diff options
Diffstat (limited to 'llvm/test/Transforms/LoopVectorize/induction.ll')
-rw-r--r-- | llvm/test/Transforms/LoopVectorize/induction.ll | 896 |
1 files changed, 896 insertions, 0 deletions
diff --git a/llvm/test/Transforms/LoopVectorize/induction.ll b/llvm/test/Transforms/LoopVectorize/induction.ll new file mode 100644 index 00000000000..6bcf03f1b6d --- /dev/null +++ b/llvm/test/Transforms/LoopVectorize/induction.ll @@ -0,0 +1,896 @@ +; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s +; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND +; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL +; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC +; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE + +target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" + +; Make sure that we can handle multiple integer induction variables. +; +; CHECK-LABEL: @multi_int_induction( +; CHECK: vector.body: +; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK-NEXT: %vec.ind = phi <2 x i32> [ <i32 190, i32 191>, %vector.ph ], [ %vec.ind.next, %vector.body ] +; CHECK: [[TMP3:%.*]] = add i64 %index, 0 +; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %A, i64 [[TMP3]] +; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 +; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* +; CHECK-NEXT: store <2 x i32> %vec.ind, <2 x i32>* [[TMP6]], align 4 +; CHECK: %index.next = add i64 %index, 2 +; CHECK-NEXT: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +define void @multi_int_induction(i32* %A, i32 %N) { +for.body.lr.ph: + br label %for.body + +for.body: + %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] + %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] + %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv + store i32 %count.09, i32* %arrayidx2, align 4 + %inc = add nsw i32 %count.09, 1 + %indvars.iv.next = add i64 %indvars.iv, 1 + %lftr.wideiv = trunc i64 %indvars.iv.next to i32 + %exitcond = icmp ne i32 %lftr.wideiv, %N + br i1 %exitcond, label %for.body, label %for.end + +for.end: + ret void +} + +; Make sure we remove unneeded vectorization of induction variables. +; In order for instcombine to cleanup the vectorized induction variables that we +; create in the loop vectorizer we need to perform some form of redundancy +; elimination to get rid of multiple uses. + +; IND-LABEL: scalar_use + +; IND: br label %vector.body +; IND: vector.body: +; Vectorized induction variable. +; IND-NOT: insertelement <2 x i64> +; IND-NOT: shufflevector <2 x i64> +; IND: br {{.*}}, label %vector.body + +define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { +entry: + br label %for.body + +for.body: + %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] + %ind.sum = add i64 %iv, %offset + %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum + %l1 = load float, float* %arr.idx, align 4 + %ind.sum2 = add i64 %iv, %offset2 + %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 + %l2 = load float, float* %arr.idx2, align 4 + %m = fmul fast float %b, %l2 + %ad = fadd fast float %l1, %m + store float %ad, float* %arr.idx, align 4 + %iv.next = add nuw nsw i64 %iv, 1 + %exitcond = icmp eq i64 %iv.next, %n + br i1 %exitcond, label %loopexit, label %for.body + +loopexit: + ret void +} + +; Make sure we don't create a vector induction phi node that is unused. +; Scalarize the step vectors instead. +; +; for (int i = 0; i < n; ++i) +; sum += a[i]; +; +; CHECK-LABEL: @scalarize_induction_variable_01( +; CHECK: vector.body: +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %[[i0:.+]] = add i64 %index, 0 +; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]] +; +; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01( +; UNROLL-NO-IC: vector.body: +; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0 +; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2 +; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]] +; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]] +; +; IND-LABEL: @scalarize_induction_variable_01( +; IND: vector.body: +; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; IND-NOT: add i64 {{.*}}, 2 +; IND: getelementptr inbounds i64, i64* %a, i64 %index +; +; UNROLL-LABEL: @scalarize_induction_variable_01( +; UNROLL: vector.body: +; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL-NOT: add i64 {{.