summaryrefslogtreecommitdiffstats
path: root/llvm/test/CodeGen/AMDGPU/lds-output-queue.ll
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/test/CodeGen/AMDGPU/lds-output-queue.ll')
-rw-r--r--llvm/test/CodeGen/AMDGPU/lds-output-queue.ll99
1 files changed, 99 insertions, 0 deletions
diff --git a/llvm/test/CodeGen/AMDGPU/lds-output-queue.ll b/llvm/test/CodeGen/AMDGPU/lds-output-queue.ll
new file mode 100644
index 00000000000..44ffc36af14
--- /dev/null
+++ b/llvm/test/CodeGen/AMDGPU/lds-output-queue.ll
@@ -0,0 +1,99 @@
+; RUN: llc < %s -march=r600 -mcpu=redwood -verify-machineinstrs | FileCheck %s
+;
+; This test checks that the lds input queue will is empty at the end of
+; the ALU clause.
+
+; CHECK-LABEL: {{^}}lds_input_queue:
+; CHECK: LDS_READ_RET * OQAP
+; CHECK-NOT: ALU clause
+; CHECK: MOV * T{{[0-9]\.[XYZW]}}, OQAP
+
+@local_mem = internal unnamed_addr addrspace(3) global [2 x i32] undef, align 4
+
+define void @lds_input_queue(i32 addrspace(1)* %out, i32 addrspace(1)* %in, i32 %index) {
+entry:
+ %0 = getelementptr inbounds [2 x i32], [2 x i32] addrspace(3)* @local_mem, i32 0, i32 %index
+ %1 = load i32, i32 addrspace(3)* %0
+ call void @llvm.AMDGPU.barrier.local()
+
+ ; This will start a new clause for the vertex fetch
+ %2 = load i32, i32 addrspace(1)* %in
+ %3 = add i32 %1, %2
+ store i32 %3, i32 addrspace(1)* %out
+ ret void
+}
+
+declare void @llvm.AMDGPU.barrier.local()
+
+; The machine scheduler does not do proper alias analysis and assumes that
+; loads from global values (Note that a global value is different that a
+; value from global memory. A global value is a value that is declared
+; outside of a function, it can reside in any address space) alias with
+; all other loads.
+;
+; This is a problem for scheduling the reads from the local data share (lds).
+; These reads are implemented using two instructions. The first copies the
+; data from lds into the lds output queue, and the second moves the data from
+; the input queue into main memory. These two instructions don't have to be
+; scheduled one after the other, but they do need to be scheduled in the same
+; clause. The aliasing problem mentioned above causes problems when there is a
+; load from global memory which immediately follows a load from a global value that
+; has been declared in the local memory space:
+;
+; %0 = getelementptr inbounds [2 x i32], [2 x i32] addrspace(3)* @local_mem, i32 0, i32 %index
+; %1 = load i32, i32 addrspace(3)* %0
+; %2 = load i32, i32 addrspace(1)* %in
+;
+; The instruction selection phase will generate ISA that looks like this:
+; %OQAP = LDS_READ_RET
+; %vreg0 = MOV %OQAP
+; %vreg1 = VTX_READ_32
+; %vreg2 = ADD_INT %vreg1, %vreg0
+;
+; The bottom scheduler will schedule the two ALU instructions first:
+;
+; UNSCHEDULED:
+; %OQAP = LDS_READ_RET
+; %vreg1 = VTX_READ_32
+;
+; SCHEDULED:
+;
+; vreg0 = MOV %OQAP
+; vreg2 = ADD_INT %vreg1, %vreg2
+;
+; The lack of proper aliasing results in the local memory read (LDS_READ_RET)
+; to consider the global memory read (VTX_READ_32) has a chain dependency, so
+; the global memory read will always be scheduled first. This will give us a
+; final program which looks like this:
+;
+; Alu clause:
+; %OQAP = LDS_READ_RET
+; VTX clause:
+; %vreg1 = VTX_READ_32
+; Alu clause:
+; vreg0 = MOV %OQAP
+; vreg2 = ADD_INT %vreg1, %vreg2
+;
+; This is an illegal program because the OQAP def and use know occur in
+; different ALU clauses.
+;
+; This test checks this scenario and makes sure it doesn't result in an
+; illegal program. For now, we have fixed this issue by merging the
+; LDS_READ_RET and MOV together during instruction selection and then
+; expanding them after scheduling. Once the scheduler has better alias
+; analysis, we should be able to keep these instructions sparate before
+; scheduling.
+;
+; CHECK-LABEL: {{^}}local_global_alias:
+; CHECK: LDS_READ_RET
+; CHECK-NOT: ALU clause
+; CHECK: MOV * T{{[0-9]\.[XYZW]}}, OQAP
+define void @local_global_alias(i32 addrspace(1)* %out, i32 addrspace(1)* %in) {
+entry:
+ %0 = getelementptr inbounds [2 x i32], [2 x i32] addrspace(3)* @local_mem, i32 0, i32 0
+ %1 = load i32, i32 addrspace(3)* %0
+ %2 = load i32, i32 addrspace(1)* %in
+ %3 = add i32 %2, %1
+ store i32 %3, i32 addrspace(1)* %out
+ ret void
+}
OpenPOWER on IntegriCloud