diff options
Diffstat (limited to 'llvm/lib')
-rw-r--r-- | llvm/lib/Support/Host.cpp | 2991 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86.td | 6 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86ISelLowering.cpp | 14 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86ISelLowering.h | 3 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86InstrInfo.td | 59 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86Schedule.td | 1325 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86Subtarget.cpp | 1 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86Subtarget.h | 4 |
8 files changed, 2157 insertions, 2246 deletions
diff --git a/llvm/lib/Support/Host.cpp b/llvm/lib/Support/Host.cpp index 2477a0224a3..970ecfd7df9 100644 --- a/llvm/lib/Support/Host.cpp +++ b/llvm/lib/Support/Host.cpp @@ -1,1496 +1,1495 @@ -//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the operating system Host concept.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Support/Host.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/StringSwitch.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Config/config.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/MemoryBuffer.h"
-#include "llvm/Support/raw_ostream.h"
-#include <assert.h>
-#include <string.h>
-
-// Include the platform-specific parts of this class.
-#ifdef LLVM_ON_UNIX
-#include "Unix/Host.inc"
-#endif
-#ifdef LLVM_ON_WIN32
-#include "Windows/Host.inc"
-#endif
-#ifdef _MSC_VER
-#include <intrin.h>
-#endif
-#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
-#include <mach/host_info.h>
-#include <mach/mach.h>
-#include <mach/mach_host.h>
-#include <mach/machine.h>
-#endif
-
-#define DEBUG_TYPE "host-detection"
-
-//===----------------------------------------------------------------------===//
-//
-// Implementations of the CPU detection routines
-//
-//===----------------------------------------------------------------------===//
-
-using namespace llvm;
-
-static std::unique_ptr<llvm::MemoryBuffer>
- LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
- llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
- llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
- if (std::error_code EC = Text.getError()) {
- llvm::errs() << "Can't read "
- << "/proc/cpuinfo: " << EC.message() << "\n";
- return nullptr;
- }
- return std::move(*Text);
-}
-
-StringRef sys::detail::getHostCPUNameForPowerPC(
- const StringRef &ProcCpuinfoContent) {
- // Access to the Processor Version Register (PVR) on PowerPC is privileged,
- // and so we must use an operating-system interface to determine the current
- // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
- const char *generic = "generic";
-
- // The cpu line is second (after the 'processor: 0' line), so if this
- // buffer is too small then something has changed (or is wrong).
- StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
- StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
-
- StringRef::const_iterator CIP = CPUInfoStart;
-
- StringRef::const_iterator CPUStart = 0;
- size_t CPULen = 0;
-
- // We need to find the first line which starts with cpu, spaces, and a colon.
- // After the colon, there may be some additional spaces and then the cpu type.
- while (CIP < CPUInfoEnd && CPUStart == 0) {
- if (CIP < CPUInfoEnd && *CIP == '\n')
- ++CIP;
-
- if (CIP < CPUInfoEnd && *CIP == 'c') {
- ++CIP;
- if (CIP < CPUInfoEnd && *CIP == 'p') {
- ++CIP;
- if (CIP < CPUInfoEnd && *CIP == 'u') {
- ++CIP;
- while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
- ++CIP;
-
- if (CIP < CPUInfoEnd && *CIP == ':') {
- ++CIP;
- while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
- ++CIP;
-
- if (CIP < CPUInfoEnd) {
- CPUStart = CIP;
- while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
- *CIP != ',' && *CIP != '\n'))
- ++CIP;
- CPULen = CIP - CPUStart;
- }
- }
- }
- }
- }
-
- if (CPUStart == 0)
- while (CIP < CPUInfoEnd && *CIP != '\n')
- ++CIP;
- }
-
- if (CPUStart == 0)
- return generic;
-
- return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
- .Case("604e", "604e")
- .Case("604", "604")
- .Case("7400", "7400")
- .Case("7410", "7400")
- .Case("7447", "7400")
- .Case("7455", "7450")
- .Case("G4", "g4")
- .Case("POWER4", "970")
- .Case("PPC970FX", "970")
- .Case("PPC970MP", "970")
- .Case("G5", "g5")
- .Case("POWER5", "g5")
- .Case("A2", "a2")
- .Case("POWER6", "pwr6")
- .Case("POWER7", "pwr7")
- .Case("POWER8", "pwr8")
- .Case("POWER8E", "pwr8")
- .Case("POWER8NVL", "pwr8")
- .Case("POWER9", "pwr9")
- .Default(generic);
-}
-
-StringRef sys::detail::getHostCPUNameForARM(
- const StringRef &ProcCpuinfoContent) {
- // The cpuid register on arm is not accessible from user space. On Linux,
- // it is exposed through the /proc/cpuinfo file.
-
- // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
- // in all cases.
- SmallVector<StringRef, 32> Lines;
- ProcCpuinfoContent.split(Lines, "\n");
-
- // Look for the CPU implementer line.
- StringRef Implementer;
- StringRef Hardware;
- for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
- if (Lines[I].startswith("CPU implementer"))
- Implementer = Lines[I].substr(15).ltrim("\t :");
- if (Lines[I].startswith("Hardware"))
- Hardware = Lines[I].substr(8).ltrim("\t :");
- }
-
- if (Implementer == "0x41") { // ARM Ltd.
- // MSM8992/8994 may give cpu part for the core that the kernel is running on,
- // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
- if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
- return "cortex-a53";
-
-
- // Look for the CPU part line.
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)
- if (Lines[I].startswith("CPU part"))
- // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
- // values correspond to the "Part number" in the CP15/c0 register. The
- // contents are specified in the various processor manuals.
- return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
- .Case("0x926", "arm926ej-s")
- .Case("0xb02", "mpcore")
- .Case("0xb36", "arm1136j-s")
- .Case("0xb56", "arm1156t2-s")
- .Case("0xb76", "arm1176jz-s")
- .Case("0xc08", "cortex-a8")
- .Case("0xc09", "cortex-a9")
- .Case("0xc0f", "cortex-a15")
- .Case("0xc20", "cortex-m0")
- .Case("0xc23", "cortex-m3")
- .Case("0xc24", "cortex-m4")
- .Case("0xd04", "cortex-a35")
- .Case("0xd03", "cortex-a53")
- .Case("0xd07", "cortex-a57")
- .Case("0xd08", "cortex-a72")
- .Case("0xd09", "cortex-a73")
- .Default("generic");
- }
-
- if (Implementer == "0x51") // Qualcomm Technologies, Inc.
- // Look for the CPU part line.
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)
- if (Lines[I].startswith("CPU part"))
- // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
- // values correspond to the "Part number" in the CP15/c0 register. The
- // contents are specified in the various processor manuals.
- return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
- .Case("0x06f", "krait") // APQ8064
- .Case("0x201", "kryo")
- .Case("0x205", "kryo")
- .Default("generic");
-
- return "generic";
-}
-
-StringRef sys::detail::getHostCPUNameForS390x(
- const StringRef &ProcCpuinfoContent) {
- // STIDP is a privileged operation, so use /proc/cpuinfo instead.
-
- // The "processor 0:" line comes after a fair amount of other information,
- // including a cache breakdown, but this should be plenty.
- SmallVector<StringRef, 32> Lines;
- ProcCpuinfoContent.split(Lines, "\n");
-
- // Look for the CPU features.
- SmallVector<StringRef, 32> CPUFeatures;
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)
- if (Lines[I].startswith("features")) {
- size_t Pos = Lines[I].find(":");
- if (Pos != StringRef::npos) {
- Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
- break;
- }
- }
-
- // We need to check for the presence of vector support independently of
- // the machine type, since we may only use the vector register set when
- // supported by the kernel (and hypervisor).
- bool HaveVectorSupport = false;
- for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
- if (CPUFeatures[I] == "vx")
- HaveVectorSupport = true;
- }
-
- // Now check the processor machine type.
- for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
- if (Lines[I].startswith("processor ")) {
- size_t Pos = Lines[I].find("machine = ");
- if (Pos != StringRef::npos) {
- Pos += sizeof("machine = ") - 1;
- unsigned int Id;
- if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
- if (Id >= 2964 && HaveVectorSupport)
- return "z13";
- if (Id >= 2827)
- return "zEC12";
- if (Id >= 2817)
- return "z196";
- }
- }
- break;
- }
- }
-
- return "generic";
-}
-
-#if defined(__i386__) || defined(_M_IX86) || \
- defined(__x86_64__) || defined(_M_X64)
-
-enum VendorSignatures {
- SIG_INTEL = 0x756e6547 /* Genu */,
- SIG_AMD = 0x68747541 /* Auth */
-};
-
-enum ProcessorVendors {
- VENDOR_INTEL = 1,
- VENDOR_AMD,
- VENDOR_OTHER,
- VENDOR_MAX
-};
-
-enum ProcessorTypes {
- INTEL_ATOM = 1,
- INTEL_CORE2,
- INTEL_COREI7,
- AMDFAM10H,
- AMDFAM15H,
- INTEL_i386,
- INTEL_i486,
- INTEL_PENTIUM,
- INTEL_PENTIUM_PRO,
- INTEL_PENTIUM_II,
- INTEL_PENTIUM_III,
- INTEL_PENTIUM_IV,
- INTEL_PENTIUM_M,
- INTEL_CORE_DUO,
- INTEL_XEONPHI,
- INTEL_X86_64,
- INTEL_NOCONA,
- INTEL_PRESCOTT,
- AMD_i486,
- AMDPENTIUM,
- AMDATHLON,
- AMDFAM14H,
- AMDFAM16H,
- AMDFAM17H,
- CPU_TYPE_MAX
-};
-
-enum ProcessorSubtypes {
- INTEL_COREI7_NEHALEM = 1,
- INTEL_COREI7_WESTMERE,
- INTEL_COREI7_SANDYBRIDGE,
- AMDFAM10H_BARCELONA,
- AMDFAM10H_SHANGHAI,
- AMDFAM10H_ISTANBUL,
- AMDFAM15H_BDVER1,
- AMDFAM15H_BDVER2,
- INTEL_PENTIUM_MMX,
- INTEL_CORE2_65,
- INTEL_CORE2_45,
- INTEL_COREI7_IVYBRIDGE,
- INTEL_COREI7_HASWELL,
- INTEL_COREI7_BROADWELL,
- INTEL_COREI7_SKYLAKE,
- INTEL_COREI7_SKYLAKE_AVX512,
- INTEL_ATOM_BONNELL,
- INTEL_ATOM_SILVERMONT,
- INTEL_KNIGHTS_LANDING,
- AMDPENTIUM_K6,
- AMDPENTIUM_K62,
- AMDPENTIUM_K63,
- AMDPENTIUM_GEODE,
- AMDATHLON_TBIRD,
- AMDATHLON_MP,
- AMDATHLON_XP,
- AMDATHLON_K8SSE3,
- AMDATHLON_OPTERON,
- AMDATHLON_FX,
- AMDATHLON_64,
- AMD_BTVER1,
- AMD_BTVER2,
- AMDFAM15H_BDVER3,
- AMDFAM15H_BDVER4,
- AMDFAM17H_ZNVER1,
- CPU_SUBTYPE_MAX
-};
-
-enum ProcessorFeatures {
- FEATURE_CMOV = 0,
- FEATURE_MMX,
- FEATURE_POPCNT,
- FEATURE_SSE,
- FEATURE_SSE2,
- FEATURE_SSE3,
- FEATURE_SSSE3,
- FEATURE_SSE4_1,
- FEATURE_SSE4_2,
- FEATURE_AVX,
- FEATURE_AVX2,
- FEATURE_AVX512,
- FEATURE_AVX512SAVE,
- FEATURE_MOVBE,
- FEATURE_ADX,
- FEATURE_EM64T
-};
-
-// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
-// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
-// support. Consequently, for i386, the presence of CPUID is checked first
-// via the corresponding eflags bit.
-// Removal of cpuid.h header motivated by PR30384
-// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
-// or test-suite, but are used in external projects e.g. libstdcxx
-static bool isCpuIdSupported() {
-#if defined(__GNUC__) || defined(__clang__)
-#if defined(__i386__)
- int __cpuid_supported;
- __asm__(" pushfl\n"
- " popl %%eax\n"
- " movl %%eax,%%ecx\n"
- " xorl $0x00200000,%%eax\n"
- " pushl %%eax\n"
- " popfl\n"
- " pushfl\n"
- " popl %%eax\n"
- " movl $0,%0\n"
- " cmpl %%eax,%%ecx\n"
- " je 1f\n"
- " movl $1,%0\n"
- "1:"
- : "=r"(__cpuid_supported)
- :
- : "eax", "ecx");
- if (!__cpuid_supported)
- return false;
-#endif
- return true;
-#endif
- return true;
-}
-
-/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
-/// the specified arguments. If we can't run cpuid on the host, return true.
-static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
- unsigned *rECX, unsigned *rEDX) {
-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
-#if defined(__GNUC__) || defined(__clang__)
-#if defined(__x86_64__)
- // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
- // FIXME: should we save this for Clang?
- __asm__("movq\t%%rbx, %%rsi\n\t"
- "cpuid\n\t"
- "xchgq\t%%rbx, %%rsi\n\t"
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
- : "a"(value));
-#elif defined(__i386__)
- __asm__("movl\t%%ebx, %%esi\n\t"
- "cpuid\n\t"
- "xchgl\t%%ebx, %%esi\n\t"
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
- : "a"(value));
-#else
- assert(0 && "This method is defined only for x86.");
-#endif
-#elif defined(_MSC_VER)
- // The MSVC intrinsic is portable across x86 and x64.
- int registers[4];
- __cpuid(registers, value);
- *rEAX = registers[0];
- *rEBX = registers[1];
- *rECX = registers[2];
- *rEDX = registers[3];
-#endif
- return false;
-#else
- return true;
-#endif
-}
-
-/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
-/// the 4 values in the specified arguments. If we can't run cpuid on the host,
-/// return true.