*}}, 4 +; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index +; UNROLL: getelementptr inbounds i64, i64* %[[g1]], i64 2 + +define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] + %sum = phi i64 [ %2, %for.body ], [ 0, %entry ] + %0 = getelementptr inbounds i64, i64* %a, i64 %i + %1 = load i64, i64* %0, align 8 + %2 = add i64 %1, %sum + %i.next = add nuw nsw i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %3 = phi i64 [ %2, %for.body ] + ret i64 %3 +} + +; Make sure we scalarize the step vectors used for the pointer arithmetic. We +; can't easily simplify vectorized step vectors. +; +; float s = 0; +; for (int i ; 0; i < n; i += 8) +; s += (a[i] + b[i] + 1.0f); +; +; CHECK-LABEL: @scalarize_induction_variable_02( +; CHECK: vector.body: +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %offset.idx = mul i64 %index, 8 +; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0 +; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8 +; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]] +; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]] +; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]] +; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]] +; +; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02( +; UNROLL-NO-IC: vector.body: +; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL-NO-IC: %offset.idx = mul i64 %index, 8 +; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0 +; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8 +; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16 +; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24 +; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]] +; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]] +; +; IND-LABEL: @scalarize_induction_variable_02( +; IND: vector.body: +; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; IND: %[[i0:.+]] = shl i64 %index, 3 +; IND: %[[i1:.+]] = or i64 %[[i0]], 8 +; IND: getelementptr inbounds float, float* %a, i64 %[[i0]] +; IND: getelementptr inbounds float, float* %a, i64 %[[i1]] +; +; UNROLL-LABEL: @scalarize_induction_variable_02( +; UNROLL: vector.body: +; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL: %[[i0:.+]] = shl i64 %index, 3 +; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8 +; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16 +; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24 +; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]] +; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]] +; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]] +; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]] + +define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] + %s = phi float [ 0.0, %entry ], [ %6, %for.body ] + %0 = getelementptr inbounds float, float* %a, i64 %i + %1 = load float, float* %0, align 4 + %2 = getelementptr inbounds float, float* %b, i64 %i + %3 = load float, float* %2, align 4 + %4 = fadd fast float %s, 1.0 + %5 = fadd fast float %4, %1 + %6 = fadd fast float %5, %3 + %i.next = add nuw nsw i64 %i, 8 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %s.lcssa = phi float [ %6, %for.body ] + ret float %s.lcssa +} + +; Make sure we scalarize the step vectors used for the pointer arithmetic. We +; can't easily simplify vectorized step vectors. (Interleaved accesses.) +; +; for (int i = 0; i < n; ++i) +; a[i].f ^= y; +; +; INTERLEAVE-LABEL: @scalarize_induction_variable_03( +; INTERLEAVE: vector.body: +; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 +; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 +; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 +; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 +; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 +; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 +; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 + +%pair.i32 = type { i32, i32 } +define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] + %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 + %0 = load i32, i32* %f, align 8 + %1 = xor i32 %0, %y + store i32 %1, i32* %f, align 8 + %i.next = add nuw nsw i64 %i, 1 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + ret void +} + +; Make sure we scalarize the step vectors used for the pointer arithmetic. We +; can't easily simplify vectorized step vectors. (Interleaved accesses.) +; +; for (int i = 0; i < n; ++i) +; p[i].f = a[i * 