diff options
Diffstat (limited to 'llvm/lib')
-rw-r--r-- | llvm/lib/Analysis/LazyCallGraph.cpp | 1569 |
1 files changed, 1181 insertions, 388 deletions
diff --git a/llvm/lib/Analysis/LazyCallGraph.cpp b/llvm/lib/Analysis/LazyCallGraph.cpp index 11e1166001a..5de90782a31 100644 --- a/llvm/lib/Analysis/LazyCallGraph.cpp +++ b/llvm/lib/Analysis/LazyCallGraph.cpp @@ -21,7 +21,7 @@ using namespace llvm; #define DEBUG_TYPE "lcg" static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, - DenseMap<Function *, size_t> &EdgeIndexMap, Function &F, + DenseMap<Function *, int> &EdgeIndexMap, Function &F, LazyCallGraph::Edge::Kind EK) { // Note that we consider *any* function with a definition to be a viable // edge. Even if the function's definition is subject to replacement by @@ -34,17 +34,16 @@ static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, // strong definition's address would be an effective way to determine the // safety of optimizing a direct call edge. if (!F.isDeclaration() && - EdgeIndexMap.insert(std::make_pair(&F, Edges.size())).second) { + EdgeIndexMap.insert({&F, Edges.size()}).second) { DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n"); Edges.emplace_back(LazyCallGraph::Edge(F, EK)); } } -static void findReferences( - SmallVectorImpl<Constant *> &Worklist, - SmallPtrSetImpl<Constant *> &Visited, - SmallVectorImpl<LazyCallGraph::Edge> &Edges, - DenseMap<Function *, size_t> &EdgeIndexMap) { +static void findReferences(SmallVectorImpl<Constant *> &Worklist, + SmallPtrSetImpl<Constant *> &Visited, + SmallVectorImpl<LazyCallGraph::Edge> &Edges, + DenseMap<Function *, int> &EdgeIndexMap) { while (!Worklist.empty()) { Constant *C = Worklist.pop_back_val(); @@ -94,23 +93,27 @@ LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) findReferences(Worklist, Visited, Edges, EdgeIndexMap); } -void LazyCallGraph::Node::insertEdgeInternal(Function &Child, Edge::Kind EK) { - if (Node *N = G->lookup(Child)) +void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) { + if (Node *N = G->lookup(Target)) return insertEdgeInternal(*N, EK); - EdgeIndexMap.insert(std::make_pair(&Child, Edges.size())); - Edges.emplace_back(Child, EK); + EdgeIndexMap.insert({&Target, Edges.size()}); + Edges.emplace_back(Target, EK); } -void LazyCallGraph::Node::insertEdgeInternal(Node &ChildN, Edge::Kind EK) { - EdgeIndexMap.insert(std::make_pair(&ChildN.getFunction(), Edges.size())); - Edges.emplace_back(ChildN, EK); +void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) { + EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()}); + Edges.emplace_back(TargetN, EK); } -void LazyCallGraph::Node::removeEdgeInternal(Function &Child) { - auto IndexMapI = EdgeIndexMap.find(&Child); +void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) { + Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK); +} + +void LazyCallGraph::Node::removeEdgeInternal(Function &Target) { + auto IndexMapI = EdgeIndexMap.find(&Target); assert(IndexMapI != EdgeIndexMap.end() && - "Child not in the edge set for this caller?"); + "Target not in the edge set for this caller?"); Edges[IndexMapI->second] = Edge(); EdgeIndexMap.erase(IndexMapI); @@ -121,7 +124,7 @@ LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { << "\n"); for (Function &F : M) if (!F.isDeclaration() && !F.hasLocalLinkage()) - if (EntryIndexMap.insert(std::make_pair(&F, EntryEdges.size())).second) { + if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) { DEBUG(dbgs() << " Adding '" << F.getName() << "' to entry set of the graph.\n"); EntryEdges.emplace_back(F, Edge::Ref); @@ -140,16 +143,16 @@ LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { findReferences(Worklist, Visited, EntryEdges, EntryIndexMap); for (const Edge &E : EntryEdges) - SCCEntryNodes.push_back(&E.getFunction()); + RefSCCEntryNodes.push_back(&E.getFunction()); } LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), EntryEdges(std::move(G.EntryEdges)), EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), - SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), + SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)), DFSStack(std::move(G.DFSStack)), - SCCEntryNodes(std::move(G.SCCEntryNodes)), + RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)), NextDFSNumber(G.NextDFSNumber) { updateGraphPtrs(); } @@ -161,405 +164,1068 @@ LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { EntryIndexMap = std::move(G.EntryIndexMap); SCCBPA = std::move(G.SCCBPA); SCCMap = std::move(G.SCCMap); - LeafSCCs = std::move(G.LeafSCCs); + LeafRefSCCs = std::move(G.LeafRefSCCs); DFSStack = std::move(G.DFSStack); - SCCEntryNodes = std::move(G.SCCEntryNodes); + RefSCCEntryNodes = std::move(G.RefSCCEntryNodes); NextDFSNumber = G.NextDFSNumber; updateGraphPtrs(); return *this; } -void LazyCallGraph::SCC::insert(Node &N) { - N.DFSNumber = N.LowLink = -1; - Nodes.push_back(&N); - G->SCCMap[&N] = this; +#ifndef NDEBUG +void LazyCallGraph::SCC::verify() { + assert(OuterRefSCC && "Can't have a null RefSCC!"); + assert(!Nodes.empty() && "Can't have an empty SCC!"); + + for (Node *N : Nodes) { + assert(N && "Can't have a null node!"); + assert(OuterRefSCC->G->lookupSCC(*N) == this && + "Node does not map to this SCC!"); + assert(N->DFSNumber == -1 && + "Must set DFS numbers to -1 when adding a node to an SCC!"); + assert(N->LowLink == -1 && + "Must set low link to -1 when adding a node to an SCC!"); + for (Edge &E : *N) + assert(E.getNode() && "Can't have an edge to a raw function!"); + } } +#endif -bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const { +LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} + +#ifndef NDEBUG +void LazyCallGraph::RefSCC::verify() { + assert(G && "Can't have a null graph!"); + assert(!SCCs.empty() && "Can't have an empty SCC!"); + + // Verify basic properties of the SCCs. + for (SCC *C : SCCs) { + assert(C && "Can't have a null SCC!"); + C->verify(); + assert(&C->getOuterRefSCC() == this && + "SCC doesn't think it is inside this RefSCC!"); + } + + // Check that our indices map correctly. + for (auto &SCCIndexPair : SCCIndices) { + SCC *C = SCCIndexPair.first; + int i = SCCIndexPair.second; + assert(C && "Can't have a null SCC in the indices!"); + assert(SCCs[i] == C && "Index doesn't point to SCC!"); + } + + // Check that the SCCs are in fact in post-order. + for (int i = 0, Size = SCCs.size(); i < Size; ++i) { + SCC &SourceSCC = *SCCs[i]; + for (Node &N : SourceSCC) + for (Edge &E : N) { + if (!E.isCall()) + continue; + SCC &TargetSCC = *G->lookupSCC(*E.getNode()); + if (&TargetSCC.getOuterRefSCC() == this) { + assert(SCCIndices.find(&TargetSCC)->second <= i && + "Edge between SCCs violates post-order relationship."); + continue; + } + assert(TargetSCC.getOuterRefSCC().Parents.count(this) && + "Edge to a RefSCC missing us in its parent set."); + } + } +} +#endif + +bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const { // Walk up the parents of this SCC and verify that we eventually find C. - SmallVector<const SCC *, 4> AncestorWorklist; + SmallVector<const RefSCC *, 4> AncestorWorklist; AncestorWorklist.push_back(this); do { - const SCC *AncestorC = AncestorWorklist.pop_back_val(); + const RefSCC *AncestorC = AncestorWorklist.pop_back_val(); if (AncestorC->isChildOf(C)) return true; - for (const SCC *ParentC : AncestorC->ParentSCCs) + for (const RefSCC *ParentC : AncestorC->Parents) AncestorWorklist.push_back(ParentC); } while (!AncestorWorklist.empty()); return false; } -void LazyCallGraph::SCC::insertIntraSCCEdge(Node &ParentN, Node &ChildN, - Edge::Kind EK) { - // First insert it into the caller. - ParentN.insertEdgeInternal(ChildN, EK); +SmallVector<LazyCallGraph::SCC *, 1> +LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) { + assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); + + SmallVector<SCC *, 1> DeletedSCCs; + + SCC &SourceSCC = *G->lookupSCC(SourceN); + SCC &TargetSCC = *G->lookupSCC(TargetN); + + // If the two nodes are already part of the same SCC, we're also done as + // we've just added more connectivity. + if (&SourceSCC == &TargetSCC) { + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif + return DeletedSCCs; + } - assert(G->SCCMap.lookup(&ParentN) == this && "Parent