-static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
- unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
- unsigned *rEDX) {
-#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
-#if defined(__x86_64__) || defined(_M_X64)
-#if defined(__GNUC__) || defined(__clang__)
- // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
- // FIXME: should we save this for Clang?
- __asm__("movq\t%%rbx, %%rsi\n\t"
- "cpuid\n\t"
- "xchgq\t%%rbx, %%rsi\n\t"
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
- : "a"(value), "c"(subleaf));
-#elif defined(_MSC_VER)
- int registers[4];
- __cpuidex(registers, value, subleaf);
- *rEAX = registers[0];
- *rEBX = registers[1];
- *rECX = registers[2];
- *rEDX = registers[3];
-#endif
-#elif defined(__i386__) || defined(_M_IX86)
-#if defined(__GNUC__) || defined(__clang__)
- __asm__("movl\t%%ebx, %%esi\n\t"
- "cpuid\n\t"
- "xchgl\t%%ebx, %%esi\n\t"
- : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
- : "a"(value), "c"(subleaf));
-#elif defined(_MSC_VER)
- __asm {
- mov eax,value
- mov ecx,subleaf
- cpuid
- mov esi,rEAX
- mov dword ptr [esi],eax
- mov esi,rEBX
- mov dword ptr [esi],ebx
- mov esi,rECX
- mov dword ptr [esi],ecx
- mov esi,rEDX
- mov dword ptr [esi],edx
- }
-#endif
-#else
- assert(0 && "This method is defined only for x86.");
-#endif
- return false;
-#else
- return true;
-#endif
-}
-
-static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
-#if defined(__GNUC__) || defined(__clang__)
- // Check xgetbv; this uses a .byte sequence instead of the instruction
- // directly because older assemblers do not include support for xgetbv and
- // there is no easy way to conditionally compile based on the assembler used.
- __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
- return false;
-#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
- unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
- *rEAX = Result;
- *rEDX = Result >> 32;
- return false;
-#else
- return true;
-#endif
-}
-
-static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
- unsigned *Model) {
- *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
- *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
- if (*Family == 6 || *Family == 0xf) {
- if (*Family == 0xf)
- // Examine extended family ID if family ID is F.
- *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
- // Examine extended model ID if family ID is 6 or F.
- *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
- }
-}
-
-static void
-getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
- unsigned int Brand_id, unsigned int Features,
- unsigned *Type, unsigned *Subtype) {
- if (Brand_id != 0)
- return;
- switch (Family) {
- case 3:
- *Type = INTEL_i386;
- break;
- case 4:
- switch (Model) {
- case 0: // Intel486 DX processors
- case 1: // Intel486 DX processors
- case 2: // Intel486 SX processors
- case 3: // Intel487 processors, IntelDX2 OverDrive processors,
- // IntelDX2 processors
- case 4: // Intel486 SL processor
- case 5: // IntelSX2 processors
- case 7: // Write-Back Enhanced IntelDX2 processors
- case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
- default:
- *Type = INTEL_i486;
- break;
- }
- break;
- case 5:
- switch (Model) {
- case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
- // Pentium processors (60, 66)
- case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
- // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
- // 150, 166, 200)
- case 3: // Pentium OverDrive processors for Intel486 processor-based
- // systems
- *Type = INTEL_PENTIUM;
- break;
- case 4: // Pentium OverDrive processor with MMX technology for Pentium
- // processor (75, 90, 100, 120, 133), Pentium processor with
- // MMX technology (166, 200)
- *Type = INTEL_PENTIUM;
- *Subtype = INTEL_PENTIUM_MMX;
- break;
- default:
- *Type = INTEL_PENTIUM;
- break;
- }
- break;
- case 6:
- switch (Model) {
- case 0x01: // Pentium Pro processor
- *Type = INTEL_PENTIUM_PRO;
- break;
- case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
- // model 03
- case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
- // model 05, and Intel Celeron processor, model 05
- case 0x06: // Celeron processor, model 06
- *Type = INTEL_PENTIUM_II;
- break;
- case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
- // processor, model 07
- case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
- // model 08, and Celeron processor, model 08
- case 0x0a: // Pentium III Xeon processor, model 0Ah
- case 0x0b: // Pentium III processor, model 0Bh
- *Type = INTEL_PENTIUM_III;
- break;
- case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
- case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
- // 0Dh. All processors are manufactured using the 90 nm process.
- case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
- // Integrated Processor with Intel QuickAssist Technology
- *Type = INTEL_PENTIUM_M;
- break;
- case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
- // 0Eh. All processors are manufactured using the 65 nm process.
- *Type = INTEL_CORE_DUO;
- break; // yonah
- case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
- // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
- // mobile processor, Intel Core 2 Extreme processor, Intel
- // Pentium Dual-Core processor, Intel Xeon processor, model
- // 0Fh. All processors are manufactured using the 65 nm process.
- case 0x16: // Intel Celeron processor model 16h. All processors are
- // manufactured using the 65 nm process
- *Type = INTEL_CORE2; // "core2"
- *Subtype = INTEL_CORE2_65;
- break;
- case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
- // 17h. All processors are manufactured using the 45 nm process.
- //
- // 45nm: Penryn , Wolfdale, Yorkfield (XE)
- case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
- // the 45 nm process.
- *Type = INTEL_CORE2; // "penryn"
- *Subtype = INTEL_CORE2_45;
- break;
- case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
- // processors are manufactured using the 45 nm process.
- case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
- // As found in a Summer 2010 model iMac.
- case 0x1f:
- case 0x2e: // Nehalem EX
- *Type = INTEL_COREI7; // "nehalem"
- *Subtype = INTEL_COREI7_NEHALEM;
- break;
- case 0x25: // Intel Core i7, laptop version.
- case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
- // processors are manufactured using the 32 nm process.
- case 0x2f: // Westmere EX
- *Type = INTEL_COREI7; // "westmere"
- *Subtype = INTEL_COREI7_WESTMERE;
- break;
- case 0x2a: // Intel Core i7 processor. All processors are manufactured
- // using the 32 nm process.
- case 0x2d:
- *Type = INTEL_COREI7; //"sandybridge"
- *Subtype = INTEL_COREI7_SANDYBRIDGE;
- break;
- case 0x3a:
- case 0x3e: // Ivy Bridge EP
- *Type = INTEL_COREI7; // "ivybridge"
- *Subtype = INTEL_COREI7_IVYBRIDGE;
- break;
-
- // Haswell:
- case 0x3c:
- case 0x3f:
- case 0x45:
- case 0x46:
- *Type = INTEL_COREI7; // "haswell"
- *Subtype = INTEL_COREI7_HASWELL;
- break;
-
- // Broadwell:
- case 0x3d:
- case 0x47:
- case 0x4f:
- case 0x56:
- *Type = INTEL_COREI7; // "broadwell"
- *Subtype = INTEL_COREI7_BROADWELL;
- break;
-
- // Skylake:
- case 0x4e: // Skylake mobile
- case 0x5e: // Skylake desktop
- case 0x8e: // Kaby Lake mobile
- case 0x9e: // Kaby Lake desktop
- *Type = INTEL_COREI7; // "skylake"
- *Subtype = INTEL_COREI7_SKYLAKE;
- break;
-
- // Skylake Xeon:
- case 0x55:
- *Type = INTEL_COREI7;
- // Check that we really have AVX512
- if (Features & (1 << FEATURE_AVX512)) {
- *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
- } else {
- *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
- }
- break;
-
- case 0x1c: // Most 45 nm Intel Atom processors
- case 0x26: // 45 nm Atom Lincroft
- case 0x27: // 32 nm Atom Medfield
- case 0x35: // 32 nm Atom Midview
- case 0x36: // 32 nm Atom Midview
- *Type = INTEL_ATOM;
- *Subtype = INTEL_ATOM_BONNELL;
- break; // "bonnell"
-
- // Atom Silvermont codes from the Intel software optimization guide.
- case 0x37:
- case 0x4a:
- case 0x4d:
- case 0x5a:
- case 0x5d:
- case 0x4c: // really airmont
- *Type = INTEL_ATOM;
- *Subtype = INTEL_ATOM_SILVERMONT;
- break; // "silvermont"
-
- case 0x57:
- *Type = INTEL_XEONPHI; // knl
- *Subtype = INTEL_KNIGHTS_LANDING;
- break;
-
- default: // Unknown family 6 CPU, try to guess.
- if (Features & (1 << FEATURE_AVX512)) {
- *Type = INTEL_XEONPHI; // knl
- *Subtype = INTEL_KNIGHTS_LANDING;
- break;
- }
- if (Features & (1 << FEATURE_ADX)) {
- *Type = INTEL_COREI7;
- *Subtype = INTEL_COREI7_BROADWELL;
- break;
- }
- if (Features & (1 << FEATURE_AVX2)) {
- *Type = INTEL_COREI7;
- *Subtype = INTEL_COREI7_HASWELL;
- break;
- }
- if (Features & (1 << FEATURE_AVX)) {
- *Type = INTEL_COREI7;
- *Subtype = INTEL_COREI7_SANDYBRIDGE;
- break;
- }
- if (Features & (1 << FEATURE_SSE4_2)) {
- if (Features & (1 << FEATURE_MOVBE)) {
- *Type = INTEL_ATOM;
- *Subtype = INTEL_ATOM_SILVERMONT;
- } else {
- *Type = INTEL_COREI7;
- *Subtype = INTEL_COREI7_NEHALEM;
- }
- break;
- }
- if (Features & (1 << FEATURE_SSE4_1)) {
- *Type = INTEL_CORE2; // "penryn"
- *Subtype = INTEL_CORE2_45;
- break;
- }
- if (Features & (1 << FEATURE_SSSE3)) {
- if (Features & (1 << FEATURE_MOVBE)) {
- *Type = INTEL_ATOM;
- *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
- } else {
- *Type = INTEL_CORE2; // "core2"
- *Subtype = INTEL_CORE2_65;
- }
- break;
- }
- if (Features & (1 << FEATURE_EM64T)) {
- *Type = INTEL_X86_64;
- break; // x86-64
- }
- if (Features & (1 << FEATURE_SSE2)) {
- *Type = INTEL_PENTIUM_M;
- break;
- }
- if (Features & (1 << FEATURE_SSE)) {
- *Type = INTEL_PENTIUM_III;
- break;
- }
- if (Features & (1 << FEATURE_MMX)) {
- *Type = INTEL_PENTIUM_II;
- break;
- }
- *Type = INTEL_PENTIUM_PRO;
- break;
- }
- break;
- case 15: {
- switch (Model) {
- case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
- // model 00h and manufactured using the 0.18 micron process.
- case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
- // processor MP, and Intel Celeron processor. All processors are
- // model 01h and manufactured using the 0.18 micron process.
- case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
- // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
- // processor, and Mobile Intel Celeron processor. All processors
- // are model 02h and manufactured using the 0.13 micron process.
- *Type =
- ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
- break;
-
- case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
- // processor. All processors are model 03h and manufactured using
- // the 90 nm process.
- case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
- // Pentium D processor, Intel Xeon processor, Intel Xeon
- // processor MP, Intel Celeron D processor. All processors are
- // model 04h and manufactured using the 90 nm process.
- case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
- // Extreme Edition, Intel Xeon processor, Intel Xeon processor
- // MP, Intel Celeron D processor. All processors are model 06h
- // and manufactured using the 65 nm process.
- *Type =
- ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
- break;
-
- default:
- *Type =
- ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
- break;
- }
- break;
- }
- default:
- break; /*"generic"*/
- }
-}
-
-static void getAMDProcessorTypeAndSubtype(unsigned int Family,
- unsigned int Model,
- unsigned int Features,
- unsigned *Type,
- unsigned *Subtype) {
- // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
- // appears to be no way to generate the wide variety of AMD-specific targets
- // from the information returned from CPUID.
- switch (Family) {
- case 4:
- *Type = AMD_i486;
- break;
- case 5:
- *Type = AMDPENTIUM;
- switch (Model) {
- case 6:
- case 7:
- *Subtype = AMDPENTIUM_K6;
- break; // "k6"
- case 8:
- *Subtype = AMDPENTIUM_K62;
- break; // "k6-2"
- case 9:
- case 13:
- *Subtype = AMDPENTIUM_K63;
- break; // "k6-3"
- case 10:
- *Subtype = AMDPENTIUM_GEODE;
- break; // "geode"
- }
- break;
- case 6:
- *Type = AMDATHLON;
- switch (Model) {
- case 4:
- *Subtype = AMDATHLON_TBIRD;
- break; // "athlon-tbird"
- case 6:
- case 7:
- case 8:
- *Subtype = AMDATHLON_MP;
- break; // "athlon-mp"
- case 10:
- *Subtype = AMDATHLON_XP;
- break; // "athlon-xp"
- }
- break;
- case 15:
- *Type = AMDATHLON;
- if (Features & (1 << FEATURE_SSE3)) {
- *Subtype = AMDATHLON_K8SSE3;
- break; // "k8-sse3"
- }
- switch (Model) {
- case 1:
- *Subtype = AMDATHLON_OPTERON;
- break; // "opteron"
- case 5:
- *Subtype = AMDATHLON_FX;
- break; // "athlon-fx"; also opteron
- default:
- *Subtype = AMDATHLON_64;
- break; // "athlon64"
- }
- break;
- case 16:
- *Type = AMDFAM10H; // "amdfam10"
- switch (Model) {
- case 2:
- *Subtype = AMDFAM10H_BARCELONA;
- break;
- case 4:
- *Subtype = AMDFAM10H_SHANGHAI;
- break;
- case 8:
- *Subtype = AMDFAM10H_ISTANBUL;
- break;
- }
- break;
- case 20:
- *Type = AMDFAM14H;
- *Subtype = AMD_BTVER1;
- break; // "btver1";
- case 21:
- *Type = AMDFAM15H;
- if (!(Features &
- (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
- *Subtype = AMD_BTVER1;
- break; // "btver1"
- }
- if (Model >= 0x50 && Model <= 0x6f) {
- *Subtype = AMDFAM15H_BDVER4;
- break; // "bdver4"; 50h-6Fh: Excavator
- }
- if (Model >= 0x30 && Model <= 0x3f) {
- *Subtype = AMDFAM15H_BDVER3;
- break; // "bdver3"; 30h-3Fh: Steamroller
- }
- if (Model >= 0x10 && Model <= 0x1f) {
- *Subtype = AMDFAM15H_BDVER2;
- break; // "bdver2"; 10h-1Fh: Piledriver
- }
- if (Model <= 0x0f) {
- *Subtype = AMDFAM15H_BDVER1;
- break; // "bdver1"; 00h-0Fh: Bulldozer
- }
- break;
- case 22:
- *Type = AMDFAM16H;
- if (!(Features &
- (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
- *Subtype = AMD_BTVER1;
- break; // "btver1";
- }
- *Subtype = AMD_BTVER2;
- break; // "btver2"
- case 23:
- *Type = AMDFAM17H;
- if (Features & (1 << FEATURE_ADX)) {
- *Subtype = AMDFAM17H_ZNVER1;
- break; // "znver1"
- }
- *Subtype = AMD_BTVER1;
- break;
- default:
- break; // "generic"
- }
-}
-
-static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
- unsigned MaxLeaf) {
- unsigned Features = 0;
- unsigned int EAX, EBX;
- Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
- Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
- Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
- Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
- Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
- Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
- Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
- Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
-
- // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
- // indicates that the AVX registers will be saved and restored on context
- // switch, then we have full AVX support.