4] +; +; INTERLEAVE-LABEL: @scalarize_induction_variable_04( +; INTERLEAVE: vector.body: +; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 +; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 +; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 +; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 +; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 +; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 +; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 +; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 + +define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry] + %0 = shl nsw i64 %i, 2 + %1 = getelementptr inbounds i32, i32* %a, i64 %0 + %2 = load i32, i32* %1, align 1 + %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 + store i32 %2, i32* %3, align 1 + %i.next = add nuw nsw i64 %i, 1 + %4 = trunc i64 %i.next to i32 + %cond = icmp eq i32 %4, %n + br i1 %cond, label %for.end, label %for.body + +for.end: + ret void +} + +; PR30542. Ensure we generate all the scalar steps for the induction variable. +; The scalar induction variable is used by a getelementptr instruction +; (uniform), and a udiv (non-uniform). +; +; int sum = 0; +; for (int i = 0; i < n; ++i) { +; int x = a[i]; +; if (c) +; x /= i; +; sum += x; +; } +; +; CHECK-LABEL: @scalarize_induction_variable_05( +; CHECK: vector.body: +; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] +; CHECK: %[[I0:.+]] = add i32 %index, 0 +; CHECK: getelementptr inbounds i32, i32* %a, i32 %[[I0]] +; CHECK: pred.udiv.if: +; CHECK: udiv i32 {{.*}}, %[[I0]] +; CHECK: pred.udiv.if{{[0-9]+}}: +; CHECK: %[[I1:.+]] = add i32 %index, 1 +; CHECK: udiv i32 {{.*}}, %[[I1]] +; +; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05( +; UNROLL-NO-IC: vector.body: +; UNROLL-NO-IC: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] +; UNROLL-NO-IC: %[[I0:.+]] = add i32 %index, 0 +; UNROLL-NO-IC: %[[I2:.+]] = add i32 %index, 2 +; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I0]] +; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I2]] +; UNROLL-NO-IC: pred.udiv.if: +; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I0]] +; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: +; UNROLL-NO-IC: %[[I1:.+]] = add i32 %index, 1 +; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I1]] +; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: +; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I2]] +; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: +; UNROLL-NO-IC: %[[I3:.+]] = add i32 %index, 3 +; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I3]] +; +; IND-LABEL: @scalarize_induction_variable_05( +; IND: vector.body: +; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] +; IND: %[[E0:.+]] = sext i32 %index to i64 +; IND: getelementptr inbounds i32, i32* %a, i64 %[[E0]] +; IND: pred.udiv.if: +; IND: udiv i32 {{.*}}, %index +; IND: pred.udiv.if{{[0-9]+}}: +; IND: %[[I1:.+]] = or i32 %index, 1 +; IND: udiv i32 {{.*}}, %[[I1]] +; +; UNROLL-LABEL: @scalarize_induction_variable_05( +; UNROLL: vector.body: +; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] +; UNROLL: %[[I2:.+]] = or i32 %index, 2 +; UNROLL: %[[E0:.+]] = sext i32 %index to i64 +; UNROLL: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]] +; UNROLL: getelementptr inbounds i32, i32* %[[G0]], i64 2 +; UNROLL: pred.udiv.if: +; UNROLL: udiv i32 {{.*}}, %index +; UNROLL: pred.udiv.if{{[0-9]+}}: +; UNROLL: %[[I1:.+]] = or i32 %index, 1 +; UNROLL: udiv i32 {{.*}}, %[[I1]] +; UNROLL: pred.udiv.if{{[0-9]+}}: +; UNROLL: udiv i32 {{.*}}, %[[I2]] +; UNROLL: pred.udiv.if{{[0-9]+}}: +; UNROLL: %[[I3:.+]] = or i32 %index, 3 +; UNROLL: udiv i32 {{.*}}, %[[I3]] + +define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) { +entry: + br label %for.body + +for.body: + %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ] + %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ] + %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i + %tmp1 = load i32, i32* %tmp0, align 4 + br i1 %c, label %if.then, label %if.end + +if.then: + %tmp2 = udiv i32 %tmp1, %i + br label %if.end + +if.end: + %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ] + %tmp4 = add i32 %tmp3, %sum + %i.next = add nuw nsw i32 %i, 1 + %cond = icmp slt i32 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + %tmp5 = phi i32 [ %tmp4, %if.end ] + ret i32 %tmp5 +} + +; Ensure we generate both a vector and a scalar induction variable. In this +; test, the induction variable is used by an instruction that will be +; vectorized (trunc) as well as an instruction that will remain in scalar form +; (gepelementptr). +; +; CHECK-LABEL: @iv_vector_and_scalar_users( +; CHECK: vector.body: +; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] +; CHECK: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] +; CHECK: %[[i0:.