ph:
+; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
+; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
+; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
+; IND: vector.body:
+; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
+; IND: %[[A1:.*]] = add i32 %index, %i
+; IND: %[[S1:.*]] = sext i32 %[[A1]] to i64
+; IND: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]]
+; IND: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>*
+; IND: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
+; IND: %index.next = add i32 %index, 2
+; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2>
+; IND: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
+; IND: br i1 %[[CMP]]
+;
+; UNROLL-LABEL: @nonprimary(
+; UNROLL: vector.ph:
+; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0
+; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer
+; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1>
+; UNROLL: vector.body:
+; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ]
+; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2>
+; UNROLL: %[[A1:.*]] = add i32 %index, %i
+; UNROLL: %[[S1:.*]] = sext i32 %[[A1]] to i64
+; UNROLL: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]]
+; UNROLL: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>*
+; UNROLL: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]]
+; UNROLL: %[[G2:.*]] = getelementptr inbounds i32, i32* %[[G1]], i64 2
+; UNROLL: %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>*
+; UNROLL: store <2 x i32> %step.add, <2 x i32>* %[[B2]]
+; UNROLL: %index.next = add i32 %index, 4
+; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4>
+; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec
+; UNROLL: br i1 %[[CMP]]
+define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) {
+for.body.preheader:
+ br label %for.body
+
+for.body:
+ %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ]
+ %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv
+ store i32 %indvars.iv, i32* %arrayidx, align 4
+ %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1
+ %exitcond = icmp eq i32 %indvars.iv.next, %k
+ br i1 %exitcond, label %exit, label %for.body
+
+exit:
+ ret void
+}
+
+; CHECK-LABEL: @non_primary_iv_trunc(
+; CHECK: vector.body:
+; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 2>, %vector.ph ], [ [[VEC_IND_NEXT:%.*]], %vector.body ]
+; CHECK: [[TMP3:%.*]] = add i64 %index, 0
+; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %a, i64 [[TMP3]]
+; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0
+; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>*
+; CHECK-NEXT: store <2 x i32> [[VEC_IND]], <2 x i32>* [[TMP6]], align 4
+; CHECK-NEXT: %index.next = add i64 %index, 2
+; CHECK: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], <i32 4, i32 4>
+; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
+define void @non_primary_iv_trunc(i32* %a, i64 %n) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
+ %j = phi i64 [ %j.next, %for.body ], [ 0, %entry ]
+ %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i
+ %tmp1 = trunc i64 %j to i32
+ store i32 %tmp1, i32* %tmp0, align 4
+ %i.next = add nuw nsw i64 %i, 1
+ %j.next = add nuw nsw i64 %j, 2
+ %cond = icmp slt i64 %i.next, %n
+ br i1 %cond, label %for.body, label %for.end
+
+for.end:
+ ret void
+}
+
+; PR32419. Ensure we transform truncated non-primary induction variables. In
+; the test case below we replace %tmp1 with a new induction variable. Because
+; the truncated value is non-primary, we must compute an offset from the
+; primary induction variable.
+;
+; CHECK-LABEL: @PR32419(
+; CHECK: vector.body:
+; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %[[PRED_UREM_CONTINUE4:.*]] ]
+; CHECK: [[OFFSET_IDX:%.*]] = add i32 -20, [[INDEX]]
+; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[OFFSET_IDX]] to i16
+; CHECK: [[TMP8:%.*]] = add i16 [[TMP1]], 0
+; CHECK-NEXT: [[TMP9:%.*]] = urem i16 %b, [[TMP8]]
+; CHECK: [[TMP15:%.*]] = add i16 [[TMP1]], 1
+; CHECK-NEXT: [[TMP16:%.*]] = urem i16 %b, [[TMP15]]
+; CHECK: [[PRED_UREM_CONTINUE4]]:
+; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body
+;
+define i32 @PR32419(i32 %a, i16 %b) {
+entry:
+ br label %for.body
+
+for.body:
+ %i = phi i32 [ -20, %entry ], [ %i.next, %for.inc ]
+ %tmp0 = phi i32 [ %a, %entry ], [ %tmp6, %for.inc ]
+ %tmp1 = trunc i32 %i to i16
+ %tmp2 = icmp eq i16 %tmp1, 0
+ br i1 %tmp2, label %for.inc, label %for.cond
+
+for.cond:
+ %tmp3 = urem i16 %b, %tmp1
+ br label %for.inc
+
+for.inc:
+ %tmp4 = phi i16 [ %tmp3, %for.cond ], [ 0, %for.body ]
+ %tmp5 = sext i16 %tmp4 to i32
+ %tmp6 = or i32 %tmp0, %tmp5
+ %i.next = add nsw i32 %i, 1
+ %cond = icmp eq i32 %i.next, 0
+ br i1 %cond, label %for.end, label %for.body
+
+for.end:
+ %tmp7 = phi i32 [ %tmp6, %for.inc ]
+ ret i32 %tmp7
+}
+
+; Ensure that the shuffle vector for first order recurrence is inserted
+; correctly after all the phis. These new phis correspond to new IVs
+; that are generated by optimizing non-free truncs of IVs to IVs themselves
+define i64 @trunc_with_first_order_recurrence() {
+; CHECK-LABEL: trunc_with_first_order_recurrence
+; CHECK-LABEL: vector.body:
+; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
+; CHECK-NEXT: %vec.phi = phi <2 x i64>
+; CHECK-NEXT: %vec.ind = phi <2 x i64> [ <i64 1, i64 2>, %vector.ph ], [ %vec.ind.next, %vector.body ]
+; CHECK-NEXT: %vec.ind2 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next3, %vector.body ]
+; CHECK-NEXT: %vector.recur = phi <2 x i32> [ <i32 undef, i32 42>, %vector.ph ], [ %vec.ind5, %vector.body ]
+; CHECK-NEXT: %vec.ind5 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next6, %vector.body ]
+; CHECK-NEXT: %vec.ind7 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next8, %vector.body ]
+; CHECK-NEXT: shufflevector <2 x i32> %vector.recur, <2 x i32> %vec.ind5, <2 x i32> <i32 1, i32 2>
+entry:
+ br label %loop
+
+exit: ; preds = %loop
+ %.lcssa = phi i64 [ %c23, %loop ]
+ ret i64 %.lcssa
+
+loop: ; preds = %loop, %entry
+ %c5 = phi i64 [ %c23, %loop ], [ 0, %entry ]
+ %indvars.iv = phi i64 [ %indvars.iv.next, %loop ], [ 1, %entry ]
+ %x = phi i32 [ %c24, %loop ], [ 1, %entry ]
+ %y = phi i32 [ %c6, %loop ], [ 42, %entry ]
+ %c6 = trunc i64 %indvars.iv to i32
+ %c8 = mul i32 %x, %c6
+ %c9 = add i32 %c8, 42
+ %c10 = add i32 %y, %c6
+ %c11 = add i32 %c10, %c9
+ %c12 = sext i32 %c11 to i64
+ %c13 = add i64 %c5, %c12
+ %indvars.iv.tr = trunc i64 %indvars.iv to i32
+ %c14 = shl i32 %indvars.iv.tr, 1
+ %c15 = add i32 %c9, %c14
+ %c16 = sext i32 %c15 to i64
+ %c23 = add i64 %c13, %c16
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
+ %c24 = add nuw nsw i32 %x, 1
+ %exitcond.i = icmp eq i64 %indvars.iv.next, 114
+ br i1 %exitcond.i, label %exit, label %loop
+
+}
OpenPOWER on IntegriCloud