- const unsigned AVXBits = (1 << 27) | (1 << 28);
- bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
- ((EAX & 0x6) == 0x6);
- bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
- bool HasLeaf7 =
- MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
- bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
- bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
- bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
- Features |= (HasAVX << FEATURE_AVX);
- Features |= (HasAVX2 << FEATURE_AVX2);
- Features |= (HasAVX512 << FEATURE_AVX512);
- Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
- Features |= (HasADX << FEATURE_ADX);
-
- getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
- Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
- return Features;
-}
-
-StringRef sys::getHostCPUName() {
- unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
- unsigned MaxLeaf, Vendor;
-
-#if defined(__GNUC__) || defined(__clang__)
- //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
- // and simplify it to not invoke __cpuid (like cpu_model.c in
- // compiler-rt/lib/builtins/cpu_model.c?
- // Opting for the second option.
- if(!isCpuIdSupported())
- return "generic";
-#endif
- if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
- return "generic";
- if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
- return "generic";
-
- unsigned Brand_id = EBX & 0xff;
- unsigned Family = 0, Model = 0;
- unsigned Features = 0;
- detectX86FamilyModel(EAX, &Family, &Model);
- Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
-
- unsigned Type;
- unsigned Subtype;
-
- if (Vendor == SIG_INTEL) {
- getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
- &Subtype);
- switch (Type) {
- case INTEL_i386:
- return "i386";
- case INTEL_i486:
- return "i486";
- case INTEL_PENTIUM:
- if (Subtype == INTEL_PENTIUM_MMX)
- return "pentium-mmx";
- return "pentium";
- case INTEL_PENTIUM_PRO:
- return "pentiumpro";
- case INTEL_PENTIUM_II:
- return "pentium2";
- case INTEL_PENTIUM_III:
- return "pentium3";
- case INTEL_PENTIUM_IV:
- return "pentium4";
- case INTEL_PENTIUM_M:
- return "pentium-m";
- case INTEL_CORE_DUO:
- return "yonah";
- case INTEL_CORE2:
- switch (Subtype) {
- case INTEL_CORE2_65:
- return "core2";
- case INTEL_CORE2_45:
- return "penryn";
- default:
- return "core2";
- }
- case INTEL_COREI7:
- switch (Subtype) {
- case INTEL_COREI7_NEHALEM:
- return "nehalem";
- case INTEL_COREI7_WESTMERE:
- return "westmere";
- case INTEL_COREI7_SANDYBRIDGE:
- return "sandybridge";
- case INTEL_COREI7_IVYBRIDGE:
- return "ivybridge";
- case INTEL_COREI7_HASWELL:
- return "haswell";
- case INTEL_COREI7_BROADWELL:
- return "broadwell";
- case INTEL_COREI7_SKYLAKE:
- return "skylake";
- case INTEL_COREI7_SKYLAKE_AVX512:
- return "skylake-avx512";
- default:
- return "corei7";
- }
- case INTEL_ATOM:
- switch (Subtype) {
- case INTEL_ATOM_BONNELL:
- return "bonnell";
- case INTEL_ATOM_SILVERMONT:
- return "silvermont";
- default:
- return "atom";
- }
- case INTEL_XEONPHI:
- return "knl"; /*update for more variants added*/
- case INTEL_X86_64:
- return "x86-64";
- case INTEL_NOCONA:
- return "nocona";
- case INTEL_PRESCOTT:
- return "prescott";
- default:
- return "generic";
- }
- } else if (Vendor == SIG_AMD) {
- getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
- switch (Type) {
- case AMD_i486:
- return "i486";
- case AMDPENTIUM:
- switch (Subtype) {
- case AMDPENTIUM_K6:
- return "k6";
- case AMDPENTIUM_K62:
- return "k6-2";
- case AMDPENTIUM_K63:
- return "k6-3";
- case AMDPENTIUM_GEODE:
- return "geode";
- default:
- return "pentium";
- }
- case AMDATHLON:
- switch (Subtype) {
- case AMDATHLON_TBIRD:
- return "athlon-tbird";
- case AMDATHLON_MP:
- return "athlon-mp";
- case AMDATHLON_XP:
- return "athlon-xp";
- case AMDATHLON_K8SSE3:
- return "k8-sse3";
- case AMDATHLON_OPTERON:
- return "opteron";
- case AMDATHLON_FX:
- return "athlon-fx";
- case AMDATHLON_64:
- return "athlon64";
- default:
- return "athlon";
- }
- case AMDFAM10H:
- if(Subtype == AMDFAM10H_BARCELONA)
- return "barcelona";
- return "amdfam10";
- case AMDFAM14H:
- return "btver1";
- case AMDFAM15H:
- switch (Subtype) {
- case AMDFAM15H_BDVER1:
- return "bdver1";
- case AMDFAM15H_BDVER2:
- return "bdver2";
- case AMDFAM15H_BDVER3:
- return "bdver3";
- case AMDFAM15H_BDVER4:
- return "bdver4";
- case AMD_BTVER1:
- return "btver1";
- default:
- return "amdfam15";
- }
- case AMDFAM16H:
- switch (Subtype) {
- case AMD_BTVER1:
- return "btver1";
- case AMD_BTVER2:
- return "btver2";
- default:
- return "amdfam16";
- }
- case AMDFAM17H:
- switch (Subtype) {
- case AMD_BTVER1:
- return "btver1";
- case AMDFAM17H_ZNVER1:
- return "znver1";
- default:
- return "amdfam17";
- }
- default:
- return "generic";
- }
- }
- return "generic";
-}
-
-#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
-StringRef sys::getHostCPUName() {
- host_basic_info_data_t hostInfo;
- mach_msg_type_number_t infoCount;
-
- infoCount = HOST_BASIC_INFO_COUNT;
- host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
- &infoCount);
-
- if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
- return "generic";
-
- switch (hostInfo.cpu_subtype) {
- case CPU_SUBTYPE_POWERPC_601:
- return "601";
- case CPU_SUBTYPE_POWERPC_602:
- return "602";
- case CPU_SUBTYPE_POWERPC_603:
- return "603";
- case CPU_SUBTYPE_POWERPC_603e:
- return "603e";
- case CPU_SUBTYPE_POWERPC_603ev:
- return "603ev";
- case CPU_SUBTYPE_POWERPC_604:
- return "604";
- case CPU_SUBTYPE_POWERPC_604e:
- return "604e";
- case CPU_SUBTYPE_POWERPC_620:
- return "620";
- case CPU_SUBTYPE_POWERPC_750:
- return "750";
- case CPU_SUBTYPE_POWERPC_7400:
- return "7400";
- case CPU_SUBTYPE_POWERPC_7450:
- return "7450";
- case CPU_SUBTYPE_POWERPC_970:
- return "970";
- default:;
- }
-
- return "generic";
-}
-#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
-StringRef sys::getHostCPUName() {
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
- const StringRef& Content = P ? P->getBuffer() : "";
- return detail::getHostCPUNameForPowerPC(Content);
-}
-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
-StringRef sys::getHostCPUName() {
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
- const StringRef& Content = P ? P->getBuffer() : "";
- return detail::getHostCPUNameForARM(Content);
-}
-#elif defined(__linux__) && defined(__s390x__)
-StringRef sys::getHostCPUName() {
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
- const StringRef& Content = P ? P->getBuffer() : "";
- return detail::getHostCPUNameForS390x(Content);
-}
-#else
-StringRef sys::getHostCPUName() { return "generic"; }
-#endif
-
-#if defined(__linux__) && defined(__x86_64__)
-// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
-// using the number of unique physical/core id pairs. The following
-// implementation reads the /proc/cpuinfo format on an x86_64 system.
-static int computeHostNumPhysicalCores() {
- // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
- // mmapped because it appears to have 0 size.
- llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
- llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
- if (std::error_code EC = Text.getError()) {
- llvm::errs() << "Can't read "
- << "/proc/cpuinfo: " << EC.message() << "\n";
- return -1;
- }
- SmallVector<StringRef, 8> strs;
- (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
- /*KeepEmpty=*/false);
- int CurPhysicalId = -1;
- int CurCoreId = -1;
- SmallSet<std::pair<int, int>, 32> UniqueItems;
- for (auto &Line : strs) {
- Line = Line.trim();
- if (!Line.startswith("physical id") && !Line.startswith("core id"))
- continue;
- std::pair<StringRef, StringRef> Data = Line.split(':');
- auto Name = Data.first.trim();
- auto Val = Data.second.trim();
- if (Name == "physical id") {
- assert(CurPhysicalId == -1 &&
- "Expected a core id before seeing another physical id");
- Val.getAsInteger(10, CurPhysicalId);
- }
- if (Name == "core id") {
- assert(CurCoreId == -1 &&
- "Expected a physical id before seeing another core id");
- Val.getAsInteger(10, CurCoreId);
- }
- if (CurPhysicalId != -1 && CurCoreId != -1) {
- UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
- CurPhysicalId = -1;
- CurCoreId = -1;
- }
- }
- return UniqueItems.size();
-}
-#elif defined(__APPLE__) && defined(__x86_64__)
-#include <sys/param.h>
-#include <sys/sysctl.h>
-
-// Gets the number of *physical cores* on the machine.
-static int computeHostNumPhysicalCores() {
- uint32_t count;
- size_t len = sizeof(count);
- sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
- if (count < 1) {
- int nm[2];
- nm[0] = CTL_HW;
- nm[1] = HW_AVAILCPU;
- sysctl(nm, 2, &count, &len, NULL, 0);
- if (count < 1)
- return -1;
- }
- return count;
-}
-#else
-// On other systems, return -1 to indicate unknown.
-static int computeHostNumPhysicalCores() { return -1; }
-#endif
-
-int sys::getHostNumPhysicalCores() {
- static int NumCores = computeHostNumPhysicalCores();
- return NumCores;
-}
-
-#if defined(__i386__) || defined(_M_IX86) || \
- defined(__x86_64__) || defined(_M_X64)
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
- unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
- unsigned MaxLevel;
- union {
- unsigned u[3];
- char c[12];
- } text;
-
- if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
- MaxLevel < 1)
- return false;
-
- getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
-
- Features["cmov"] = (EDX >> 15) & 1;
- Features["mmx"] = (EDX >> 23) & 1;
- Features["sse"] = (EDX >> 25) & 1;
- Features["sse2"] = (EDX >> 26) & 1;
- Features["sse3"] = (ECX >> 0) & 1;
- Features["ssse3"] = (ECX >> 9) & 1;
- Features["sse4.1"] = (ECX >> 19) & 1;
- Features["sse4.2"] = (ECX >> 20) & 1;
-
- Features["pclmul"] = (ECX >> 1) & 1;
- Features["cx16"] = (ECX >> 13) & 1;
- Features["movbe"] = (ECX >> 22) & 1;
- Features["popcnt"] = (ECX >> 23) & 1;
- Features["aes"] = (ECX >> 25) & 1;
- Features["rdrnd"] = (ECX >> 30) & 1;
-
- // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
- // indicates that the AVX registers will be saved and restored on context
- // switch, then we have full AVX support.
- bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
- !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
- Features["avx"] = HasAVXSave;
- Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
- Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
-
- // Only enable XSAVE if OS has enabled support for saving YMM state.
- Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
-
- // AVX512 requires additional context to be saved by the OS.
- bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
-
- unsigned MaxExtLevel;
- getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
-
- bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
- !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
- Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
- Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
- Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
- Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
- Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
- Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
- Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
- Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
-
- bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
- !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
- Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
-
- bool HasLeaf7 =
- MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
-
- // AVX2 is only supported if we have the OS save support from AVX.
- Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
-
- Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
- Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
- Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
- Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
- Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
- Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
- Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
- Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
- Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
- Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
-
- // AVX512 is only supported if the OS supports the context save for it.
- Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
- Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
- Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
- Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
- Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
- Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
- Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
- Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
-
- Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
- Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
- // Enable protection keys
- Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
-
- bool HasLeafD = MaxLevel >= 0xd &&
- !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
-
- // Only enable XSAVE if OS has enabled support for saving YMM state.
- Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
- Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
- Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
-
- return true;
-}
-#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
- std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
- if (!P)
- return false;
-
- SmallVector<StringRef, 32> Lines;
- P->getBuffer().split(Lines, "\n");
-
- SmallVector<StringRef, 32> CPUFeatures;
-
- // Look for the CPU features.