must be in this SCC."); - assert(G->SCCMap.lookup(&ChildN) == this && "Child must be in this SCC."); + // At this point we leverage the postorder list of SCCs to detect when the + // insertion of an edge changes the SCC structure in any way. + // + // First and foremost, we can eliminate the need for any changes when the + // edge is toward the beginning of the postorder sequence because all edges + // flow in that direction already. Thus adding a new one cannot form a cycle. + int SourceIdx = SCCIndices[&SourceSCC]; + int TargetIdx = SCCIndices[&TargetSCC]; + if (TargetIdx < SourceIdx) { + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif + return DeletedSCCs; + } - // Nothing changes about this SCC or any other. + // When we do have an edge from an earlier SCC to a later SCC in the + // postorder sequence, all of the SCCs which may be impacted are in the + // closed range of those two within the postorder sequence. The algorithm to + // restore the state is as follows: + // + // 1) Starting from the source SCC, construct a set of SCCs which reach the + // source SCC consisting of just the source SCC. Then scan toward the + // target SCC in postorder and for each SCC, if it has an edge to an SCC + // in the set, add it to the set. Otherwise, the source SCC is not + // a successor, move it in the postorder sequence to immediately before + // the source SCC, shifting the source SCC and all SCCs in the set one + // position toward the target SCC. Stop scanning after processing the + // target SCC. + // 2) If the source SCC is now past the target SCC in the postorder sequence, + // and thus the new edge will flow toward the start, we are done. + // 3) Otherwise, starting from the target SCC, walk all edges which reach an + // SCC between the source and the target, and add them to the set of + // connected SCCs, then recurse through them. Once a complete set of the + // SCCs the target connects to is known, hoist the remaining SCCs between + // the source and the target to be above the target. Note that there is no + // need to process the source SCC, it is already known to connect. + // 4) At this point, all of the SCCs in the closed range between the source + // SCC and the target SCC in the postorder sequence are connected, + // including the target SCC and the source SCC. Inserting the edge from + // the source SCC to the target SCC will form a cycle out of precisely + // these SCCs. Thus we can merge all of the SCCs in this closed range into + // a single SCC. + // + // This process has various important properties: + // - Only mutates the SCCs when adding the edge actually changes the SCC + // structure. + // - Never mutates SCCs which are unaffected by the change. + // - Updates the postorder sequence to correctly satisfy the postorder + // constraint after the edge is inserted. + // - Only reorders SCCs in the closed postorder sequence from the source to + // the target, so easy to bound how much has changed even in the ordering. + // - Big-O is the number of edges in the closed postorder range of SCCs from + // source to target. + + assert(SourceIdx < TargetIdx && "Cannot have equal indices here!"); + SmallPtrSet<SCC *, 4> ConnectedSet; + + // Compute the SCCs which (transitively) reach the source. + ConnectedSet.insert(&SourceSCC); + auto IsConnected = [&](SCC &C) { + for (Node &N : C) + for (Edge &E : N.calls()) { + assert(E.getNode() && "Must have formed a node within an SCC!"); + if (ConnectedSet.count(G->lookupSCC(*E.getNode()))) + return true; + } + + return false; + }; + + for (SCC *C : + make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1)) + if (IsConnected(*C)) + ConnectedSet.insert(C); + + // Partition the SCCs in this part of the port-order sequence so only SCCs + // connecting to the source remain between it and the target. This is + // a benign partition as it preserves postorder. + auto SourceI = std::stable_partition( + SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, + [&ConnectedSet](SCC *C) { return !ConnectedSet.count(C); }); + for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i) + SCCIndices.find(SCCs[i])->second = i; + + // If the target doesn't connect to the source, then we've corrected the + // post-order and there are no cycles formed. + if (!ConnectedSet.count(&TargetSCC)) { + assert(SourceI > (SCCs.begin() + SourceIdx) && + "Must have moved the source to fix the post-order."); + assert(*std::prev(SourceI) == &TargetSCC && + "Last SCC to move should have bene the target."); + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); +#ifndef NDEBUG + verify(); +#endif + return DeletedSCCs; + } + + assert(SCCs[TargetIdx] == &TargetSCC && + "Should not have moved target if connected!"); + SourceIdx = SourceI - SCCs.begin(); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif + + // See whether there are any remaining intervening SCCs between the source + // and target. If so we need to make sure they all are reachable form the + // target. + if (SourceIdx + 1 < TargetIdx) { + // Use a normal worklist to find which SCCs the target connects to. We still + // bound the search based on the range in the postorder list we care about, + // but because this is forward connectivity we just "recurse" through the + // edges. + ConnectedSet.clear(); + ConnectedSet.insert(&TargetSCC); + SmallVector<SCC *, 4> Worklist; + Worklist.push_back(&TargetSCC); + do { + SCC &C = *Worklist.pop_back_val(); + for (Node &N : C) + for (Edge &E : N) { + assert(E.getNode() && "Must have formed a node within an SCC!"); + if (!E.isCall()) + continue; + SCC &EdgeC = *G->lookupSCC(*E.getNode()); + if (&EdgeC.getOuterRefSCC() != this) + // Not in this RefSCC... + continue; + if (SCCIndices.find(&EdgeC)->second <= SourceIdx) + // Not in the postorder sequence between source and target. + continue; + + if (ConnectedSet.insert(&EdgeC).second) + Worklist.push_back(&EdgeC); + } + } while (!Worklist.empty()); + + // Partition SCCs so that only SCCs reached from the target remain between + // the source and the target. This preserves postorder. + auto TargetI = std::stable_partition( + SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, + [&ConnectedSet](SCC *C) { return ConnectedSet.count(C); }); + for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i) + SCCIndices.find(SCCs[i])->second = i; + TargetIdx = std::prev(TargetI) - SCCs.begin(); + assert(SCCs[TargetIdx] == &TargetSCC && + "Should always end with the target!"); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif + } + + // At this point, we know that connecting source to target forms a cycle + // because target connects back to source, and we know that all of the SCCs + // between the source and target in the postorder sequence participate in that + // cycle. This means that we need to merge all of these SCCs into a single + // result SCC. + // + // NB: We merge into the target because all of these functions were already + // reachable from the target, meaning any SCC-wide properties deduced about it + // other than the set of functions within it will not have changed. + auto MergeRange = + make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); + for (SCC *C : MergeRange) { + assert(C != &TargetSCC && + "We merge *into* the target and shouldn't process it here!"); + SCCIndices.erase(C); + TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end()); + for (Node *N : C->Nodes) + G->SCCMap[N] = &TargetSCC; + C->clear(); + DeletedSCCs.push_back(C); + } + + // Erase the merged SCCs from the list and update the indices of the + // remaining SCCs. + int IndexOffset = MergeRange.end() - MergeRange.begin(); + auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end()); + for (SCC *C : make_range(EraseEnd, SCCs.end())) + SCCIndices[C] -= IndexOffset; + + // Now that the SCC structure is finalized, flip the kind to call. + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); + +#ifndef NDEBUG + // And we're done! Verify in debug builds that the RefSCC is coherent. + verify(); +#endif + return DeletedSCCs; } -void LazyCallGraph::SCC::insertOutgoingEdge(Node &ParentN, Node &ChildN, - Edge::Kind EK) { +void LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, + Node &TargetN) { + assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); + + SCC &SourceSCC = *G->lookupSCC(SourceN); + SCC &TargetSCC = *G->lookupSCC(TargetN); + + assert(&SourceSCC.getOuterRefSCC() == this && + "Source must be in this RefSCC."); + assert(&TargetSCC.getOuterRefSCC() == this && + "Target must be in this RefSCC."); + + // Set the edge kind. + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); + + // If this call edge is just connecting two separate SCCs within this RefSCC, + // there is nothing to do. + if (&SourceSCC != &TargetSCC) { +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif + return; + } + + // Otherwise we are removing a call edge from a single SCC. This may break + // the cycle. In order to compute the new set of SCCs, we need to do a small + // DFS over the nodes within the SCC to form any sub-cycles that remain as + // distinct SCCs and compute a postorder over the resulting SCCs. + // + // However, we specially handle the target node. The target node is known to + // reach all other nodes in the original SCC by definition. This means that + // we want the old SCC to be replaced with an SCC contaning that node as it + // will be the root of whatever SCC DAG results from the DFS. Assumptions + // about an SCC such as the set of functions called will continue to hold, + // etc. + + SCC &OldSCC = TargetSCC; + SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; + SmallVector<Node *, 16> PendingSCCStack; + SmallVector<SCC *, 4> NewSCCs; + + // Prepare the nodes for a fresh DFS. + SmallVector<Node *, 16> Worklist; + Worklist.swap(OldSCC.Nodes); + for (Node *N : Worklist) { + N->DFSNumber = N->LowLink = 0; + G->SCCMap.erase(N); + } + + // Force the target node to be in the old SCC. This also enables us to take + // a very significant short-cut in the standard Tarjan walk to re-form SCCs + // below: whenever we build an edge that reaches the target node, we know + // that the target node eventually connects back to all other nodes in our + // walk. As a consequence, we can detect and handle participants in that + // cycle without walking all the edges that form this connection, and instead + // by relying on the fundamental guarantee coming into this operation (all + // nodes are reachable from the target due to previously forming an SCC). + TargetN.DFSNumber = TargetN.LowLink = -1; + OldSCC.Nodes.push_back(&TargetN); + G->SCCMap[&TargetN] = &OldSCC; + + // Scan down the stack and DFS across the call edges. + for (Node *RootN : Worklist) { + assert(DFSStack.empty() && + "Cannot begin a new root with a non-empty DFS stack!"); + assert(PendingSCCStack.empty() && + "Cannot begin a new root with pending nodes for an SCC!"); + + // Skip any nodes we've already reached in the DFS. + if (RootN->DFSNumber != 0) { + assert(RootN->DFSNumber == -1 && + "Shouldn't have any mid-DFS root nodes!"); + continue; + } + + RootN->DFSNumber = RootN->LowLink = 1; + int NextDFSNumber = 2; + + DFSStack.push_back({RootN, RootN->call_begin()}); + do { + Node *N; + call_edge_iterator I; + std::tie(N, I) = DFSStack.pop_back_val(); + auto E = N->call_end(); + while (I != E) { + Node &ChildN = *I->getNode(); + if (ChildN.DFSNumber == 0) { + // We haven't yet visited this child, so descend, pushing the current + // node onto the stack. + DFSStack.push_back({N, I}); + + assert(!G->SCCMap.count(&ChildN) && + "Found a node with 0 DFS number but already in an SCC!"); + ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; + N = &ChildN; + I = N->call_begin(); + E = N->call_end(); + continue; + } + + // Check for the child already being part of some component. + if (ChildN.DFSNumber == -1) { + if (G->lookupSCC(ChildN) == &OldSCC) { + // If the child is part of the old SCC, we know that it can reach + // every other node, so we have formed a cycle. Pull the entire DFS + // and pending stacks into it. See the comment above about setting + // up the old SCC for why we do this. + int OldSize = OldSCC.size(); + OldSCC.Nodes.push_back(N); + OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end()); + PendingSCCStack.clear(); + while (!DFSStack.empty()) + OldSCC.Nodes.push_back(DFSStack.pop_back_val().first); + for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) { + N.DFSNumber = N.LowLink = -1; + G->SCCMap[&N] = &OldSCC; + } + N = nullptr; + break; + } + + // If the child has already been added to some child component, it + // couldn't impact the low-link of this parent because it isn't + // connected, and thus its low-link isn't relevant so skip it. + ++I; + continue; + } + + // Track the lowest linked child as the lowest link for this node. + assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); + if (ChildN.LowLink < N->LowLink) + N->LowLink = ChildN.LowLink; + + // Move to the next edge. + ++I; + } + if (!N) + // Cleared the DFS early, start another round. + break; + + // We've finished processing N and its descendents, put it on our pending + // SCC stack to eventually get merged into an SCC of nodes. + PendingSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) + continue; + + // Otherwise, we've completed an SCC. Append it to our post order list of + // SCCs. + int RootDFSNumber = N->DFSNumber; + // Find the range of the node stack by walking down until we pass the + // root DFS number. + auto SCCNodes = make_range( + PendingSCCStack.rbegin(), + std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(), + [RootDFSNumber](Node *N) { + return N->DFSNumber < RootDFSNumber; + })); + + // Form a new SCC out of these nodes and then clear them off our pending + // stack. + NewSCCs.push_back(G->createSCC(*this, SCCNodes)); + for (Node &N : *NewSCCs.back()) { + N.DFSNumber = N.LowLink = -1; + G->SCCMap[&N] = NewSCCs.back(); + } + PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); + } while (!DFSStack.empty()); + } + + // Insert the remaining SCCs before the old one. The old SCC can reach all + // other SCCs we form because it contains the target node of the removed edge + // of the old SCC. This means that we will have edges into all of the new + // SCCs, which means the old one must come last for postorder. + int OldIdx = SCCIndices[&OldSCC]; + SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end()); + + // Update the mapping from SCC* to index to use the new SCC*s, and remove the + // old SCC from the mapping. + for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) + SCCIndices[SCCs[Idx]] = Idx; + +#ifndef NDEBUG + // We're done. Check the validity on our way out. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, + Node &TargetN) { + assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!"); + + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) != this && + "Target must not be in this RefSCC."); + assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && + "Target must be a descendant of the Source."); + + // Edges between RefSCCs are the same regardless of call or ref, so we can + // just flip the edge here. + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, + Node &TargetN) { + assert(SourceN[TargetN].isCall() && "Must start with a call edge!"); + + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) != this && + "Target must not be in this RefSCC."); + assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && + "Target must be a descendant of the Source."); + + // Edges between RefSCCs are the same regardless of call or ref, so we can + // just flip the edge here. + SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, + Node &TargetN) { + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); + assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC."); + + SourceN.insertEdgeInternal(TargetN, Edge::Ref); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif +} + +void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, + Edge::Kind EK) { // First insert it into the caller. - ParentN.insertEdgeInternal(ChildN, EK); + SourceN.insertEdgeInternal(TargetN, EK); - assert(G->SCCMap.lookup(&ParentN) == this && "Parent must be in this SCC."); + assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC."); - SCC &ChildC = *G->SCCMap.lookup(&ChildN); - assert(&ChildC != this && "Child must not be in