+]] = add i64 %index, 0 +; CHECK: %[[i1:.+]] = add i64 %index, 1 +; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1 +; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 +; CHECK: %index.next = add i64 %index, 2 +; CHECK: %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2> +; CHECK: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> +; +; IND-LABEL: @iv_vector_and_scalar_users( +; IND: vector.body: +; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; IND: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] +; IND: %[[i1:.+]] = or i64 %index, 1 +; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 +; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 +; IND: %index.next = add i64 %index, 2 +; IND: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> +; +; UNROLL-LABEL: @iv_vector_and_scalar_users( +; UNROLL: vector.body: +; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL: %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ] +; UNROLL: %[[i1:.+]] = or i64 %index, 1 +; UNROLL: %[[i2:.+]] = or i64 %index, 2 +; UNROLL: %[[i3:.+]] = or i64 %index, 3 +; UNROLL: %step.add3 = add <2 x i32> %vec.ind2, <i32 2, i32 2> +; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 +; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 +; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1 +; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1 +; UNROLL: %index.next = add i64 %index, 4 +; UNROLL: %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4> + +%pair.i16 = type { i16, i16 } +define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] + %0 = trunc i64 %i to i32 + %1 = add i32 %a, %0 + %2 = trunc i32 %1 to i16 + %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1 + store i16 %2, i16* %3, align 2 + %i.next = add nuw nsw i64 %i, 1 + %4 = trunc i64 %i.next to i32 + %cond = icmp eq i32 %4, %n + br i1 %cond, label %for.end, label %for.body + +for.end: + ret void +} + +; Make sure that the loop exit count computation does not overflow for i8 and +; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the +; induction variable to a bigger type the exit count computation will overflow +; to 0. +; PR17532 + +; CHECK-LABEL: i8_loop +; CHECK: icmp eq i32 {{.*}}, 256 +define i32 @i8_loop() nounwind readnone ssp uwtable { + br label %1 + +; <label>:1 ; preds = %1, %0 + %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] + %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] + %2 = and i32 %a.0, 4 + %3 = add i8 %b.0, -1 + %4 = icmp eq i8 %3, 0 + br i1 %4, label %5, label %1 + +; <label>:5 ; preds = %1 + ret i32 %2 +} + +; CHECK-LABEL: i16_loop +; CHECK: icmp eq i32 {{.*}}, 65536 + +define i32 @i16_loop() nounwind readnone ssp uwtable { + br label %1 + +; <label>:1 ; preds = %1, %0 + %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] + %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] + %2 = and i32 %a.0, 4 + %3 = add i16 %b.0, -1 + %4 = icmp eq i16 %3, 0 + br i1 %4, label %5, label %1 + +; <label>:5 ; preds = %1 + ret i32 %2 +} + +; This loop has a backedge taken count of i32_max. We need to check for this +; condition and branch directly to the scalar loop. + +; CHECK-LABEL: max_i32_backedgetaken +; CHECK: br i1 true, label %scalar.ph, label %vector.ph + +; CHECK: middle.block: +; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0 +; CHECK: scalar.ph: +; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ] +; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ %[[v9]], %middle.block ] + +define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { + + br label %1 + +; <label>:1 ; preds = %1, %0 + %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] + %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] + %2 = and i32 %a.0, 4 + %3 = add i32 %b.0, -1 + %4 = icmp eq i32 %3, 0 + br i1 %4, label %5, label %1 + +; <label>:5 ; preds = %1 + ret i32 %2 +} + +; When generating the overflow check we must sure that the induction start value +; is defined before the branch to the scalar preheader. + +; CHECK-LABEL: testoverflowcheck +; CHECK: entry +; CHECK: %[[LOAD:.