- for (unsigned I = 0, E = Lines.size(); I != E; ++I)
- if (Lines[I].startswith("Features")) {
- Lines[I].split(CPUFeatures, ' ');
- break;
- }
-
-#if defined(__aarch64__)
- // Keep track of which crypto features we have seen
- enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
- uint32_t crypto = 0;
-#endif
-
- for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
- StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
-#if defined(__aarch64__)
- .Case("asimd", "neon")
- .Case("fp", "fp-armv8")
- .Case("crc32", "crc")
-#else
- .Case("half", "fp16")
- .Case("neon", "neon")
- .Case("vfpv3", "vfp3")
- .Case("vfpv3d16", "d16")
- .Case("vfpv4", "vfp4")
- .Case("idiva", "hwdiv-arm")
- .Case("idivt", "hwdiv")
-#endif
- .Default("");
-
-#if defined(__aarch64__)
- // We need to check crypto separately since we need all of the crypto
- // extensions to enable the subtarget feature
- if (CPUFeatures[I] == "aes")
- crypto |= CAP_AES;
- else if (CPUFeatures[I] == "pmull")
- crypto |= CAP_PMULL;
- else if (CPUFeatures[I] == "sha1")
- crypto |= CAP_SHA1;
- else if (CPUFeatures[I] == "sha2")
- crypto |= CAP_SHA2;
-#endif
-
- if (LLVMFeatureStr != "")
- Features[LLVMFeatureStr] = true;
- }
-
-#if defined(__aarch64__)
- // If we have all crypto bits we can add the feature
- if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
- Features["crypto"] = true;
-#endif
-
- return true;
-}
-#else
-bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
-#endif
-
-std::string sys::getProcessTriple() {
- Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
-
- if (sizeof(void *) == 8 && PT.isArch32Bit())
- PT = PT.get64BitArchVariant();
- if (sizeof(void *) == 4 && PT.isArch64Bit())
- PT = PT.get32BitArchVariant();
-
- return PT.str();
-}
+//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the operating system Host concept. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/Host.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Config/config.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/raw_ostream.h" +#include <assert.h> +#include <string.h> + +// Include the platform-specific parts of this class. +#ifdef LLVM_ON_UNIX +#include "Unix/Host.inc" +#endif +#ifdef LLVM_ON_WIN32 +#include "Windows/Host.inc" +#endif +#ifdef _MSC_VER +#include <intrin.h> +#endif +#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) +#include <mach/host_info.h> +#include <mach/mach.h> +#include <mach/mach_host.h> +#include <mach/machine.h> +#endif + +#define DEBUG_TYPE "host-detection" + +//===----------------------------------------------------------------------===// +// +// Implementations of the CPU detection routines +// +//===----------------------------------------------------------------------===// + +using namespace llvm; + +static std::unique_ptr<llvm::MemoryBuffer> + LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { + llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = + llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); + if (std::error_code EC = Text.getError()) { + llvm::errs() << "Can't read " + << "/proc/cpuinfo: " << EC.message() << "\n"; + return nullptr; + } + return std::move(*Text); +} + +StringRef sys::detail::getHostCPUNameForPowerPC( + const StringRef &ProcCpuinfoContent) { + // Access to the Processor Version Register (PVR) on PowerPC is privileged, + // and so we must use an operating-system interface to determine the current + // processor type. On Linux, this is exposed through the /proc/cpuinfo file. + const char *generic = "generic"; + + // The cpu line is second (after the 'processor: 0' line), so if this + // buffer is too small then something has changed (or is wrong). + StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); + StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); + + StringRef::const_iterator CIP = CPUInfoStart; + + StringRef::const_iterator CPUStart = 0; + size_t CPULen = 0; + + // We need to find the first line which starts with cpu, spaces, and a colon. + // After the colon, there may be some additional spaces and then the cpu type. + while (CIP < CPUInfoEnd && CPUStart == 0) { + if (CIP < CPUInfoEnd && *CIP == '\n') + ++CIP; + + if (CIP < CPUInfoEnd && *CIP == 'c') { + ++CIP; + if (CIP < CPUInfoEnd && *CIP == 'p') { + ++CIP; + if (CIP < CPUInfoEnd && *CIP == 'u') { + ++CIP; + while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) + ++CIP; + + if (CIP < CPUInfoEnd && *CIP == ':') { + ++CIP; + while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) + ++CIP; + + if (CIP < CPUInfoEnd) { + CPUStart = CIP; + while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && + *CIP != ',' && *CIP != '\n')) + ++CIP; + CPULen = CIP - CPUStart; + } + } + } + } + } + + if (CPUStart == 0) + while (CIP < CPUInfoEnd && *CIP != '\n') + ++CIP; + } + + if (CPUStart == 0) + return generic; + + return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) + .Case("604e", "604e") + .Case("604", "604") + .Case("7400", "7400") + .Case("7410", "7400") + .Case("7447", "7400") + .Case("7455", "7450") + .Case("G4", "g4") + .Case("POWER4", "970") + .Case("PPC970FX", "970") + .Case("PPC970MP", "970") + .Case("G5", "g5") + .Case("POWER5", "g5") + .Case("A2", "a2") + .Case("POWER6", "pwr6") + .Case("POWER7", "pwr7") + .Case("POWER8", "pwr8") + .Case("POWER8E", "pwr8") + .Case("POWER8NVL", "pwr8") + .Case("POWER9", "pwr9") + .Default(generic); +} + +StringRef sys::detail::getHostCPUNameForARM( + const StringRef &ProcCpuinfoContent) { + // The cpuid register on arm is not accessible from user space. On Linux, + // it is exposed through the /proc/cpuinfo file. + + // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line + // in all cases. + SmallVector<StringRef, 32> Lines; + ProcCpuinfoContent.split(Lines, "\n"); + + // Look for the CPU implementer line. + StringRef Implementer; + StringRef Hardware; + for (unsigned I = 0, E = Lines.size(); I != E; ++I) { + if (Lines[I].startswith("CPU implementer")) + Implementer = Lines[I].substr(15).ltrim("\t :"); + if (Lines[I].startswith("Hardware")) + Hardware = Lines[I].substr(8).ltrim("\t :"); + } + + if (Implementer == "0x41") { // ARM Ltd. + // MSM8992/8994 may give cpu part for the core that the kernel is running on, + // which is undeterministic and wrong. Always return cortex-a53 for these SoC. + if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) + return "cortex-a53"; + + + // Look for the CPU part line. + for (unsigned I = 0, E = Lines.size(); I != E; ++I) + if (Lines[I].startswith("CPU part")) + // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The + // values correspond to the "Part number" in the CP15/c0 register. The + // contents are specified in the various processor manuals. + return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) + .Case("0x926", "arm926ej-s") + .Case("0xb02", "mpcore") + .Case("0xb36", "arm1136j-s") + .Case("0xb56", "arm1156t2-s") + .Case("0xb76", "arm1176jz-s") + .Case("0xc08", "cortex-a8") + .Case("0xc09", "cortex-a9") + .Case("0xc0f", "cortex-a15") + .Case("0xc20", "cortex-m0") + .Case("0xc23", "cortex-m3") + .Case("0xc24", "cortex-m4") + .Case("0xd04", "cortex-a35") + .Case("0xd03", "cortex-a53") + .Case("0xd07", "cortex-a57") + .Case("0xd08", "cortex-a72") + .Case("0xd09", "cortex-a73") + .Default("generic"); + } + + if (Implementer == "0x51") // Qualcomm Technologies, Inc. + // Look for the CPU part line. + for (unsigned I = 0, E = Lines.size(); I != E; ++I) + if (Lines[I].startswith("CPU part")) + // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The + // values correspond to the "Part number" in the CP15/c0 register. The + // contents are specified in the various processor manuals. + return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) + .Case("0x06f", "krait") // APQ8064 + .Case("0x201", "kryo") + .Case("0x205", "kryo") + .Default("generic"); + + return "generic"; +} + +StringRef sys::detail::getHostCPUNameForS390x( + const StringRef &ProcCpuinfoContent) { + // STIDP is a privileged operation, so use /proc/cpuinfo instead. + + // The "processor 0:" line comes after a fair amount of other information, + // including a cache breakdown, but this should be plenty. + SmallVector<StringRef, 32> Lines; + ProcCpuinfoContent.split(Lines, "\n"); + + // Look for the CPU features. + SmallVector<StringRef, 32> CPUFeatures; + for (unsigned I = 0, E = Lines.size(); I != E; ++I) + if (Lines[I].startswith("features")) { + size_t Pos = Lines[I].find(":"); + if (Pos != StringRef::npos) { + Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); + break; + } + } + + // We need to check for the presence of vector support independently of + // the machine type, since we may only use the vector register set when + // supported by the kernel (and hypervisor). + bool HaveVectorSupport = false; + for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { + if (CPUFeatures[I] == "vx") + HaveVectorSupport = true; + } + + // Now check the processor machine type. + for (unsigned I = 0, E = Lines.size(); I != E; ++I) { + if (Lines[I].startswith("processor ")) { + size_t Pos = Lines[I].find("machine = "); + if (Pos != StringRef::npos) { + Pos += sizeof("machine = ") - 1; + unsigned int Id; + if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { + if (Id >= 2964 && HaveVectorSupport) + return "z13"; + if (Id >= 2827) + return "zEC12"; + if (Id >= 2817) + return "z196"; + } + } + break; + } + } + + return "generic"; +} + +#if defined(__i386__) || defined(_M_IX86) || \ + defined(__x86_64__) || defined(_M_X64) + +enum VendorSignatures { + SIG_INTEL = 0x756e6547 /* Genu */, + SIG_AMD = 0x68747541 /* Auth */ +}; + +enum ProcessorVendors { + VENDOR_INTEL = 1, + VENDOR_AMD, + VENDOR_OTHER, + VENDOR_MAX +}; + +enum ProcessorTypes { + INTEL_ATOM = 1, + INTEL_CORE2, + INTEL_COREI7, + AMDFAM10H, + AMDFAM15H, + INTEL_i386, + INTEL_i486, + INTEL_PENTIUM, + INTEL_PENTIUM_PRO, + INTEL_PENTIUM_II, + INTEL_PENTIUM_III, + INTEL_PENTIUM_IV, + INTEL_PENTIUM_M, + INTEL_CORE_DUO, + INTEL_XEONPHI, + INTEL_X86_64, + INTEL_NOCONA, + INTEL_PRESCOTT, + AMD_i486, + AMDPENTIUM, + AMDATHLON, + AMDFAM14H, + AMDFAM16H, + AMDFAM17H, + CPU_TYPE_MAX +}; + +enum ProcessorSubtypes { + INTEL_COREI7_NEHALEM = 1, + INTEL_COREI7_WESTMERE, + INTEL_COREI7_SANDYBRIDGE, + AMDFAM10H_BARCELONA, + AMDFAM10H_SHANGHAI, + AMDFAM10H_ISTANBUL, + AMDFAM15H_BDVER1, + AMDFAM15H_BDVER2, + INTEL_PENTIUM_MMX, + INTEL_CORE2_65, + INTEL_CORE2_45, + INTEL_COREI7_IVYBRIDGE, + INTEL_COREI7_HASWELL, + INTEL_COREI7_BROADWELL, + INTEL_COREI7_SKYLAKE, + INTEL_COREI7_SKYLAKE_AVX512, + INTEL_ATOM_BONNELL, + INTEL_ATOM_SILVERMONT, + INTEL_KNIGHTS_LANDING, + AMDPENTIUM_K6, + AMDPENTIUM_K62, + AMDPENTIUM_K63, + AMDPENTIUM_GEODE, + AMDATHLON_TBIRD, + AMDATHLON_MP, + AMDATHLON_XP, + AMDATHLON_K8SSE3, + AMDATHLON_OPTERON, + AMDATHLON_FX, + AMDATHLON_64, + AMD_BTVER1, + AMD_BTVER2, + AMDFAM15H_BDVER3, + AMDFAM15H_BDVER4, + AMDFAM17H_ZNVER1, + CPU_SUBTYPE_MAX +}; + +enum ProcessorFeatures { + FEATURE_CMOV = 0, + FEATURE_MMX, + FEATURE_POPCNT, + FEATURE_SSE, + FEATURE_SSE2, + FEATURE_SSE3, + FEATURE_SSSE3, + FEATURE_SSE4_1, + FEATURE_SSE4_2, + FEATURE_AVX, + FEATURE_AVX2, + FEATURE_AVX512, + FEATURE_AVX512SAVE, + FEATURE_MOVBE, + FEATURE_ADX, + FEATURE_EM64T +}; + +// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). +// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID +// support. Consequently, for i386, the presence of CPUID is checked first +// via the corresponding eflags bit. +// Removal of cpuid.h header motivated by PR30384 +// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp +// or test-suite, but are used in external projects e.g. libstdcxx +static bool isCpuIdSupported() { +#if defined(__GNUC__) || defined(__clang__) +#if defined(__i386__) + int __cpuid_supported; + __asm__(" pushfl\n" + " popl %%eax\n" + " movl %%eax,%%ecx\n" + " xorl $0x00200000,%%eax\n" + " pushl %%eax\n" + " popfl\n" + " pushfl\n" + " popl %%eax\n" + " movl $0,%0\n" + " cmpl %%eax,%%ecx\n" + " je 1f\n" + " movl $1,%0\n" + "1:" + : "=r"(__cpuid_supported) + : + : "eax", "ecx"); + if (!