this SCC."); - assert(ChildC.isDescendantOf(*this) && - "Child must be a descendant of the Parent."); + RefSCC &TargetC = *G->lookupRefSCC(TargetN); + assert(&TargetC != this && "Target must not be in this RefSCC."); + assert(TargetC.isDescendantOf(*this) && + "Target must be a descendant of the Source."); // The only change required is to add this SCC to the parent set of the // callee. - ChildC.ParentSCCs.insert(this); + TargetC.Parents.insert(this); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif } -SmallVector<LazyCallGraph::SCC *, 1> -LazyCallGraph::SCC::insertIncomingEdge(Node &ParentN, Node &ChildN, - Edge::Kind EK) { - // First insert it into the caller. - ParentN.insertEdgeInternal(ChildN, EK); +SmallVector<LazyCallGraph::RefSCC *, 1> +LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { + assert(G->lookupRefSCC(TargetN) == this && "Target must be in this SCC."); - assert(G->SCCMap.lookup(&ChildN) == this && "Child must be in this SCC."); + // We store the RefSCCs found to be connected in postorder so that we can use + // that when merging. We also return this to the caller to allow them to + // invalidate information pertaining to these RefSCCs. + SmallVector<RefSCC *, 1> Connected; - SCC &ParentC = *G->SCCMap.lookup(&ParentN); - assert(&ParentC != this && "Parent must not be in this SCC."); - assert(ParentC.isDescendantOf(*this) && - "Parent must be a descendant of the Child."); + RefSCC &SourceC = *G->lookupRefSCC(SourceN); + assert(&SourceC != this && "Source must not be in this SCC."); + assert(SourceC.isDescendantOf(*this) && + "Source must be a descendant of the Target."); // The algorithm we use for merging SCCs based on the cycle introduced here - // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse - // graph has the same cycle properties as the actual DAG of the SCCs, and - // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in - // many cases which should prune the search space. + // is to walk the RefSCC inverted DAG formed by the parent sets. The inverse + // graph has the same cycle properties as the actual DAG of the RefSCCs, and + // when forming RefSCCs lazily by a DFS, the bottom of the graph won't exist + // in many cases which should prune the search space. // - // FIXME: We can get this pruning behavior even after the incremental SCC + // FIXME: We can get this pruning behavior even after the incremental RefSCC // formation by leaving behind (conservative) DFS numberings in the nodes, // and pruning the search with them. These would need to be cleverly updated // during the removal of intra-SCC edges, but could be preserved // conservatively. + // + // FIXME: This operation currently creates ordering stability problems + // because we don't use stably ordered containers for the parent SCCs. - // The set of SCCs that are connected to the caller, and thus will + // The set of RefSCCs that are connected to the parent, and thus will // participate in the merged connected component. - SmallPtrSet<SCC *, 8> ConnectedSCCs; - ConnectedSCCs.insert(this); - ConnectedSCCs.insert(&ParentC); + SmallPtrSet<RefSCC *, 8> ConnectedSet; + ConnectedSet.insert(this); // We build up a DFS stack of the parents chains. - SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs; - SmallPtrSet<SCC *, 8> VisitedSCCs; + SmallVector<std::pair<RefSCC *, parent_iterator>, 8> DFSStack; + SmallPtrSet<RefSCC *, 8> Visited; int ConnectedDepth = -1; - SCC *C = this; - parent_iterator I = parent_begin(), E = parent_end(); - for (;;) { + DFSStack.push_back({&SourceC, SourceC.parent_begin()}); + do { + auto DFSPair = DFSStack.pop_back_val(); + RefSCC *C = DFSPair.first; + parent_iterator I = DFSPair.second; + auto E = C->parent_end(); + while (I != E) { - SCC &ParentSCC = *I++; + RefSCC &Parent = *I++; // If we have already processed this parent SCC, skip it, and remember // whether it was connected so we don't have to check the rest of the // stack. This also handles when we reach a child of the 'this' SCC (the // callee) which terminates the search. - if (ConnectedSCCs.count(&ParentSCC)) { - ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size()); + if (ConnectedSet.count(&Parent)) { + assert(ConnectedDepth < (int)DFSStack.size() && + "Cannot have a connected depth greater than the DFS depth!"); + ConnectedDepth = DFSStack.size(); continue; } - if (VisitedSCCs.count(&ParentSCC)) + if (Visited.count(&Parent)) continue; // We fully explore the depth-first space, adding nodes to the connected // set only as we pop them off, so "recurse" by rotating to the parent. - DFSSCCs.push_back(std::make_pair(C, I)); - C = &ParentSCC; - I = ParentSCC.parent_begin(); - E = ParentSCC.parent_end(); + DFSStack.push_back({C, I}); + C = &Parent; + I = C->parent_begin(); + E = C->parent_end(); } // If we've found a connection anywhere below this point on the stack (and // thus up the parent graph from the caller), the current node needs to be // added to the connected set now that we've processed all of its parents. - if ((int)DFSSCCs.size() == ConnectedDepth) { + if ((int)DFSStack.size() == ConnectedDepth) { --ConnectedDepth; // We're finished with this connection. - ConnectedSCCs.insert(C); + bool Inserted = ConnectedSet.insert(C).second; + (void)Inserted; + assert(Inserted && "Cannot insert a refSCC multiple times!"); + Connected.push_back(C); } else { // Otherwise remember that its parents don't ever connect. - assert(ConnectedDepth < (int)DFSSCCs.size() && + assert(ConnectedDepth < (int)DFSStack.size() && "Cannot have a connected depth greater than the DFS depth!"); - VisitedSCCs.insert(C); + Visited.insert(C); } - - if (DFSSCCs.empty()) - break; // We've walked all the parents of the caller transitively. - - // Pop off the prior node and position to unwind the depth first recursion. - std::tie(C, I) = DFSSCCs.pop_back_val(); - E = C->parent_end(); - } + } while (!DFSStack.empty()); // Now that we have identified all of the SCCs which need to be merged into // a connected set with the inserted edge, merge all of them into this SCC. - // FIXME: This operation currently creates ordering stability problems - // because we don't use stably ordered containers for the parent SCCs or the - // connected SCCs. - unsigned NewNodeBeginIdx = Nodes.size(); - for (SCC *C : ConnectedSCCs) { - if (C == this) - continue; - for (SCC *ParentC : C->ParentSCCs) - if (!ConnectedSCCs.count(ParentC)) - ParentSCCs.insert(ParentC); - C->ParentSCCs.clear(); - - for (Node *N : *C) { - for (Edge &E : *N) { - assert(E.getNode() && "Cannot have a null node within a visited SCC!"); - SCC &ChildC = *G->SCCMap.lookup(E.getNode()); - if (&ChildC != C) - ChildC.ParentSCCs.erase(C); + // We walk the newly connected RefSCCs in the reverse postorder of the parent + // DAG walk above and merge in each of their SCC postorder lists. This + // ensures a merged postorder SCC list. + SmallVector<SCC *, 16> MergedSCCs; + int SCCIndex = 0; + for (RefSCC *C : reverse(Connected)) { + assert(C != this && + "This RefSCC should terminate the DFS without being reached."); + + // Merge the parents which aren't part of the merge into the our parents. + for (RefSCC *ParentC : C->Parents) + if (!ConnectedSet.count(ParentC)) + Parents.insert(ParentC); + C->Parents.clear(); + + // Walk the inner SCCs to update their up-pointer and walk all the edges to + // update any parent sets. + // FIXME: We should try to find a way to avoid this (rather expensive) edge + // walk by updating the parent sets in some other manner. + for (SCC &InnerC : *C) { + InnerC.OuterRefSCC = this; + SCCIndices[&InnerC] = SCCIndex++; + for (Node &N : InnerC) { + G->SCCMap[&N] = &InnerC; + for (Edge &E : N) { + assert(E.getNode() && + "Cannot have a null node within a visited SCC!"); + RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); + if (ConnectedSet.count(&ChildRC)) + continue; + ChildRC.Parents.erase(C); + ChildRC.Parents.insert(this); + } } - G->SCCMap[N] = this; - Nodes.push_back(N); } - C->Nodes.clear(); + + // Now merge in the SCCs. We can actually move here so try to reuse storage + // the first time through. + if (MergedSCCs.empty()) + MergedSCCs = std::move(C->SCCs); + else + MergedSCCs.append(C->SCCs.begin(), C->SCCs.end()); + C->SCCs.clear(); } - for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I) - for (Edge &E : **I) { - assert(E.getNode() && "Cannot have a null node within a visited SCC!"); - SCC &ChildC = *G->SCCMap.lookup(E.getNode()); - if (&ChildC != this) - ChildC.ParentSCCs.insert(this); - } + + // Finally append our original SCCs to the merged list and move it into + // place. + for (SCC &InnerC : *this) + SCCIndices[&InnerC] = SCCIndex++; + MergedSCCs.append(SCCs.begin(), SCCs.end()); + SCCs = std::move(MergedSCCs); + + // At this point we have a merged RefSCC with a post-order SCCs list, just + // connect the nodes to form the new edge. + SourceN.insertEdgeInternal(TargetN, Edge::Ref); + +#ifndef NDEBUG + // Check that the RefSCC is still valid. + verify(); +#endif // We return the list of SCCs which were merged so that callers can // invalidate any data they have associated with those SCCs. Note that these // SCCs are no longer in an interesting state (they are totally empty) but // the pointers will remain stable for the life of the graph itself. - return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end()); + return Connected; } -void LazyCallGraph::SCC::removeInterSCCEdge(Node &ParentN, Node &ChildN) { +void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { + assert(G->lookupRefSCC(SourceN) == this && + "The source must be a member of this RefSCC."); + + RefSCC &TargetRC = *G->lookupRefSCC(TargetN); + assert(&TargetRC != this && "The target must not be a member of this RefSCC"); + + assert(std::find(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this) == + G->LeafRefSCCs.end() && + "Cannot have a leaf RefSCC source."); + // First remove it from the node. - ParentN.removeEdgeInternal(ChildN.getFunction()); - - assert(G->SCCMap.lookup(&ParentN) == this && - "The caller must be a member of this SCC."); - - SCC &ChildC = *G->SCCMap.lookup(&ChildN); - assert(&ChildC != this && - "This API only supports the rmoval of inter-SCC edges."); - - assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) == - G->LeafSCCs.end() && - "Cannot have a leaf SCC caller with a different SCC callee."); - - bool HasOtherEdgeToChildC = false; - bool HasOtherChildC = false; - for (Node *N : *this) { - for (Edge &E : *N) { - assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); - SCC &OtherChildC = *G->SCCMap.lookup(E.getNode()); - if (&OtherChildC == &ChildC) { - HasOtherEdgeToChildC = true; - break; + SourceN.removeEdgeInternal(TargetN.getFunction()); + + bool HasOtherEdgeToChildRC = false; + bool HasOtherChildRC = false; + for (SCC *InnerC : SCCs) { + for (Node &N : *InnerC) { + for (Edge &E : N) { + assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); + RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode()); + if (&OtherChildRC == &TargetRC) { + HasOtherEdgeToChildRC = true; + break; + } + if (&OtherChildRC != this) + HasOtherChildRC = true; } - if (&OtherChildC != this) - HasOtherChildC = true; + if (HasOtherEdgeToChildRC) + break; } - if (HasOtherEdgeToChildC) + if (HasOtherEdgeToChildRC) break; } // Because the SCCs form a DAG, deleting such an edge cannot change the set // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making - // the parent SCC no longer connected to the child SCC. If so, we need to - // update the child SCC's map of its parents. - if (!HasOtherEdgeToChildC) { - bool Removed = ChildC.ParentSCCs.erase(this); + // the source SCC no longer connected to the target SCC. If so, we need to + // update the target SCC's map of its parents. + if (!HasOtherEdgeToChildRC) { + bool Removed = TargetRC.Parents.erase(this); (void)Removed; assert(Removed && - "Did not find the parent SCC in the child SCC's parent list!"); + "Did not find the source SCC in the target SCC's parent list!"); // It may orphan an SCC if it is the last edge reaching it, but that does // not violate any invariants of the graph. - if (ChildC.ParentSCCs.empty()) - DEBUG(dbgs() << "LCG: Update removing " << ParentN.getFunction().getName() - << " -> " << ChildN.getFunction().getName() + if (TargetRC.Parents.empty()) + DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName() + << " -> " << TargetN.getFunction().getName() << " edge orphaned the callee's SCC!\n"); - } - // It may make the Parent SCC a leaf SCC. - if (!HasOtherChildC) - G->LeafSCCs.push_back(this); + // It may make the Source SCC a leaf SCC. + if (!HasOtherChildRC) + G->LeafRefSCCs.push_back(this); + } } -void LazyCallGraph::SCC::internalDFS( - SmallVectorImpl<std::pair<Node *, Node::edge_iterator>> &DFSStack, - SmallVectorImpl<Node *> &PendingSCCStack, Node *N, - SmallVectorImpl<SCC *> &ResultSCCs) { - auto I = N->begin(); - N->LowLink = N->DFSNumber = 1; - int NextDFSNumber = 2; - for (;;) { - assert(N->DFSNumber != 0 && "We should always assign a DFS number " - "before processing a node."); +SmallVector<LazyCallGraph::RefSCC *, 1> +LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) { + assert(!SourceN[TargetN].isCall() && + "Cannot remove a call edge, it must first be made a ref edge"); - // We simulate recursion by popping out of the nested loop and continuing. - auto E = N->end(); - while (I != E) { - Node &ChildN = I->getNode(*G); - if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) { - // Check if we have reached a node in the new (known connected) set of - // this SCC. If so, the entire stack is necessarily in that set and we - // can re-start. - if (ChildSCC == this) { - insert(*N); - while (!PendingSCCStack.empty()) - insert(*PendingSCCStack.pop_back_val()); - while (!DFSStack.empty()) - insert(*DFSStack.pop_back_val().first); - return; - } + // First remove the actual edge. + SourceN.removeEdgeInternal(TargetN.getFunction()); - // If this child isn't currently in this SCC, no need to process it. - // However, we do need to remove this SCC from its SCC's parent set. - ChildSCC->ParentSCCs.erase(this); - ++I; - continue; - } + // We return a list of the resulting *new* RefSCCs in post-order. + SmallVector<RefSCC *, 1> Result; - if (ChildN.DFSNumber == 0) { - // Mark that we should start at this child when next this node is the - // top of the stack. We don't start at the next child to ensure this - // child's lowlink is reflected. - DFSStack.push_back(std::make_pair(N, I)); + // Direct recursion doesn't impact the SCC graph at all. + if (&SourceN == &TargetN) + return Result; + + // We build somewhat synthetic new RefSCCs by providing a postorder mapping + // for each inner SCC. We also store these associated with *nodes* rather + // than SCCs because this saves a round-trip through the node->SCC map and in + // the common case, SCCs are small. We will verify that we always give the + // same number to every node in the SCC such that these are equivalent. + const int RootPostOrderNumber = 0; + int PostOrderNumber = RootPostOrderNumber + 1; + SmallDenseMap<Node *, int> PostOrderMapping; + + // Every node in the target SCC can already reach every node in this RefSCC + // (by definition). It is the only node we know will stay inside this RefSCC. + // Everything which transitively reaches Target will also remain in the + // RefSCC. We handle this by pre-marking that the nodes in the target SCC map + // back to the root post order number. + // + // This also enables us to take a very significant short-cut in the standard + // Tarjan walk to re-form RefSCCs below: whenever we build an edge that + // references the target node, we know that the target node eventually + // references all other nodes in our walk. As a consequence, we can detect + // and handle participants in that cycle without walking all the edges that + // form the connections, and instead by relying on the fundamental guarantee + // coming into this operation. + SCC &TargetC = *G->lookupSCC(TargetN); + for (Node &N : TargetC) + PostOrderMapping[&N] = RootPostOrderNumber; + + // Reset all the other nodes to prepare for a DFS over them, and add them to + // our worklist. + SmallVector<Node *, 8> Worklist; + for (SCC *C : SCCs) { + if (C == &TargetC) + continue; - // Continue, resetting to the child node. - ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; - N = &ChildN; - I = ChildN.begin(); - E = ChildN.end(); - continue; - } + for (Node &N : *C) + N.DFSNumber = N.LowLink = 0; - // Track the lowest link of the children, if any are still in the stack. - // Any child not on the stack will have a LowLink of -1. - assert(ChildN.LowLink != 0 && - "Low-link must not be zero with a non-zero DFS number."); - if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) - N->LowLink = ChildN.LowLink; - ++I; - } + Worklist.append(C->Nodes.begin(), C->Nodes.end()); + } - if (N->LowLink == N->DFSNumber) { - ResultSCCs.push_back(G->formSCC(N, PendingSCCStack)); - if (DFSStack.empty()) - return; - } else { - // At this point we know that N cannot ever be an SCC root. Its low-link - // is not its dfs-number, and we've processed all of its children. It is - // just sitting here waiting until some node further down the stack gets - // low-link == dfs-number and pops it off as well. Move it to the pending - // stack which is pulled into the next SCC to be formed. - PendingSCCStack.push_back(N); + auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) { + N.DFSNumber = N.LowLink = -1; + PostOrderMapping[&N] = Number; + }; - assert(!DFSStack.empty() && "We shouldn't have an empty stack!"); + SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack; + SmallVector<Node *, 4> PendingRefSCCStack; + do { + assert(DFSStack.empty() && + "Cannot begin a new root with a non-empty DFS stack!"); + assert(PendingRefSCCStack.empty() && + "Cannot begin a new root with pending nodes for an SCC!"); + + Node *RootN = Worklist.pop_back_val(); + // Skip any nodes we've already reached in the DFS. + if (RootN->DFSNumber != 0) { + assert(RootN->DFSNumber == -1 && + "Shouldn't have any mid-DFS root nodes!"); + continue; } - N = DFSStack.back().first; - I = DFSStack.back().second; - DFSStack.pop_back(); - } -} + RootN->DFSNumber = RootN->LowLink = 1; + int NextDFSNumber = 2; -SmallVector<LazyCallGraph::SCC *, 1> -LazyCallGraph::SCC::removeIntraSCCEdge(Node &ParentN, Node &ChildN) { - // First remove it from the node. - ParentN.removeEdgeInternal(ChildN.getFunction()); + DFSStack.push_back({RootN, RootN->begin()}); + do { + Node *N; + edge_iterator I; + std::tie(N, I) = DFSStack.pop_back_val(); + auto E = N->end(); + + assert(N->DFSNumber != 0 && "We should always assign a DFS number " + "before processing a node."); + + while (I != E) { + Node &ChildN = I->getNode(*G); + if (ChildN.DFSNumber == 0) { + // Mark that we should start at this child when next this node is the + // top of the stack. We don't start at the next child to ensure this + // child's lowlink is reflected. + DFSStack.push_back({N, I}); + + // Continue, resetting to the child node. + ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; + N = &ChildN; + I = ChildN.begin(); + E = ChildN.end(); + continue; + } + if (ChildN.DFSNumber == -1) { + // Check if this edge's target node connects to the deleted edge's + // target node. If so, we know that every node connected will end up + // in this RefSCC, so collapse the entire current stack into the root + // slot in our SCC numbering. See above for the motivation of + // optimizing the target connected nodes in this way. + auto PostOrderI = PostOrderMapping.find(&ChildN); + if (PostOrderI != PostOrderMapping.end() && + PostOrderI->second == RootPostOrderNumber) { + MarkNodeForSCCNumber(*N, RootPostOrderNumber); + while (!PendingRefSCCStack.empty()) + MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(), + RootPostOrderNumber); + while (!DFSStack.empty()) + MarkNodeForSCCNumber(*DFSStack.pop_back_val().first, + RootPostOrderNumber); + // Ensure we break all the way out of the enclosing loop. + N = nullptr; + break; + } - // We return a list of the resulting *new* SCCs in postorder. - SmallVector<SCC *, 1> ResultSCCs; + // If this child isn't currently in this RefSCC, no need to process + // it. + // However, we do need to remove this RefSCC from its RefSCC's parent + // set. + RefSCC &ChildRC = *G->lookupRefSCC(ChildN); + ChildRC.Parents.erase(this); + ++I; + continue; + } - // Direct recursion doesn't impact the SCC graph at all. - if (&ParentN == &ChildN) - return ResultSCCs; + // Track the lowest link of the children, if any are still in the stack. + // Any child not on the stack will have a LowLink of -1. + assert(ChildN.LowLink != 0 && + "Low-link must not be zero with a non-zero DFS number."); + if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) + N->LowLink = ChildN.LowLink; + ++I; + } + if (!N) + // We short-circuited this node. + break; - // The worklist is every node in the original SCC. - SmallVector<Node *, 1> Worklist; - Worklist.swap(Nodes); - for (Node *N : Worklist) { - // The nodes formerly in this SCC are no longer in any SCC. - N->DFSNumber = 0; - N->LowLink = 0; - G->SCCMap.erase(N); - } - assert(Worklist.size() > 1 && "We have to have at least two nodes to have an " - "edge between them that is within the SCC."); - - // The child can already reach every node in this SCC (by definition). It is - // the only node we know will stay inside this SCC. Everything which - // transitively reaches Child will also remain in the SCC. To model this we - // incrementally add any chain of nodes which reaches something in the new - // node set to the new node set. This short circuits one side of the Tarjan's - // walk. - insert(ChildN); - - // We're going to do a full mini-Tarjan's walk using a local stack here. - SmallVector<std::pair<Node *, Node::edge_iterator>, 4> DFSStack; - SmallVector<Node *, 4> PendingSCCStack; - do { - Node *N = Worklist.pop_back_val(); - if (N->DFSNumber == 0) - internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs); + // We've finished processing N and its descendents, put it on our pending + // stack to eventually get merged into a RefSCC. + PendingRefSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) { + assert(!DFSStack.empty() && + "We never found a viable root for a RefSCC to pop off!"); + continue; + } + + // Otherwise, form a new RefSCC from the top of the pending node stack. + int RootDFSNumber = N->DFSNumber; + // Find the range of the node stack by walking down until we pass the + // root DFS number. + auto RefSCCNodes = make_range( + PendingRefSCCStack.rbegin(), + std::find_if(PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(), + [RootDFSNumber](Node *N) { + return N->DFSNumber < RootDFSNumber; + })); + + // Mark the postorder number for these nodes and clear them off the + // stack. We'll use the postorder number to pull them into RefSCCs at the + // end. FIXME: Fuse with the loop above. + int RefSCCNumber = PostOrderNumber++; + for (Node *N : RefSCCNodes) + MarkNodeForSCCNumber(*N, RefSCCNumber); + + PendingRefSCCStack.erase(RefSCCNodes.end().base(), + PendingRefSCCStack.end()); + } while (!DFSStack.empty()); assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); - assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!"); + assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!"); } while (!Worklist.empty()); - // Now we need to reconnect the current SCC to the graph. - bool IsLeafSCC = true; - for (Node *N : Nodes) { - for (Edge &E : *N) { - assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); - SCC &ChildSCC = *G->SCCMap.lookup(E.getNode()); - if (&ChildSCC == this) - continue; - ChildSCC.ParentSCCs.insert(this); - IsLeafSCC = false; - } + // We now have a post-order numbering for RefSCCs and a mapping from each + // node in this RefSCC to its final RefSCC. We create each new RefSCC node + // (re-using this RefSCC node for the root) and build a radix-sort style map + // from postorder number to the RefSCC. We then append SCCs to each of these + // RefSCCs in the order they occured in the original SCCs container. + for (int i = 1; i < PostOrderNumber; ++i) + Result.push_back(G->createRefSCC(*G)); + + for (SCC *C : SCCs) { + auto PostOrderI = PostOrderMapping.find(&*C->begin()); + assert(PostOrderI != PostOrderMapping.end() && + "Cannot have missing mappings for nodes!"); + int SCCNumber = PostOrderI->second; +#ifndef NDEBUG + for (Node &N : *C) + assert(PostOrderMapping.find(&N)->second == SCCNumber && + "Cannot have different numbers for nodes in the same SCC!"); +#endif + if (SCCNumber == 0) + // The root node is handled separately by removing the SCCs. + continue; + + RefSCC &RC = *Result[SCCNumber - 1]; + int SCCIndex = RC.SCCs.size(); + RC.SCCs.push_back(C); + SCCIndices[C] = SCCIndex; + C->OuterRefSCC = &RC; } + + // FIXME: We re-walk the edges in each RefSCC to establish whether it is + // a leaf and connect it to the rest of the graph's parents lists. This is + // really wasteful. We should instead do this during the DFS to avoid yet + // another edge walk. + for (RefSCC *RC : Result) + G->connectRefSCC(*RC); + + // Now erase all but the root's SCCs. + SCCs.erase(std::remove_if(SCCs.begin(), SCCs.end(), + [&](SCC *C) { + return PostOrderMapping.lookup(&*C->begin()) != + RootPostOrderNumber; + }), + SCCs.end()); + +#ifndef NDEBUG + // Now we need to reconnect the current (root) SCC to the graph. We do this + // manually because we can special case our leaf handling and detect errors. + bool IsLeaf = true; +#endif + for (SCC *C : SCCs) + for (Node &N : *C) { + for (Edge &E : N) { + assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); + RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode()); + if (&ChildRC == this) + continue; + ChildRC.Parents.insert(this); +#ifndef NDEBUG + IsLeaf = false; +#endif + } + } #ifndef NDEBUG - if (!ResultSCCs.empty()) - assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new " - "SCCs by removing this edge."); - if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(), - [&](SCC *C) { return C == this; })) - assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child " - "SCCs before we removed this edge."); + if (!Result.empty()) + assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new " + "SCCs by removing this edge."); + if (!std::any_of(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), + [&](RefSCC *C) { return C == this; })) + assert(!IsLeaf && "This SCC cannot be a leaf as it already had child " + "SCCs before we removed this edge."); #endif // If this SCC stopped being a leaf through this edge removal, remove it from - // the leaf SCC list. - if (!IsLeafSCC && !ResultSCCs.empty()) - G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this), - G->LeafSCCs.end()); + // the leaf SCC list. Note that this DTRT in the case where this was never + // a leaf. + // FIXME: As LeafRefSCCs could be very large, we might want to not walk the + // entire list if this RefSCC wasn't a leaf before the edge removal. + if (!Result.empty()) + G->LeafRefSCCs.erase( + std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this), + G->LeafRefSCCs.end()); // Return the new list of SCCs. - return ResultSCCs; + return Result; } -void LazyCallGraph::insertEdge(Node &ParentN, Function &Child, Edge::Kind EK) { +void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) { assert(SCCMap.empty() && DFSStack.empty() && "This method cannot be called after SCCs have been formed!"); - return ParentN.insertEdgeInternal(Child, EK); + return SourceN.insertEdgeInternal(Target, EK); } -void LazyCallGraph::removeEdge(Node &ParentN, Function &Child) { +void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) { assert(SCCMap.empty() && DFSStack.empty() && "This method cannot be called after SCCs have been formed!"); - return ParentN.removeEdgeInternal(Child); + return SourceN.removeEdgeInternal(Target); } LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { @@ -578,125 +1244,258 @@ void LazyCallGraph::updateGraphPtrs() { Node *N = Worklist.pop_back_val(); N->G = this; for (Edge &E : N->Edges) - if (Node *ChildN = E.getNode()) - Worklist.push_back(ChildN); + if (Node *TargetN = E.getNode()) + Worklist.push_back(TargetN); } } // Process all SCCs updating the graph pointers. { - SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end()); + SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end()); while (!Worklist.empty()) { - SCC *C = Worklist.pop_back_val(); - C->G = this; - Worklist.insert(Worklist.end(), C->ParentSCCs.begin(), - C->ParentSCCs.end()); + RefSCC &C = *Worklist.pop_back_val(); + C.G = this; + for (RefSCC &ParentC : C.parents()) + Worklist.push_back(&ParentC); } } } -LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN, - SmallVectorImpl<Node *> &NodeStack) { - // The tail of the stack is the new SCC. Allocate the SCC and pop the stack - // into it. - SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this); +/// Build the internal SCCs for a RefSCC from a sequence of nodes. +/// +/// Appends the SCCs to the provided vector and updates the map with their +/// indices. Both the vector and map must be empty when passed into this +/// routine. +void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { + assert(RC.SCCs.empty() && "Already built SCCs!"); + assert(RC.SCCIndices.empty() && "Already mapped SCC indices!"); - while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) { - assert(NodeStack.back()->LowLink >= RootN->LowLink && + for (Node *N : Nodes) { + assert(N->LowLink >= (*Nodes.begin())->LowLink && "We cannot have a low link in an SCC lower than its root on the " "stack!"); - NewSCC->insert(*NodeStack.pop_back_val()); + + // This node will go into the next RefSCC, clear out its DFS and low link + // as we scan. + N->DFSNumber = N->LowLink = 0; } - NewSCC->insert(*RootN); - - // A final pass over all edges in the SCC (this remains linear as we only - // do this once when we build the SCC) to connect it to the parent sets of - // its children. - bool IsLeafSCC = true; - for (Node *SCCN : NewSCC->Nodes) - for (Edge &E : *SCCN) { - assert(E.getNode() && "Cannot have a missing node in a visited SCC!"); - SCC &ChildSCC = *SCCMap.lookup(E.getNode()); - if (&ChildSCC == NewSCC) - continue; - ChildSCC.ParentSCCs.insert(NewSCC); - IsLeafSCC = false; + + // Each RefSCC contains a DAG of the call SCCs. To build these, we do + // a direct walk of the call edges using Tarjan's algorithm. We reuse the + // internal storage as we won't need it for the outer graph's DFS any longer. + + SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack; + SmallVector<Node *, 16> PendingSCCStack; + + // Scan down the stack and DFS across the call edges. + for (Node *RootN : Nodes) { + assert(DFSStack.empty() && + "Cannot begin a new root with a non-empty DFS stack!"); + assert(PendingSCCStack.empty() && + "Cannot begin a new root with pending nodes for an SCC!"); + + // Skip any nodes we've already reached in the DFS. + if (RootN->DFSNumber != 0) { + assert(RootN->DFSNumber == -1 && + "Shouldn't have any mid-DFS root nodes!"); + continue; } - // For the SCCs where we fine no child SCCs, add them to the leaf list. - if (IsLeafSCC) - LeafSCCs.push_back(NewSCC); + RootN->DFSNumber = RootN->LowLink = 1; + int NextDFSNumber = 2; + + DFSStack.push_back({RootN, RootN->call_begin()}); + do { + Node *N; + call_edge_iterator I; + std::tie(N, I) = DFSStack.pop_back_val(); + auto E = N->call_end(); + while (I != E) { + Node &ChildN = *I->getNode(); + if (ChildN.DFSNumber == 0) { + // We haven't yet visited this child, so descend, pushing the current + // node onto the stack. + DFSStack.push_back({N, I}); + + assert(!lookupSCC(ChildN) && + "Found a node with 0 DFS number but already in an SCC!"); + ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; + N = &ChildN; + I = N->call_begin(); + E = N->call_end(); + continue; + } + + // If the child has already been added to some child component, it + // couldn't impact the low-link of this parent because it isn't + // connected, and thus its low-link isn't relevant so skip it. + if (ChildN.DFSNumber == -1) { + ++I; + continue; + } + + // Track the lowest linked child as the lowest link for this node. + assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); + if (ChildN.LowLink < N->LowLink) + N->LowLink = ChildN.LowLink; + + // Move to the next edge. + ++I; + } + + // We've finished processing N and its descendents, put it on our pending + // SCC stack to eventually get merged into an SCC of nodes. + PendingSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) + continue; + + // Otherwise, we've completed an SCC. Append it to our post order list of + // SCCs. + int RootDFSNumber = N->DFSNumber; + // Find the range of the node stack by walking