*]] = load i8 +; CHECK: br + +; CHECK: scalar.ph +; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] + +@e = global i8 1, align 1 +@d = common global i32 0, align 4 +@c = common global i32 0, align 4 +define i32 @testoverflowcheck() { +entry: + %.pr.i = load i8, i8* @e, align 1 + %0 = load i32, i32* @d, align 4 + %c.promoted.i = load i32, i32* @c, align 4 + br label %cond.end.i + +cond.end.i: + %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] + %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] + %and.i = and i32 %0, %and3.i + %inc.i = add i8 %inc4.i, 1 + %tobool.i = icmp eq i8 %inc.i, 0 + br i1 %tobool.i, label %loopexit, label %cond.end.i + +loopexit: + ret i32 %and.i +} + +; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32) +; In order to recognize %sphi as an induction PHI and vectorize this loop, +; we need to convert the SCEV expression into an AddRecExpr. +; The expression gets converted to {zext i8 %t to i32,+,1}. + +; CHECK-LABEL: wrappingindvars1 +; CHECK-LABEL: vector.scevcheck +; CHECK-LABEL: vector.ph +; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1> +; CHECK-LABEL: vector.body +; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] +; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2> +define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) { + entry: + %st = zext i8 %t to i16 + %ext = zext i8 %t to i32 + %ecmp = icmp ult i16 %st, 42 + br i1 %ecmp, label %loop, label %exit + + loop: + + %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] + %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] + %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop] + + %ptr = getelementptr inbounds i32, i32* %A, i8 %idx + store i32 %sphi, i32* %ptr + + %idx.inc = add i8 %idx, 1 + %idx.inc.ext = zext i8 %idx.inc to i32 + %idx.b.inc = add nuw nsw i32 %idx.b, 1 + + %c = icmp ult i32 %idx.b, %len + br i1 %c, label %loop, label %exit + + exit: + ret void +} + +; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32)) +; In order to recognize %sphi as an induction PHI and vectorize this loop, +; we need to convert the SCEV expression into an AddRecExpr. +; The expression gets converted to ({4 * (zext %t to i32),+,4}). +; CHECK-LABEL: wrappingindvars2 +; CHECK-LABEL: vector.scevcheck +; CHECK-LABEL: vector.ph +; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4> +; CHECK-LABEL: vector.body +; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] +; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8> +define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) { + +entry: + %st = zext i8 %t to i16 + %ext = zext i8 %t to i32 + %ext.mul = mul i32 %ext, 4 + + %ecmp = icmp ult i16 %st, 42 + br i1 %ecmp, label %loop, label %exit + + loop: + + %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] + %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop] + %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] + + %ptr = getelementptr inbounds i32, i32* %A, i8 %idx + store i32 %sphi, i32* %ptr + + %idx.inc = add i8 %idx, 1 + %idx.inc.ext = zext i8 %idx.inc to i32 + %mul = mul i32 %idx.inc.ext, 4 + %idx.b.inc = add nuw nsw i32 %idx.b, 1 + + %c = icmp ult i32 %idx.b, %len + br i1 %c, label %loop, label %exit + + exit: + ret void +} + +; Check that we generate vectorized IVs in the pre-header +; instead of widening the scalar IV inside the loop, when +; we know how to do that. +; IND-LABEL: veciv +; IND: vector.body: +; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] +; IND: %index.next = add i32 %index, 2 +; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> +; IND: %[[CMP:.*]] = icmp eq i32 %index.next +; IND: br i1 %[[CMP]] +; UNROLL-LABEL: veciv +; UNROLL: vector.body: +; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] +; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> +; UNROLL: %index.next = add i32 %index, 4 +; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> +; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next +; UNROLL: br i1 %[[CMP]] +define void @veciv(i32* nocapture %a, i32 %start, i32 %k) { +for.body.preheader: + br label %for.body + +for.body: + %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] + %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv + store i32 %indvars.iv, i32* %arrayidx, align 4 + %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 + %exitcond = icmp eq i32 %indvars.iv.next, %k + br i1 %exitcond, label %exit, label %for.body + +exit: + ret void +} + +; IND-LABEL: trunciv +; IND: vector.body: +; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ] +; IND: %index.next = add i64 %index, 2 +; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2> +; IND: %[[CMP:.