__cpuid_supported) + return false; +#endif + return true; +#endif + return true; +} + +/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in +/// the specified arguments. If we can't run cpuid on the host, return true. +static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, + unsigned *rECX, unsigned *rEDX) { +#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) +#if defined(__GNUC__) || defined(__clang__) +#if defined(__x86_64__) + // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. + // FIXME: should we save this for Clang? + __asm__("movq\t%%rbx, %%rsi\n\t" + "cpuid\n\t" + "xchgq\t%%rbx, %%rsi\n\t" + : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) + : "a"(value)); +#elif defined(__i386__) + __asm__("movl\t%%ebx, %%esi\n\t" + "cpuid\n\t" + "xchgl\t%%ebx, %%esi\n\t" + : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) + : "a"(value)); +#else + assert(0 && "This method is defined only for x86."); +#endif +#elif defined(_MSC_VER) + // The MSVC intrinsic is portable across x86 and x64. + int registers[4]; + __cpuid(registers, value); + *rEAX = registers[0]; + *rEBX = registers[1]; + *rECX = registers[2]; + *rEDX = registers[3]; +#endif + return false; +#else + return true; +#endif +} + +/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return +/// the 4 values in the specified arguments. If we can't run cpuid on the host, +/// return true. +static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, + unsigned *rEAX, unsigned *rEBX, unsigned *rECX, + unsigned *rEDX) { +#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) +#if defined(__x86_64__) || defined(_M_X64) +#if defined(__GNUC__) || defined(__clang__) + // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. + // FIXME: should we save this for Clang? + __asm__("movq\t%%rbx, %%rsi\n\t" + "cpuid\n\t" + "xchgq\t%%rbx, %%rsi\n\t" + : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) + : "a"(value), "c"(subleaf)); +#elif defined(_MSC_VER) + int registers[4]; + __cpuidex(registers, value, subleaf); + *rEAX = registers[0]; + *rEBX = registers[1]; + *rECX = registers[2]; + *rEDX = registers[3]; +#endif +#elif defined(__i386__) || defined(_M_IX86) +#if defined(__GNUC__) || defined(__clang__) + __asm__("movl\t%%ebx, %%esi\n\t" + "cpuid\n\t" + "xchgl\t%%ebx, %%esi\n\t" + : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) + : "a"(value), "c"(subleaf)); +#elif defined(_MSC_VER) + __asm { + mov eax,value + mov ecx,subleaf + cpuid + mov esi,rEAX + mov dword ptr [esi],eax + mov esi,rEBX + mov dword ptr [esi],ebx + mov esi,rECX + mov dword ptr [esi],ecx + mov esi,rEDX + mov dword ptr [esi],edx + } +#endif +#else + assert(0 && "This method is defined only for x86."); +#endif + return false; +#else + return true; +#endif +} + +static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { +#if defined(__GNUC__) || defined(__clang__) + // Check xgetbv; this uses a .byte sequence instead of the instruction + // directly because older assemblers do not include support for xgetbv and + // there is no easy way to conditionally compile based on the assembler used. + __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); + return false; +#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) + unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); + *rEAX = Result; + *rEDX = Result >> 32; + return false; +#else + return true; +#endif +} + +static void detectX86FamilyModel(unsigned EAX, unsigned *Family, + unsigned *Model) { + *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 + *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 + if (*Family == 6 || *Family == 0xf) { + if (*Family == 0xf) + // Examine extended family ID if family ID is F. + *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 + // Examine extended model ID if family ID is 6 or F. + *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 + } +} + +static void +getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model, + unsigned int Brand_id, unsigned int Features, + unsigned *Type, unsigned *Subtype) { + if (Brand_id != 0) + return; + switch (Family) { + case 3: + *Type = INTEL_i386; + break; + case 4: + switch (Model) { + case 0: // Intel486 DX processors + case 1: // Intel486 DX processors + case 2: // Intel486 SX processors + case 3: // Intel487 processors, IntelDX2 OverDrive processors, + // IntelDX2 processors + case 4: // Intel486 SL processor + case 5: // IntelSX2 processors + case 7: // Write-Back Enhanced IntelDX2 processors + case 8: // IntelDX4 OverDrive processors, IntelDX4 processors + default: + *Type = INTEL_i486; + break; + } + break; + case 5: + switch (Model) { + case 1: // Pentium OverDrive processor for Pentium processor (60, 66), + // Pentium processors (60, 66) + case 2: // Pentium OverDrive processor for Pentium processor (75, 90, + // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, + // 150, 166, 200) + case 3: // Pentium OverDrive processors for Intel486 processor-based + // systems + *Type = INTEL_PENTIUM; + break; + case 4: // Pentium OverDrive processor with MMX technology for Pentium + // processor (75, 90, 100, 120, 133), Pentium processor with + // MMX technology (166, 200) + *Type = INTEL_PENTIUM; + *Subtype = INTEL_PENTIUM_MMX; + break; + default: + *Type = INTEL_PENTIUM; + break; + } + break; + case 6: + switch (Model) { + case 0x01: // Pentium Pro processor + *Type = INTEL_PENTIUM_PRO; + break; + case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, + // model 03 + case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, + // model 05, and Intel Celeron processor, model 05 + case 0x06: // Celeron processor, model 06 + *Type = INTEL_PENTIUM_II; + break; + case 0x07: // Pentium III processor, model 07, and Pentium III Xeon + // processor, model 07 + case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, + // model 08, and Celeron processor, model 08 + case 0x0a: // Pentium III Xeon processor, model 0Ah + case 0x0b: // Pentium III processor, model 0Bh + *Type = INTEL_PENTIUM_III; + break; + case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. + case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model + // 0Dh. All processors are manufactured using the 90 nm process. + case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 + // Integrated Processor with Intel QuickAssist Technology + *Type = INTEL_PENTIUM_M; + break; + case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model + // 0Eh. All processors are manufactured using the 65 nm process. + *Type = INTEL_CORE_DUO; + break; // yonah + case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile + // processor, Intel Core 2 Quad processor, Intel Core 2 Quad + // mobile processor, Intel Core 2 Extreme processor, Intel + // Pentium Dual-Core processor, Intel Xeon processor, model + // 0Fh. All processors are manufactured using the 65 nm process. + case 0x16: // Intel Celeron processor model 16h. All processors are + // manufactured using the 65 nm process + *Type = INTEL_CORE2; // "core2" + *Subtype = INTEL_CORE2_65; + break; + case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model + // 17h. All processors are manufactured using the 45 nm process. + // + // 45nm: Penryn , Wolfdale, Yorkfield (XE) + case 0x1d: // Intel Xeon processor MP. All processors are manufactured using + // the 45 nm process. + *Type = INTEL_CORE2; // "penryn" + *Subtype = INTEL_CORE2_45; + break; + case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All + // processors are manufactured using the 45 nm process. + case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. + // As found in a Summer 2010 model iMac. + case 0x1f: + case 0x2e: // Nehalem EX + *Type = INTEL_COREI7; // "nehalem" + *Subtype = INTEL_COREI7_NEHALEM; + break; + case 0x25: // Intel Core i7, laptop version. + case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All + // processors are manufactured using the 32 nm process. + case 0x2f: // Westmere EX + *Type = INTEL_COREI7; // "westmere" + *Subtype = INTEL_COREI7_WESTMERE; + break; + case 0x2a: // Intel Core i7 processor. All processors are manufactured + // using the 32 nm process. + case 0x2d: + *Type = INTEL_COREI7; //"sandybridge" + *Subtype = INTEL_COREI7_SANDYBRIDGE; + break; + case 0x3a: + case 0x3e: // Ivy Bridge EP + *Type = INTEL_COREI7; // "ivybridge" + *Subtype = INTEL_COREI7_IVYBRIDGE; + break; + + // Haswell: + case 0x3c: + case 0x3f: + case 0x45: + case 0x46: + *Type = INTEL_COREI7; // "haswell" + *Subtype = INTEL_COREI7_HASWELL; + break; + + // Broadwell: + case 0x3d: + case 0x47: + case 0x4f: + case 0x56: + *Type = INTEL_COREI7; // "broadwell" + *Subtype = INTEL_COREI7_BROADWELL; + break; + + // Skylake: + case 0x4e: // Skylake mobile + case 0x5e: // Skylake desktop + case 0x8e: // Kaby Lake mobile + case 0x9e: // Kaby Lake desktop + *Type = INTEL_COREI7; // "skylake" + *Subtype = INTEL_COREI7_SKYLAKE; + break; + + // Skylake Xeon: + case 0x55: + *Type = INTEL_COREI7; + // Check that we really have AVX512 + if (Features & (1 << FEATURE_AVX512)) { + *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" + } else { + *Subtype = INTEL_COREI7_SKYLAKE; // "skylake" + } + break; + + case 0x1c: // Most 45 nm Intel Atom processors + case 0x26: // 45 nm Atom Lincroft + case 0x27: // 32 nm Atom Medfield + case 0x35: // 32 nm Atom Midview + case 0x36: // 32 nm Atom Midview + *Type = INTEL_ATOM; + *Subtype = INTEL_ATOM_BONNELL; + break; // "bonnell" + + // Atom Silvermont codes from the Intel software optimization guide. + case 0x37: + case 0x4a: + case 0x4d: + case 0x5a: + case 0x5d: + case 0x4c: // really airmont + *Type = INTEL_ATOM; + *Subtype = INTEL_ATOM_SILVERMONT; + break; // "silvermont" + + case 0x57: + *Type = INTEL_XEONPHI; // knl + *Subtype = INTEL_KNIGHTS_LANDING; + break; + + default: // Unknown family 6 CPU, try to guess. + if (Features & (1 << FEATURE_AVX512)) { + *Type = INTEL_XEONPHI; // knl + *Subtype = INTEL_KNIGHTS_LANDING; + break; + } + if (Features & (1 << FEATURE_ADX)) { + *Type = INTEL_COREI7; + *Subtype = INTEL_COREI7_BROADWELL; + break; + } + if (Features & (1 << FEATURE_AVX2)) { + *Type = INTEL_COREI7; + *Subtype = INTEL_COREI7_HASWELL; + break; + } + if (Features & (1 << FEATURE_AVX)) { + *Type = INTEL_COREI7; + *Subtype = INTEL_COREI7_SANDYBRIDGE; + break; + } + if (Features & (1 << FEATURE_SSE4_2)) { + if (Features & (1 << FEATURE_MOVBE)) { + *Type = INTEL_ATOM; + *Subtype = INTEL_ATOM_SILVERMONT; + } else { + *Type = INTEL_COREI7; + *Subtype = INTEL_COREI7_NEHALEM; + } + break; + } + if (Features & (1 << FEATURE_SSE4_1)) { + *Type = INTEL_CORE2; // "penryn" + *Subtype = INTEL_CORE2_45; + break; + } + if (Features & (1 << FEATURE_SSSE3)) { + if (Features & (1 << FEATURE_MOVBE)) { + *Type = INTEL_ATOM; + *Subtype = INTEL_ATOM_BONNELL; // "bonnell" + } else { + *Type = INTEL_CORE2; // "core2" + *Subtype = INTEL_CORE2_65; + } + break; + } + if (Features & (1 << FEATURE_EM64T)) { + *Type = INTEL_X86_64; + break; // x86-64 + } + if (Features & (1 << FEATURE_SSE2)) { + *Type = INTEL_PENTIUM_M; + break; + } + if (Features & (1 << FEATURE_SSE)) { + *Type = INTEL_PENTIUM_III; + break; + } + if (Features & (1 << FEATURE_MMX)) { + *Type = INTEL_PENTIUM_II; + break; + } + *Type = INTEL_PENTIUM_PRO; + break; + } + break; + case 15: { + switch (Model) { + case 0: // Pentium 4 processor, Intel Xeon processor. All processors are + // model 00h and manufactured using the 0.18 micron process. + case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon + // processor MP, and Intel Celeron processor. All processors are + // model 01h and manufactured using the 0.18 micron process. + case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, + // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron + // processor, and Mobile Intel Celeron processor. All processors + // are model 02h and manufactured using the 0.13 micron process. + *Type = + ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); + break; + + case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D + // processor. All processors are model 03h and manufactured using + // the 90 nm process. + case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, + // Pentium D processor, Intel Xeon processor, Intel Xeon + // processor MP, Intel Celeron D processor. All processors are + // model 04h and manufactured using the 90 nm process. + case 6: // Pentium 4 processor, Pentium D processor, Pentium processor + // Extreme Edition, Intel Xeon processor, Intel Xeon processor + // MP, Intel Celeron D processor. All processors are model 06h + // and manufactured using the 65 nm process. + *Type = + ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT); + break; + + default: + *Type = + ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); + break; + } + break; + } + default: + break; /*"generic"*/ + } +} + +static void getAMDProcessorTypeAndSubtype(unsigned int Family, + unsigned int Model, + unsigned int Features, + unsigned *Type, + unsigned *Subtype) { + // FIXME: this poorly matches the generated SubtargetFeatureKV table. There + // appears to be no way to generate the wide variety of AMD-specific targets + // from the information returned from CPUID. + switch (Family) { + case 4: + *Type = AMD_i486; + break; + case 5: + *Type = AMDPENTIUM; + switch (Model) { + case 6: + case 7: + *Subtype = AMDPENTIUM_K6; + break; // "k6" + case 8: + *Subtype = AMDPENTIUM_K62; + break; // "k6-2" + case 9: + case 13: + *Subtype = AMDPENTIUM_K63; + break; // "k6-3" + case 10: + *Subtype = AMDPENTIUM_GEODE; + break; // "geode" + } + break; + case 6: + *Type = AMDATHLON; + switch (Model) { + case 4: + *Subtype = AMDATHLON_TBIRD; + break; // "athlon-tbird" + case 6: + case 7: + case 8: + *Subtype = AMDATHLON_MP; + break; // "athlon-mp" + case 10: + *Subtype = AMDATHLON_XP; + break; // "athlon-xp" + } + break; + case 15: + *Type = AMDATHLON; + if (Features & (1 << FEATURE_SSE3)) { + *Subtype = AMDATHLON_K8SSE3; + break; // "k8-sse3" + } + switch (Model) { + case 1: + *Subtype = AMDATHLON_OPTERON; + break; // "opteron" + case 5: + *Subtype = AMDATHLON_FX; + break; // "athlon-fx"; also opteron + default: + *Subtype = AMDATHLON_64; + break; // "athlon64" + } + break; + case 16: + *Type = AMDFAM10H; // "amdfam10" + switch (Model) { + case 2: + *Subtype = AMDFAM10H_BARCELONA; + break; + case 4: + *Subtype = AMDFAM10H_SHANGHAI; + break; + case 8: + *Subtype = AMDFAM10H_ISTANBUL; + break; + } + break; + case 20: + *Type = AMDFAM14H; + *Subtype = AMD_BTVER1; + break; // "btver1"; + case 21: + *Type = AMDFAM15H; + if (!(Features & + (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback. + *Subtype = AMD_BTVER1; + break; // "btver1" + } + if (Model >= 0x50 && Model <= 0x6f) { + *Subtype = AMDFAM15H_BDVER4; + break; // "bdver4"; 50h-6Fh: Excavator + } + if (Model >= 0x30 && Model <= 0x3f) { + *Subtype = AMDFAM15H_BDVER3; + break; // "bdver3"; 30h-3Fh: Steamroller + } + if (Model >= 0x10 && Model <= 0x1f) { + *Subtype = AMDFAM15H_BDVER2; + break; // "bdver2"; 10h-1Fh: Piledriver + } + if (Model <= 0x0f) { + *Subtype = AMDFAM15H_BDVER1; + break; // "bdver1"; 00h-0Fh: Bulldozer + } + break; + case 22: + *Type = AMDFAM16H; + if (!