down until we pass the + // root DFS number. + auto SCCNodes = make_range( + PendingSCCStack.rbegin(), + std::find_if(PendingSCCStack.rbegin(), PendingSCCStack.rend(), + [RootDFSNumber](Node *N) { + return N->DFSNumber < RootDFSNumber; + })); + // Form a new SCC out of these nodes and then clear them off our pending + // stack. + RC.SCCs.push_back(createSCC(RC, SCCNodes)); + for (Node &N : *RC.SCCs.back()) { + N.DFSNumber = N.LowLink = -1; + SCCMap[&N] = RC.SCCs.back(); + } + PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); + } while (!DFSStack.empty()); + } - return NewSCC; + // Wire up the SCC indices. + for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i) + RC.SCCIndices[RC.SCCs[i]] = i; } -LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { - Node *N; - Node::edge_iterator I; - if (!DFSStack.empty()) { - N = DFSStack.back().first; - I = DFSStack.back().second; - DFSStack.pop_back(); - } else { - // If we've handled all candidate entry nodes to the SCC forest, we're done. +// FIXME: We should move callers of this to embed the parent linking and leaf +// tracking into their DFS in order to remove a full walk of all edges. +void LazyCallGraph::connectRefSCC(RefSCC &RC) { + // Walk all edges in the RefSCC (this remains linear as we only do this once + // when we build the RefSCC) to connect it to the parent sets of its + // children. + bool IsLeaf = true; + for (SCC &C : RC) + for (Node &N : C) + for (Edge &E : N) { + assert(E.getNode() && + "Cannot have a missing node in a visited part of the graph!"); + RefSCC &ChildRC = *lookupRefSCC(*E.getNode()); + if (&ChildRC == &RC) + continue; + ChildRC.Parents.insert(&RC); + IsLeaf = false; + } + + // For the SCCs where we fine no child SCCs, add them to the leaf list. + if (IsLeaf) + LeafRefSCCs.push_back(&RC); +} + +LazyCallGraph::RefSCC *LazyCallGraph::getNextRefSCCInPostOrder() { + if (DFSStack.empty()) { + Node *N; do { - if (SCCEntryNodes.empty()) + // If we've handled all candidate entry nodes to the SCC forest, we're + // done. + if (RefSCCEntryNodes.empty()) return nullptr; - N = &get(*SCCEntryNodes.pop_back_val()); + N = &get(*RefSCCEntryNodes.pop_back_val()); } while (N->DFSNumber != 0); - I = N->begin(); + + // Found a new root, begin the DFS here. N->LowLink = N->DFSNumber = 1; NextDFSNumber = 2; + DFSStack.push_back({N, N->begin()}); } for (;;) { - assert(N->DFSNumber != 0 && "We should always assign a DFS number " - "before placing a node onto the stack."); + Node *N; + edge_iterator I; + std::tie(N, I) = DFSStack.pop_back_val(); + + assert(N->DFSNumber > 0 && "We should always assign a DFS number " + "before placing a node onto the stack."); auto E = N->end(); while (I != E) { Node &ChildN = I->getNode(*this); if (ChildN.DFSNumber == 0) { - // Mark that we should start at this child when next this node is the - // top of the stack. We don't start at the next child to ensure this - // child's lowlink is reflected. - DFSStack.push_back(std::make_pair(N, N->begin())); + // We haven't yet visited this child, so descend, pushing the current + // node onto the stack. + DFSStack.push_back({N, N->begin()}); - // Recurse onto this node via a tail call. assert(!SCCMap.count(&ChildN) && "Found a node with 0 DFS number but already in an SCC!"); ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; N = &ChildN; - I = ChildN.begin(); - E = ChildN.end(); + I = N->begin(); + E = N->end(); + continue; + } + + // If the child has already been added to some child component, it + // couldn't impact the low-link of this parent because it isn't + // connected, and thus its low-link isn't relevant so skip it. + if (ChildN.DFSNumber == -1) { + ++I; continue; } - // Track the lowest link of the children, if any are still in the stack. - assert(ChildN.LowLink != 0 && - "Low-link must not be zero with a non-zero DFS number."); - if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) + // Track the lowest linked child as the lowest link for this node. + assert(ChildN.LowLink > 0 && "Must have a positive low-link number!"); + if (ChildN.LowLink < N->LowLink) N->LowLink = ChildN.LowLink; + + // Move to the next edge. ++I; } - if (N->LowLink == N->DFSNumber) - // Form the new SCC out of the top of the DFS stack. - return formSCC(N, PendingSCCStack); - - // At this point we know that N cannot ever be an SCC root. Its low-link - // is not its dfs-number, and we've processed all of its children. It is - // just sitting here waiting until some node further down the stack gets - // low-link == dfs-number and pops it off as well. Move it to the pending - // stack which is pulled into the next SCC to be formed. - PendingSCCStack.push_back(N); - - assert(!DFSStack.empty() && "We never found a viable root!"); - N = DFSStack.back().first; - I = DFSStack.back().second; - DFSStack.pop_back(); + // We've finished processing N and its descendents, put it on our pending + // SCC stack to eventually get merged into an SCC of nodes. + PendingRefSCCStack.push_back(N); + + // If this node is linked to some lower entry, continue walking up the + // stack. + if (N->LowLink != N->DFSNumber) { + assert(!DFSStack.empty() && + "We never found a viable root for an SCC to pop off!"); + continue; + } + + // Otherwise, form a new RefSCC from the top of the pending node stack. + int RootDFSNumber = N->DFSNumber; + // Find the range of the node stack by walking down until we pass the + // root DFS number. + auto RefSCCNodes = node_stack_range( + PendingRefSCCStack.rbegin(), + std::find_if( + PendingRefSCCStack.rbegin(), PendingRefSCCStack.rend(), + [RootDFSNumber](Node *N) { return N->DFSNumber < RootDFSNumber; })); + // Form a new RefSCC out of these nodes and then clear them off our pending + // stack. + RefSCC *NewRC = createRefSCC(*this); + buildSCCs(*NewRC, RefSCCNodes); + connectRefSCC(*NewRC); + PendingRefSCCStack.erase(RefSCCNodes.end().base(), + PendingRefSCCStack.end()); + + // We return the new node here. This essentially suspends the DFS walk + // until another RefSCC is requested. + return NewRC; } } @@ -704,17 +1503,7 @@ char LazyCallGraphAnalysis::PassID; LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} -static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, - SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) { - LazyCallGraph &G = N.getGraph(); - - // Recurse depth first through the nodes. - for (LazyCallGraph::Edge &E : N) { - LazyCallGraph::Node &ChildN = E.getNode(G); - if (Printed.insert(&ChildN).second) - printNodes(OS, ChildN, Printed); - } - +static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { OS << " Edges in function: " << N.getFunction().getName() << "\n"; for (const LazyCallGraph::Edge &E : N) OS << " " << (E.isCall() ? "call" : "ref ") << " -> " @@ -723,12 +1512,20 @@ static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, OS << "\n"; } -static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { - ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); - OS << " SCC with " << SCCSize << " functions:\n"; +static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { + ptrdiff_t Size = std::distance(C.begin(), C.end()); + OS << " SCC with " << Size << " functions:\n"; + + for (LazyCallGraph::Node &N : C) + OS << " " << N.getFunction().getName() << "\n"; +} + +static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { + ptrdiff_t Size = std::distance(C.begin(), C.end()); + OS << " RefSCC with " << Size << " call SCCs:\n"; - for (LazyCallGraph::Node *N : SCC) - OS << " " << N->getFunction().getName() << "\n"; + for (LazyCallGraph::SCC &InnerC : C) + printSCC(OS, InnerC); OS << "\n"; } @@ -740,15 +1537,11 @@ PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, OS << "Printing the call graph for module: " << M.getModuleIdentifier() << "\n\n"; - SmallPtrSet<LazyCallGraph::Node *, 16> Printed; - for (LazyCallGraph::Edge &E : G) { - LazyCallGraph::Node &N = E.getNode(G); - if (Printed.insert(&N).second) - printNodes(OS, N, Printed); - } + for (Function &F : M) + printNode(OS, G.get(F)); - for (LazyCallGraph::SCC &SCC : G.postorder_sccs()) - printSCC(OS, SCC); + for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) + printRefSCC(OS, C); return PreservedAnalyses::all(); } |