*]] = icmp eq i64 %index.next +; IND: br i1 %[[CMP]] +define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) { +for.body.preheader: + br label %for.body + +for.body: + %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] + %trunc.iv = trunc i64 %indvars.iv to i32 + %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv + store i32 %trunc.iv, i32* %arrayidx, align 4 + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 + %exitcond = icmp eq i64 %indvars.iv.next, %k + br i1 %exitcond, label %exit, label %for.body + +exit: + ret void +} + +; CHECK-LABEL: @nonprimary( +; CHECK: vector.ph: +; CHECK: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 +; CHECK: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer +; CHECK: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> +; CHECK: vector.body: +; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] +; CHECK: %offset.idx = add i32 %i, %index +; CHECK: %[[A1:.*]] = add i32 %offset.idx, 0 +; CHECK: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]] +; CHECK: %[[G3:.*]] = getelementptr inbounds i32, i32* %[[G1]], i32 0 +; CHECK: %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>* +; CHECK: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] +; CHECK: %index.next = add i32 %index, 2 +; CHECK: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> +; CHECK: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec +; CHECK: br i1 %[[CMP]] +; +; IND-LABEL: @nonprimary( +; IND: vector.ph: +; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 +; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer +; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> +; IND: vector.body: +; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] +; IND: %[[A1:.*]] = add i32 %index, %i +; IND: %[[S1:.*]] = sext i32 %[[A1]] to i64 +; IND: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] +; IND: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* +; IND: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] +; IND: %index.next = add i32 %index, 2 +; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> +; IND: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec +; IND: br i1 %[[CMP]] +; +; UNROLL-LABEL: @nonprimary( +; UNROLL: vector.ph: +; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 +; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer +; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> +; UNROLL: vector.body: +; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] +; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> +; UNROLL: %[[A1:.*]] = add i32 %index, %i +; UNROLL: %[[S1:.*]] = sext i32 %[[A1]] to i64 +; UNROLL: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] +; UNROLL: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* +; UNROLL: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] +; UNROLL: %[[G2:.*]] = getelementptr inbounds i32, i32* %[[G1]], i64 2 +; UNROLL: %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>* +; UNROLL: store <2 x i32> %step.add, <2 x i32>* %[[B2]] +; UNROLL: %index.next = add i32 %index, 4 +; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> +; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec +; UNROLL: br i1 %[[CMP]] +define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) { +for.body.preheader: + br label %for.body + +for.body: + %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ] + %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv + store i32 %indvars.iv, i32* %arrayidx, align 4 + %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 + %exitcond = icmp eq i32 %indvars.iv.next, %k + br i1 %exitcond, label %exit, label %for.body + +exit: + ret void +} + +; CHECK-LABEL: @non_primary_iv_trunc( +; CHECK: vector.body: +; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 2>, %vector.ph ], [ [[VEC_IND_NEXT:%.*]], %vector.body ] +; CHECK: [[TMP3:%.