(Features & + (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback. + *Subtype = AMD_BTVER1; + break; // "btver1"; + } + *Subtype = AMD_BTVER2; + break; // "btver2" + case 23: + *Type = AMDFAM17H; + if (Features & (1 << FEATURE_ADX)) { + *Subtype = AMDFAM17H_ZNVER1; + break; // "znver1" + } + *Subtype = AMD_BTVER1; + break; + default: + break; // "generic" + } +} + +static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX, + unsigned MaxLeaf) { + unsigned Features = 0; + unsigned int EAX, EBX; + Features |= (((EDX >> 23) & 1) << FEATURE_MMX); + Features |= (((EDX >> 25) & 1) << FEATURE_SSE); + Features |= (((EDX >> 26) & 1) << FEATURE_SSE2); + Features |= (((ECX >> 0) & 1) << FEATURE_SSE3); + Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3); + Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1); + Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2); + Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE); + + // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV + // indicates that the AVX registers will be saved and restored on context + // switch, then we have full AVX support. + const unsigned AVXBits = (1 << 27) | (1 << 28); + bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && + ((EAX & 0x6) == 0x6); + bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); + bool HasLeaf7 = + MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); + bool HasADX = HasLeaf7 && ((EBX >> 19) & 1); + bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20); + bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1); + Features |= (HasAVX << FEATURE_AVX); + Features |= (HasAVX2 << FEATURE_AVX2); + Features |= (HasAVX512 << FEATURE_AVX512); + Features |= (HasAVX512Save << FEATURE_AVX512SAVE); + Features |= (HasADX << FEATURE_ADX); + + getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); + Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T); + return Features; +} + +StringRef sys::getHostCPUName() { + unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; + unsigned MaxLeaf, Vendor; + +#if defined(__GNUC__) || defined(__clang__) + //FIXME: include cpuid.h from clang or copy __get_cpuid_max here + // and simplify it to not invoke __cpuid (like cpu_model.c in + // compiler-rt/lib/builtins/cpu_model.c? + // Opting for the second option. + if(!isCpuIdSupported()) + return "generic"; +#endif + if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX)) + return "generic"; + if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) + return "generic"; + + unsigned Brand_id = EBX & 0xff; + unsigned Family = 0, Model = 0; + unsigned Features = 0; + detectX86FamilyModel(EAX, &Family, &Model); + Features = getAvailableFeatures(ECX, EDX, MaxLeaf); + + unsigned Type; + unsigned Subtype; + + if (Vendor == SIG_INTEL) { + getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type, + &Subtype); + switch (Type) { + case INTEL_i386: + return "i386"; + case INTEL_i486: + return "i486"; + case INTEL_PENTIUM: + if (Subtype == INTEL_PENTIUM_MMX) + return "pentium-mmx"; + return "pentium"; + case INTEL_PENTIUM_PRO: + return "pentiumpro"; + case INTEL_PENTIUM_II: + return "pentium2"; + case INTEL_PENTIUM_III: + return "pentium3"; + case INTEL_PENTIUM_IV: + return "pentium4"; + case INTEL_PENTIUM_M: + return "pentium-m"; + case INTEL_CORE_DUO: + return "yonah"; + case INTEL_CORE2: + switch (Subtype) { + case INTEL_CORE2_65: + return "core2"; + case INTEL_CORE2_45: + return "penryn"; + default: + return "core2"; + } + case INTEL_COREI7: + switch (Subtype) { + case INTEL_COREI7_NEHALEM: + return "nehalem"; + case INTEL_COREI7_WESTMERE: + return "westmere"; + case INTEL_COREI7_SANDYBRIDGE: + return "sandybridge"; + case INTEL_COREI7_IVYBRIDGE: + return "ivybridge"; + case INTEL_COREI7_HASWELL: + return "haswell"; + case INTEL_COREI7_BROADWELL: + return "broadwell"; + case INTEL_COREI7_SKYLAKE: + return "skylake"; + case INTEL_COREI7_SKYLAKE_AVX512: + return "skylake-avx512"; + default: + return "corei7"; + } + case INTEL_ATOM: + switch (Subtype) { + case INTEL_ATOM_BONNELL: + return "bonnell"; + case INTEL_ATOM_SILVERMONT: + return "silvermont"; + default: + return "atom"; + } + case INTEL_XEONPHI: + return "knl"; /*update for more variants added*/ + case INTEL_X86_64: + return "x86-64"; + case INTEL_NOCONA: + return "nocona"; + case INTEL_PRESCOTT: + return "prescott"; + default: + return "generic"; + } + } else if (Vendor == SIG_AMD) { + getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); + switch (Type) { + case AMD_i486: + return "i486"; + case AMDPENTIUM: + switch (Subtype) { + case AMDPENTIUM_K6: + return "k6"; + case AMDPENTIUM_K62: + return "k6-2"; + case AMDPENTIUM_K63: + return "k6-3"; + case AMDPENTIUM_GEODE: + return "geode"; + default: + return "pentium"; + } + case AMDATHLON: + switch (Subtype) { + case AMDATHLON_TBIRD: + return "athlon-tbird"; + case AMDATHLON_MP: + return "athlon-mp"; + case AMDATHLON_XP: + return "athlon-xp"; + case AMDATHLON_K8SSE3: + return "k8-sse3"; + case AMDATHLON_OPTERON: + return "opteron"; + case AMDATHLON_FX: + return "athlon-fx"; + case AMDATHLON_64: + return "athlon64"; + default: + return "athlon"; + } + case AMDFAM10H: + if(Subtype == AMDFAM10H_BARCELONA) + return "barcelona"; + return "amdfam10"; + case AMDFAM14H: + return "btver1"; + case AMDFAM15H: + switch (Subtype) { + case AMDFAM15H_BDVER1: + return "bdver1"; + case AMDFAM15H_BDVER2: + return "bdver2"; + case AMDFAM15H_BDVER3: + return "bdver3"; + case AMDFAM15H_BDVER4: + return "bdver4"; + case AMD_BTVER1: + return "btver1"; + default: + return "amdfam15"; + } + case AMDFAM16H: + switch (Subtype) { + case AMD_BTVER1: + return "btver1"; + case AMD_BTVER2: + return "btver2"; + default: + return "amdfam16"; + } + case AMDFAM17H: + switch (Subtype) { + case AMD_BTVER1: + return "btver1"; + case AMDFAM17H_ZNVER1: + return "znver1"; + default: + return "amdfam17"; + } + default: + return "generic"; + } + } + return "generic"; +} + +#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) +StringRef sys::getHostCPUName() { + host_basic_info_data_t hostInfo; + mach_msg_type_number_t infoCount; + + infoCount = HOST_BASIC_INFO_COUNT; + host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, + &infoCount); + + if (hostInfo.cpu_type != CPU_TYPE_POWERPC) + return "generic"; + + switch (hostInfo.cpu_subtype) { + case CPU_SUBTYPE_POWERPC_601: + return "601"; + case CPU_SUBTYPE_POWERPC_602: + return "602"; + case CPU_SUBTYPE_POWERPC_603: + return "603"; + case CPU_SUBTYPE_POWERPC_603e: + return "603e"; + case CPU_SUBTYPE_POWERPC_603ev: + return "603ev"; + case CPU_SUBTYPE_POWERPC_604: + return "604"; + case CPU_SUBTYPE_POWERPC_604e: + return "604e"; + case CPU_SUBTYPE_POWERPC_620: + return "620"; + case CPU_SUBTYPE_POWERPC_750: + return "750"; + case CPU_SUBTYPE_POWERPC_7400: + return "7400"; + case CPU_SUBTYPE_POWERPC_7450: + return "7450"; + case CPU_SUBTYPE_POWERPC_970: + return "970"; + default:; + } + + return "generic"; +} +#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) +StringRef sys::getHostCPUName() { + std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); + const StringRef& Content = P ? P->getBuffer() : ""; + return detail::getHostCPUNameForPowerPC(Content); +} +#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) +StringRef sys::getHostCPUName() { + std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); + const StringRef& Content = P ? P->getBuffer() : ""; + return detail::getHostCPUNameForARM(Content); +} +#elif defined(__linux__) && defined(__s390x__) +StringRef sys::getHostCPUName() { + std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); + const StringRef& Content = P ? P->getBuffer() : ""; + return detail::getHostCPUNameForS390x(Content); +} +#else +StringRef sys::getHostCPUName() { return "generic"; } +#endif + +#if defined(__linux__) && defined(__x86_64__) +// On Linux, the number of physical cores can be computed from /proc/cpuinfo, +// using the number of unique physical/core id pairs. The following +// implementation reads the /proc/cpuinfo format on an x86_64 system. +static int computeHostNumPhysicalCores() { + // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be + // mmapped because it appears to have 0 size. + llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = + llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); + if (std::error_code EC = Text.getError()) { + llvm::errs() << "Can't read " + << "/proc/cpuinfo: " << EC.message() << "\n"; + return -1; + } + SmallVector<StringRef, 8> strs; + (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, + /*KeepEmpty=*/false); + int CurPhysicalId = -1; + int CurCoreId = -1; + SmallSet<std::pair<int, int>, 32> UniqueItems; + for (auto &Line : strs) { + Line = Line.trim(); + if (!Line.startswith("physical id") && !Line.startswith("core id")) + continue; + std::pair<StringRef, StringRef> Data = Line.split(':'); + auto Name = Data.first.trim(); + auto Val = Data.second.trim(); + if (Name == "physical id") { + assert(CurPhysicalId == -1 && + "Expected a core id before seeing another physical id"); + Val.getAsInteger(10, CurPhysicalId); + } + if (Name == "core id") { + assert(CurCoreId == -1 && + "Expected a physical id before seeing another core id"); + Val.getAsInteger(10, CurCoreId); + } + if (CurPhysicalId != -1 && CurCoreId != -1) { + UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); + CurPhysicalId = -1; + CurCoreId = -1; + } + } + return UniqueItems.size(); +} +#elif defined(__APPLE__) && defined(__x86_64__) +#include <sys/param.h> +#include <sys/sysctl.h> + +// Gets the number of *physical cores* on the machine. +static int computeHostNumPhysicalCores() { + uint32_t count; + size_t len = sizeof(count); + sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); + if (count < 1) { + int nm[2]; + nm[0] = CTL_HW; + nm[1] = HW_AVAILCPU; + sysctl(nm, 2, &count, &len, NULL, 0); + if (count < 1) + return -1; + } + return count; +} +#else +// On other systems, return -1 to indicate unknown. +static int computeHostNumPhysicalCores() { return -1; } +#endif + +int sys::getHostNumPhysicalCores() { + static int NumCores = computeHostNumPhysicalCores(); + return NumCores; +} + +#if defined(__i386__) || defined(_M_IX86) || \ + defined(__x86_64__) || defined(_M_X64) +bool sys::getHostCPUFeatures(StringMap<bool> &Features) { + unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; + unsigned MaxLevel; + union { + unsigned u[3]; + char c[12]; + } text; + + if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || + MaxLevel < 1) + return false; + + getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); + + Features["cmov"] = (EDX >> 15) & 1; + Features["mmx"] = (EDX >> 23) & 1; + Features["sse"] = (EDX >> 25) & 1; + Features["sse2"] = (EDX >> 26) & 1; + Features["sse3"] = (ECX >> 0) & 1; + Features["ssse3"] = (ECX >> 9) & 1; + Features["sse4.1"] = (ECX >> 19) & 1; + Features["sse4.2"] = (ECX >> 20) & 1; + + Features["pclmul"] = (ECX >> 1) & 1; + Features["cx16"] = (ECX >> 13) & 1; + Features["movbe"] = (ECX >> 22) & 1; + Features["popcnt"] = (ECX >> 23) & 1; + Features["aes"] = (ECX >> 25) & 1; + Features["rdrnd"] = (ECX >> 30) & 1; + + // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV + // indicates that the AVX registers will be saved and restored on context + // switch, then we have full AVX support. + bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && + !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); + Features["avx"] = HasAVXSave; + Features["fma"] = HasAVXSave && (ECX >> 12) & 1; + Features["f16c"] = HasAVXSave && (ECX >> 29) & 1; + + // Only enable XSAVE if OS has enabled support for saving YMM state. + Features["xsave"] = HasAVXSave && (ECX >> 26) & 1; + + // AVX512 requires additional context to be saved by the OS. + bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); + + unsigned MaxExtLevel; + getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); + + bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && + !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); + Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); + Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); + Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); + Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; + Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; + Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); + Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); + + bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && + !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX); + Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); + + bool HasLeaf7 = + MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); + + // AVX2 is only supported if we have the OS save support from AVX. + Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1); + + Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); + Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); + Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); + Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); + Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); + Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); + Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); + Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); + Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); + Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); + + // AVX512 is only supported if the OS supports the context save for it. + Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; + Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; + Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; + Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; + Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; + Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; + Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; + Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; + + Features["prefetchwt1"] = HasLeaf7 && (ECX & 1); + Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; + // Enable protection keys + Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); + + bool HasLeafD = MaxLevel >= 0xd && + !