*]] = add i64 %index, 0 +; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %a, i64 [[TMP3]] +; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 +; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* +; CHECK-NEXT: store <2 x i32> [[VEC_IND]], <2 x i32>* [[TMP6]], align 4 +; CHECK-NEXT: %index.next = add i64 %index, 2 +; CHECK: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], <i32 4, i32 4> +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +define void @non_primary_iv_trunc(i32* %a, i64 %n) { +entry: + br label %for.body + +for.body: + %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] + %j = phi i64 [ %j.next, %for.body ], [ 0, %entry ] + %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i + %tmp1 = trunc i64 %j to i32 + store i32 %tmp1, i32* %tmp0, align 4 + %i.next = add nuw nsw i64 %i, 1 + %j.next = add nuw nsw i64 %j, 2 + %cond = icmp slt i64 %i.next, %n + br i1 %cond, label %for.body, label %for.end + +for.end: + ret void +} + +; PR32419. Ensure we transform truncated non-primary induction variables. In +; the test case below we replace %tmp1 with a new induction variable. Because +; the truncated value is non-primary, we must compute an offset from the +; primary induction variable. +; +; CHECK-LABEL: @PR32419( +; CHECK: vector.body: +; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %[[PRED_UREM_CONTINUE4:.*]] ] +; CHECK: [[OFFSET_IDX:%.*]] = add i32 -20, [[INDEX]] +; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[OFFSET_IDX]] to i16 +; CHECK: [[TMP8:%.*]] = add i16 [[TMP1]], 0 +; CHECK-NEXT: [[TMP9:%.*]] = urem i16 %b, [[TMP8]] +; CHECK: [[TMP15:%.*]] = add i16 [[TMP1]], 1 +; CHECK-NEXT: [[TMP16:%.*]] = urem i16 %b, [[TMP15]] +; CHECK: [[PRED_UREM_CONTINUE4]]: +; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body +; +define i32 @PR32419(i32 %a, i16 %b) { +entry: + br label %for.body + +for.body: + %i = phi i32 [ -20, %entry ], [ %i.next, %for.inc ] + %tmp0 = phi i32 [ %a, %entry ], [ %tmp6, %for.inc ] + %tmp1 = trunc i32 %i to i16 + %tmp2 = icmp eq i16 %tmp1, 0 + br i1 %tmp2, label %for.inc, label %for.cond + +for.cond: + %tmp3 = urem i16 %b, %tmp1 + br label %for.inc + +for.inc: + %tmp4 = phi i16 [ %tmp3, %for.cond ], [ 0, %for.body ] + %tmp5 = sext i16 %tmp4 to i32 + %tmp6 = or i32 %tmp0, %tmp5 + %i.next = add nsw i32 %i, 1 + %cond = icmp eq i32 %i.next, 0 + br i1 %cond, label %for.end, label %for.body + +for.end: + %tmp7 = phi i32 [ %tmp6, %for.inc ] + ret i32 %tmp7 +} + +; Ensure that the shuffle vector for first order recurrence is inserted +; correctly after all the phis. These new phis correspond to new IVs +; that are generated by optimizing non-free truncs of IVs to IVs themselves +define i64 @trunc_with_first_order_recurrence() { +; CHECK-LABEL: trunc_with_first_order_recurrence +; CHECK-LABEL: vector.body: +; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] +; CHECK-NEXT: %vec.phi = phi <2 x i64> +; CHECK-NEXT: %vec.ind = phi <2 x i64> [ <i64 1, i64 2>, %vector.ph ], [ %vec.ind.next, %vector.body ] +; CHECK-NEXT: %vec.ind2 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next3, %vector.body ] +; CHECK-NEXT: %vector.recur = phi <2 x i32> [ <i32 undef, i32 42>, %vector.ph ], [ %vec.ind5, %vector.body ] +; CHECK-NEXT: %vec.ind5 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next6, %vector.body ] +; CHECK-NEXT: %vec.ind7 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next8, %vector.body ] +; CHECK-NEXT: shufflevector <2 x i32> %vector.recur, <2 x i32> %vec.ind5, <2 x i32> <i32 1, i32 2> +entry: + br label %loop + +exit: ; preds = %loop + %.lcssa = phi i64 [ %c23, %loop ] + ret i64 %.lcssa + +loop: ; preds = %loop, %entry + %c5 = phi i64 [ %c23, %loop ], [ 0, %entry ] + %indvars.iv = phi i64 [ %indvars.iv.next, %loop ], [ 1, %entry ] + %x = phi i32 [ %c24, %loop ], [ 1, %entry ] + %y = phi i32 [ %c6, %loop ], [ 42, %entry ] + %c6 = trunc i64 %indvars.iv to i32 + %c8 = mul i32 %x, %c6 + %c9 = add i32 %c8, 42 + %c10 = add i32 %y, %c6 + %c11 = add i32 %c10, %c9 + %c12 = sext i32 %c11 to i64 + %c13 = add i64 %c5, %c12 + %indvars.iv.tr = trunc i64 %indvars.iv to i32 + %c14 = shl i32 %indvars.iv.tr, 1 + %c15 = add i32 %c9, %c14 + %c16 = sext i32 %c15 to i64 + %c23 = add i64 %c13, %c16 + %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 + %c24 = add nuw nsw i32 %x, 1 + %exitcond.i = icmp eq i64 %indvars.iv.next, 114 + br i1 %exitcond.i, label %exit, label %loop + +} |