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); + + // Only enable XSAVE if OS has enabled support for saving YMM state. + Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1); + Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1); + Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1); + + return true; +} +#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) +bool sys::getHostCPUFeatures(StringMap<bool> &Features) { + std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); + if (!P) + return false; + + SmallVector<StringRef, 32> Lines; + P->getBuffer().split(Lines, "\n"); + + SmallVector<StringRef, 32> CPUFeatures; + + // Look for the CPU features. + for (unsigned I = 0, E = Lines.size(); I != E; ++I) + if (Lines[I].startswith("Features")) { + Lines[I].split(CPUFeatures, ' '); + break; + } + +#if defined(__aarch64__) + // Keep track of which crypto features we have seen + enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; + uint32_t crypto = 0; +#endif + + for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { + StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) +#if defined(__aarch64__) + .Case("asimd", "neon") + .Case("fp", "fp-armv8") + .Case("crc32", "crc") +#else + .Case("half", "fp16") + .Case("neon", "neon") + .Case("vfpv3", "vfp3") + .Case("vfpv3d16", "d16") + .Case("vfpv4", "vfp4") + .Case("idiva", "hwdiv-arm") + .Case("idivt", "hwdiv") +#endif + .Default(""); + +#if defined(__aarch64__) + // We need to check crypto separately since we need all of the crypto + // extensions to enable the subtarget feature + if (CPUFeatures[I] == "aes") + crypto |= CAP_AES; + else if (CPUFeatures[I] == "pmull") + crypto |= CAP_PMULL; + else if (CPUFeatures[I] == "sha1") + crypto |= CAP_SHA1; + else if (CPUFeatures[I] == "sha2") + crypto |= CAP_SHA2; +#endif + + if (LLVMFeatureStr != "") + Features[LLVMFeatureStr] = true; + } + +#if defined(__aarch64__) + // If we have all crypto bits we can add the feature + if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) + Features["crypto"] = true; +#endif + + return true; +} +#else +bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } +#endif + +std::string sys::getProcessTriple() { + Triple PT(Triple::normalize(LLVM_HOST_TRIPLE)); + + if (sizeof(void *) == 8 && PT.isArch32Bit()) + PT = PT.get64BitArchVariant(); + if (sizeof(void *) == 4 && PT.isArch64Bit()) + PT = PT.get32BitArchVariant(); + + return PT.str(); +} diff --git a/llvm/lib/Target/X86/X86.td b/llvm/lib/Target/X86/X86.td index 784c3a6557f..d2f650cf8f4 100644 --- a/llvm/lib/Target/X86/X86.td +++ b/llvm/lib/Target/X86/X86.td @@ -170,8 +170,6 @@ def FeatureAES : SubtargetFeature<"aes", "HasAES", "true", [FeatureSSE2]>; def FeatureTBM : SubtargetFeature<"tbm", "HasTBM", "true", "Enable TBM instructions">; -def FeatureLWP : SubtargetFeature<"lwp", "HasLWP", "true", - "Enable LWP instructions">; def FeatureMOVBE : SubtargetFeature<"movbe", "HasMOVBE", "true", "Support MOVBE instruction">; def FeatureRDRAND : SubtargetFeature<"rdrnd", "HasRDRAND", "true", @@ -693,7 +691,6 @@ def : Proc<"bdver1", [ FeatureLZCNT, FeaturePOPCNT, FeatureXSAVE, - FeatureLWP, FeatureSlowSHLD, FeatureLAHFSAHF ]>; @@ -716,7 +713,6 @@ def : Proc<"bdver2", [ FeatureXSAVE, FeatureBMI, FeatureTBM, - FeatureLWP, FeatureFMA, FeatureSlowSHLD, FeatureLAHFSAHF @@ -741,7 +737,6 @@ def : Proc<"bdver3", [ FeatureXSAVE, FeatureBMI, FeatureTBM, - FeatureLWP, FeatureFMA, FeatureXSAVEOPT, FeatureSlowSHLD, @@ -768,7 +763,6 @@ def : Proc<"bdver4", [ FeatureBMI, FeatureBMI2, FeatureTBM, - FeatureLWP, FeatureFMA, FeatureXSAVEOPT, FeatureSlowSHLD, diff --git a/llvm/lib/Target/X86/X86ISelLowering.cpp b/llvm/lib/Target/X86/X86ISelLowering.cpp index 687dccf06ce..ef5ad4f4605 100644 --- a/llvm/lib/Target/X86/X86ISelLowering.cpp +++ b/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -20318,19 +20318,6 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget, // during ExpandISelPseudos in EmitInstrWithCustomInserter. return SDValue(); } - case Intrinsic::x86_lwpins32: - case Intrinsic::x86_lwpins64: { - SDLoc dl(Op); - SDValue Chain = Op->getOperand(0); - SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); - SDValue LwpIns = - DAG.getNode(X86ISD::LWPINS, dl, VTs, Chain, Op->getOperand(2), - Op->getOperand(3), Op->getOperand(4)); - SDValue SetCC = getSETCC(X86::COND_B, LwpIns.getValue(0), dl, DAG); - SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, SetCC); - return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, - LwpIns.getValue(1)); - } } return SDValue(); } @@ -24507,7 +24494,6 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND"; case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND"; case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND"; - case X86ISD::LWPINS: return "X86ISD::LWPINS"; } return nullptr; } diff --git a/llvm/lib/Target/X86/X86ISelLowering.h b/llvm/lib/Target/X86/X86ISelLowering.h index 18106c2eb39..46dc587c637 100644 --- a/llvm/lib/Target/X86/X86ISelLowering.h +++ b/llvm/lib/Target/X86/X86ISelLowering.h @@ -559,9 +559,6 @@ namespace llvm { // Conversions between float and half-float. CVTPS2PH, CVTPH2PS, - // LWP insert record. - LWPINS, - // Compare and swap. LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, LCMPXCHG8_DAG, diff --git a/llvm/lib/Target/X86/X86InstrInfo.td b/llvm/lib/Target/X86/X86InstrInfo.td index cdf7ce19cdc..ce087649867 100644 --- a/llvm/lib/Target/X86/X86InstrInfo.td +++ b/llvm/lib/Target/X86/X86InstrInfo.td @@ -283,11 +283,6 @@ def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA, def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; -def X86lwpins : SDNode<"X86ISD::LWPINS", - SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisInt<1>, - SDTCisVT<2, i32>, SDTCisVT<3, i32>]>, - [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPSideEffect]>; - //===----------------------------------------------------------------------===// // X86 Operand Definitions. // @@ -841,7 +836,6 @@ def HasFMA : Predicate<"Subtarget->hasFMA()">; def HasFMA4 : Predicate<"Subtarget->hasFMA4()">; def HasXOP : Predicate<"Subtarget->hasXOP()">; def HasTBM : Predicate<"Subtarget->hasTBM()">; -def HasLWP : Predicate<"Subtarget->hasLWP()">; def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">; def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">; def HasF16C : Predicate<"Subtarget->hasF16C()">; @@ -2450,59 +2444,6 @@ defm TZMSK : tbm_binary_intr<0x01, "tzmsk", MRM4r, MRM4m>; } // HasTBM, EFLAGS //===----------------------------------------------------------------------===// -// Lightweight Profiling Instructions - -let Predicates = [HasLWP] in { - -def LLWPCB : I<0x12, MRM0r, (outs), (ins GR32:$src), "llwpcb\t$src", - [(int_x86_llwpcb GR32:$src)], IIC_LWP>, - XOP, XOP9, Requires<[Not64BitMode]>; -def SLWPCB : I<0x12, MRM1r, (outs GR32:$dst), (ins), "slwpcb\t$dst", - [(set GR32:$dst, (int_x86_slwpcb))], IIC_LWP>, - XOP, XOP9, Requires<[Not64BitMode]>; - -def LLWPCB64 : I<0x12, MRM0r, (outs), (ins GR64:$src), "llwpcb\t$src", - [(int_x86_llwpcb GR64:$src)], IIC_LWP>, - XOP, XOP9, VEX_W, Requires<[In64BitMode]>; -def SLWPCB64 : I<0x12, MRM1r, (outs GR64:$dst), (ins), "slwpcb\t$dst", - [(set GR64:$dst, (int_x86_slwpcb))], IIC_LWP>, - XOP, XOP9, VEX_W, Requires<[In64BitMode]>; - -multiclass lwpins_intr<RegisterClass RC> { - def rri : Ii32<0x12, MRM0r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl), - "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", - [(set EFLAGS, (X86lwpins RC:$src0, GR32:$src1, imm:$cntl))]>, - XOP_4V, XOPA; - let mayLoad = 1 in - def rmi : Ii32<0x12, MRM0m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl), - "lwpins\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", - [(set EFLAGS, (X86lwpins RC:$src0, (loadi32 addr:$src1), imm:$cntl))]>, - XOP_4V, XOPA; -} - -let Defs = [EFLAGS] in { - defm LWPINS32 : lwpins_intr<GR32>; - defm LWPINS64 : lwpins_intr<GR64>, VEX_W; -} // EFLAGS - -multiclass lwpval_intr<RegisterClass RC, Intrinsic Int> { - def rri : Ii32<0x12, MRM1r, (outs), (ins RC:$src0, GR32:$src1, i32imm:$cntl), - "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", - [(Int RC:$src0, GR32:$src1, imm:$cntl)], IIC_LWP>, - XOP_4V, XOPA; - let mayLoad = 1 in - def rmi : Ii32<0x12, MRM1m, (outs), (ins RC:$src0, i32mem:$src1, i32imm:$cntl), - "lwpval\t{$cntl, $src1, $src0|$src0, $src1, $cntl}", - [(Int RC:$src0, (loadi32 addr:$src1), imm:$cntl)], IIC_LWP>, - XOP_4V, XOPA; -} - -defm LWPVAL32 : lwpval_intr<GR32, int_x86_lwpval32>; -defm LWPVAL64 : lwpval_intr<GR64, int_x86_lwpval64>, VEX_W; - -} // HasLWP - -//===----------------------------------------------------------------------===// // MONITORX/MWAITX Instructions // let SchedRW = [ WriteSystem ] in { diff --git a/llvm/lib/Target/X86/X86Schedule.td b/llvm/lib/Target/X86/X86Schedule.td index 6580fbdd3db..7f7efd7cad3 100644 --- a/llvm/lib/Target/X86/X86Schedule.td +++ b/llvm/lib/Target/X86/X86Schedule.td @@ -1,663 +1,662 @@ -//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-// InstrSchedModel annotations for out-of-order CPUs.
-//
-// These annotations are independent of the itinerary classes defined below.
-
-// Instructions with folded loads need to read the memory operand immediately,
-// but other register operands don't have to be read until the load is ready.
-// These operands are marked with ReadAfterLd.
-def ReadAfterLd : SchedRead;
-
-// Instructions with both a load and a store folded are modeled as a folded
-// load + WriteRMW.
-def WriteRMW : SchedWrite;
-
-// Most instructions can fold loads, so almost every SchedWrite comes in two
-// variants: With and without a folded load.
-// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
-// with a folded load.
-class X86FoldableSchedWrite : SchedWrite {
- // The SchedWrite to use when a load is folded into the instruction.
- SchedWrite Folded;
-}
-
-// Multiclass that produces a linked pair of SchedWrites.
-multiclass X86SchedWritePair {
- // Register-Memory operation.
- def Ld : SchedWrite;
- // Register-Register operation.
- def NAME : X86FoldableSchedWrite {
- let Folded = !cast<SchedWrite>(NAME#"Ld");
- }
-}
-
-// Arithmetic.
-defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
-defm WriteIMul : X86SchedWritePair; // Integer multiplication.
-def WriteIMulH : SchedWrite; // Integer multiplication, high part.
-defm WriteIDiv : X86SchedWritePair; // Integer division.
-def WriteLEA : SchedWrite; // LEA instructions can't fold loads.
-
-// Integer shifts and rotates.
-defm WriteShift : X86SchedWritePair;
-
-// Loads, stores, and moves, not folded with other operations.
-def WriteLoad : SchedWrite;
-def WriteStore : SchedWrite;
-def WriteMove : SchedWrite;
-
-// Idioms that clear a register, like xorps %xmm0, %xmm0.
-// These can often bypass execution ports completely.
-def WriteZero : SchedWrite;
-
-// Branches don't produce values, so they have no latency, but they still
-// consume resources. Indirect branches can fold loads.
-defm WriteJump : X86SchedWritePair;
-
-// Floating point. This covers both scalar and vector operations.
-defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
-defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
-defm WriteFDiv : X86SchedWritePair; // Floating point division.
-defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
-defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate.
-defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate.
-defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
-defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles.
-defm WriteFBlend : X86SchedWritePair; // Floating point vector blends.
-defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends.
-
-// FMA Scheduling helper class.
-class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
-
-// Vector integer operations.
-defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.
-defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
-defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.
-defm WriteShuffle : X86SchedWritePair; // Vector shuffles.
-defm WriteBlend : X86SchedWritePair; // Vector blends.
-defm WriteVarBlend : X86SchedWritePair; // Vector variable blends.
-defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD.
-
-// Vector bitwise operations.
-// These are often used on both floating point and integer vectors.
-defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
-
-// Conversion between integer and float.
-defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
-defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
-defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
-
-// Strings instructions.
-// Packed Compare Implicit Length Strings, Return Mask
-defm WritePCmpIStrM : X86SchedWritePair;
-// Packed Compare Explicit Length Strings, Return Mask
-defm WritePCmpEStrM : X86SchedWritePair;
-// Packed Compare Implicit Length Strings, Return Index
-defm WritePCmpIStrI : X86SchedWritePair;
-// Packed Compare Explicit Length Strings, Return Index
-defm WritePCmpEStrI : X86SchedWritePair;
-
-// AES instructions.
-defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption.
-defm WriteAESIMC : X86SchedWritePair; // InvMixColumn.
-defm WriteAESKeyGen : X86SchedWritePair; // Key Generation.
-
-// Carry-less multiplication instructions.
-defm WriteCLMul : X86SchedWritePair;
-
-// Catch-all for expensive system instructions.
-def WriteSystem : SchedWrite;
-
-// AVX2.
-defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles.
-defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles.
-defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts.
-
-// Old microcoded instructions that nobody use.
-def WriteMicrocoded : SchedWrite;
-
-// Fence instructions.
-def WriteFence : SchedWrite;
-
-// Nop, not very useful expect it provides a model for nops!
-def WriteNop : SchedWrite;
-
-//===----------------------------------------------------------------------===//
-// Instruction Itinerary classes used for X86
-def IIC_ALU_MEM : InstrItinClass;
-def IIC_ALU_NONMEM : InstrItinClass;
-def IIC_LEA : InstrItinClass;
-def IIC_LEA_16 : InstrItinClass;
-def IIC_MUL8 : InstrItinClass;
-def IIC_MUL16_MEM : InstrItinClass;
-def IIC_MUL16_REG : InstrItinClass;
-def IIC_MUL32_MEM : InstrItinClass;
-def IIC_MUL32_REG : InstrItinClass;
-def IIC_MUL64 : InstrItinClass;
-// imul by al, ax, eax, tax
-def IIC_IMUL8 : InstrItinClass;
-def IIC_IMUL16_MEM : InstrItinClass;
-def IIC_IMUL16_REG : InstrItinClass;
-def IIC_IMUL32_MEM : InstrItinClass;
-def IIC_IMUL32_REG : InstrItinClass;
-def IIC_IMUL64 : InstrItinClass;
-// imul reg by reg|mem
-def IIC_IMUL16_RM : InstrItinClass;
-def IIC_IMUL16_RR : InstrItinClass;
-def IIC_IMUL32_RM : InstrItinClass;
-def IIC_IMUL32_RR : InstrItinClass;
-def IIC_IMUL64_RM : InstrItinClass;
-def IIC_IMUL64_RR : InstrItinClass;
-// imul reg = reg/mem * imm
-def IIC_IMUL16_RMI : InstrItinClass;
-def IIC_IMUL16_RRI : InstrItinClass;
-def IIC_IMUL32_RMI : InstrItinClass;
-def IIC_IMUL32_RRI : InstrItinClass;
-def IIC_IMUL64_RMI : InstrItinClass;
-def IIC_IMUL64_RRI : InstrItinClass;
-// div
-def IIC_DIV8_MEM : InstrItinClass;
-def IIC_DIV8_REG : InstrItinClass;
-def IIC_DIV16 : InstrItinClass;
-def IIC_DIV32 : InstrItinClass;
-def IIC_DIV64 : InstrItinClass;
-// idiv
-def IIC_IDIV8 : InstrItinClass;
-def IIC_IDIV16 : InstrItinClass;
-def IIC_IDIV32 : InstrItinClass;
-def IIC_IDIV64 : InstrItinClass;
-// neg/not/inc/dec
-def IIC_UNARY_REG : InstrItinClass;
-def IIC_UNARY_MEM : InstrItinClass;
-// add/sub/and/or/xor/sbc/cmp/test
-def IIC_BIN_MEM : InstrItinClass;
-def IIC_BIN_NONMEM : InstrItinClass;
-// adc/sbc
-def IIC_BIN_CARRY_MEM : InstrItinClass;
-def IIC_BIN_CARRY_NONMEM : InstrItinClass;
-// shift/rotate
-def IIC_SR : InstrItinClass;
-// shift double
-def IIC_SHD16_REG_IM : InstrItinClass;
-def IIC_SHD16_REG_CL : InstrItinClass;
-def IIC_SHD16_MEM_IM : InstrItinClass;
-def IIC_SHD16_MEM_CL : InstrItinClass;
-def IIC_SHD32_REG_IM : InstrItinClass;
-def IIC_SHD32_REG_CL : InstrItinClass;
-def IIC_SHD32_MEM_IM : InstrItinClass;
-def IIC_SHD32_MEM_CL : InstrItinClass;
-def IIC_SHD64_REG_IM : InstrItinClass;
-def IIC_SHD64_REG_CL : InstrItinClass;
-def IIC_SHD64_MEM_IM : InstrItinClass;
-def IIC_SHD64_MEM_CL : InstrItinClass;
-// cmov
-def IIC_CMOV16_RM : InstrItinClass;
-def IIC_CMOV16_RR : InstrItinClass;
-def IIC_CMOV32_RM : InstrItinClass;
-def IIC_CMOV32_RR : InstrItinClass;
-def IIC_CMOV64_RM : InstrItinClass;
-def IIC_CMOV64_RR : InstrItinClass;
-// set
-def IIC_SET_R : InstrItinClass;
-def IIC_SET_M : InstrItinClass;
-// jmp/jcc/jcxz
-def IIC_Jcc : InstrItinClass;
-def IIC_JCXZ : InstrItinClass;
-def IIC_JMP_REL : InstrItinClass;
-def IIC_JMP_REG : InstrItinClass;
-def IIC_JMP_MEM : InstrItinClass;
-def IIC_JMP_FAR_MEM : InstrItinClass;
-def IIC_JMP_FAR_PTR : InstrItinClass;
-// loop
-def IIC_LOOP : InstrItinClass;
-def IIC_LOOPE : InstrItinClass;
-def IIC_LOOPNE : InstrItinClass;
-// call
-def IIC_CALL_RI : InstrItinClass;
-def IIC_CALL_MEM : InstrItinClass;
-def IIC_CALL_FAR_MEM : InstrItinClass;
-def IIC_CALL_FAR_PTR : InstrItinClass;
-// ret
-def IIC_RET : InstrItinClass;
-def IIC_RET_IMM : InstrItinClass;
-//sign extension movs
-def IIC_MOVSX : InstrItinClass;
-def IIC_MOVSX_R16_R8 : InstrItinClass;
-def IIC_MOVSX_R16_M8 : InstrItinClass;
-def IIC_MOVSX_R16_R16 : InstrItinClass;
-def IIC_MOVSX_R32_R32 : InstrItinClass;
-//zero extension movs
-def IIC_MOVZX : InstrItinClass;
-def IIC_MOVZX_R16_R8 : InstrItinClass;
-def IIC_MOVZX_R16_M8 : InstrItinClass;
-
-def IIC_REP_MOVS : InstrItinClass;
-def IIC_REP_STOS : InstrItinClass;
-
-// SSE scalar/parallel binary operations
-def IIC_SSE_ALU_F32S_RR : InstrItinClass;
-def IIC_SSE_ALU_F32S_RM : InstrItinClass;
-def IIC_SSE_ALU_F64S_RR : InstrItinClass;
-def IIC_SSE_ALU_F64S_RM : InstrItinClass;
-def IIC_SSE_MUL_F32S_RR : InstrItinClass;
-def IIC_SSE_MUL_F32S_RM : InstrItinClass;
-def IIC_SSE_MUL_F64S_RR : InstrItinClass;
-def IIC_SSE_MUL_F64S_RM : InstrItinClass;
-def IIC_SSE_DIV_F32S_RR : InstrItinClass;
-def IIC_SSE_DIV_F32S_RM : InstrItinClass;
-def IIC_SSE_DIV_F64S_RR : InstrItinClass;
-def IIC_SSE_DIV_F64S_RM : InstrItinClass;
-def IIC_SSE_ALU_F32P_RR : InstrItinClass;
-def IIC_SSE_ALU_F32P_RM : InstrItinClass;
-def IIC_SSE_ALU_F64P_RR : InstrItinClass;
-def IIC_SSE_ALU_F64P_RM : InstrItinClass;
-def IIC_SSE_MUL_F32P_RR : InstrItinClass;
-def IIC_SSE_MUL_F32P_RM : InstrItinClass;
-def IIC_SSE_MUL_F64P_RR : InstrItinClass;
-def IIC_SSE_MUL_F64P_RM : InstrItinClass;
-def IIC_SSE_DIV_F32P_RR : InstrItinClass;
-def IIC_SSE_DIV_F32P_RM : InstrItinClass;
-def IIC_SSE_DIV_F64P_RR : InstrItinClass;
-def IIC_SSE_DIV_F64P_RM : InstrItinClass;
-
-def IIC_SSE_COMIS_RR : InstrItinClass;
-def IIC_SSE_COMIS_RM : InstrItinClass;
-
-def IIC_SSE_HADDSUB_RR : InstrItinClass;
-def IIC_SSE_HADDSUB_RM : InstrItinClass;
-
-def IIC_SSE_BIT_P_RR : InstrItinClass;
-def IIC_SSE_BIT_P_RM : InstrItinClass;
-
-def IIC_SSE_INTALU_P_RR : InstrItinClass;
-def IIC_SSE_INTALU_P_RM : InstrItinClass;
-def IIC_SSE_INTALUQ_P_RR : InstrItinClass;
-def IIC_SSE_INTALUQ_P_RM : InstrItinClass;
-
-def IIC_SSE_INTMUL_P_RR : InstrItinClass;
-def IIC_SSE_INTMUL_P_RM : InstrItinClass;
-
-def IIC_SSE_INTSH_P_RR : InstrItinClass;
-def IIC_SSE_INTSH_P_RM : InstrItinClass;
-def IIC_SSE_INTSH_P_RI : InstrItinClass;
-
-def IIC_SSE_INTSHDQ_P_RI : InstrItinClass;
-
-def IIC_SSE_SHUFP : InstrItinClass;
-def IIC_SSE_PSHUF_RI : InstrItinClass;
-def IIC_SSE_PSHUF_MI : InstrItinClass;
-
-def IIC_SSE_UNPCK : InstrItinClass;
-
-def IIC_SSE_MOVMSK : InstrItinClass;
-def IIC_SSE_MASKMOV : InstrItinClass;
-
-def IIC_SSE_PEXTRW : InstrItinClass;
-def IIC_SSE_PINSRW : InstrItinClass;
-
-def IIC_SSE_PABS_RR : InstrItinClass;
-def IIC_SSE_PABS_RM : InstrItinClass;
-
-def IIC_SSE_SQRTPS_RR : InstrItinClass;
-def IIC_SSE_SQRTPS_RM : InstrItinClass;
-def IIC_SSE_SQRTSS_RR : InstrItinClass;
-def IIC_SSE_SQRTSS_RM : InstrItinClass;
-def IIC_SSE_SQRTPD_RR : InstrItinClass;
-def IIC_SSE_SQRTPD_RM : InstrItinClass;
-def IIC_SSE_SQRTSD_RR : InstrItinClass;
-def IIC_SSE_SQRTSD_RM : InstrItinClass;
-
-def IIC_SSE_RSQRTPS_RR : InstrItinClass;
-def IIC_SSE_RSQRTPS_RM : InstrItinClass;
-def IIC_SSE_RSQRTSS_RR : InstrItinClass;
-def IIC_SSE_RSQRTSS_RM : InstrItinClass;
-
-def IIC_SSE_RCPP_RR : InstrItinClass;
-def IIC_SSE_RCPP_RM : InstrItinClass;
-def IIC_SSE_RCPS_RR : InstrItinClass;
-def IIC_SSE_RCPS_RM : InstrItinClass;
-
-def IIC_SSE_MOV_S_RR : InstrItinClass;
-def IIC_SSE_MOV_S_RM : InstrItinClass;
-def IIC_SSE_MOV_S_MR : InstrItinClass;
-
-def IIC_SSE_MOVA_P_RR : InstrItinClass;
-def IIC_SSE_MOVA_P_RM : InstrItinClass;
-def IIC_SSE_MOVA_P_MR : InstrItinClass;
-
-def IIC_SSE_MOVU_P_RR : InstrItinClass;
-def IIC_SSE_MOVU_P_RM : InstrItinClass;
-def IIC_SSE_MOVU_P_MR : InstrItinClass;
-
-def IIC_SSE_MOVDQ : InstrItinClass;
-def IIC_SSE_MOVD_ToGP : InstrItinClass;
-def IIC_SSE_MOVQ_RR : InstrItinClass;
-
-def IIC_SSE_MOV_LH : InstrItinClass;
-
-def IIC_SSE_LDDQU : InstrItinClass;
-
-def IIC_SSE_MOVNT : InstrItinClass;
-
-def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
-def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
-def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
-def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
-def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
-def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
-def IIC_SSE_PSHUFB_RR : InstrItinClass;
-def IIC_SSE_PSHUFB_RM : InstrItinClass;
-def IIC_SSE_PSIGN_RR : InstrItinClass;
-def IIC_SSE_PSIGN_RM : InstrItinClass;
-
-def IIC_SSE_PMADD : InstrItinClass;
-def IIC_SSE_PMULHRSW : InstrItinClass;
-def IIC_SSE_PALIGNRR : InstrItinClass;
-def IIC_SSE_PALIGNRM : InstrItinClass;
-def IIC_SSE_MWAIT : InstrItinClass;
-def IIC_SSE_MONITOR : InstrItinClass;
-def IIC_SSE_MWAITX : InstrItinClass;
-def IIC_SSE_MONITORX : InstrItinClass;
-def IIC_SSE_CLZERO : InstrItinClass;
-
-def IIC_SSE_PREFETCH : InstrItinClass;
-def IIC_SSE_PAUSE : InstrItinClass;
-def IIC_SSE_LFENCE : InstrItinClass;
-def IIC_SSE_MFENCE : InstrItinClass;
-def IIC_SSE_SFENCE : InstrItinClass;
-def IIC_SSE_LDMXCSR : InstrItinClass;
-def IIC_SSE_STMXCSR : InstrItinClass;
-
-def IIC_SSE_CVT_PD_RR : InstrItinClass;
-def IIC_SSE_CVT_PD_RM : InstrItinClass;
-def IIC_SSE_CVT_PS_RR : InstrItinClass;
-def IIC_SSE_CVT_PS_RM : InstrItinClass;
-def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;
-def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;
-def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
-def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
-def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
-def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
-def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
-def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
-def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
-def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;
-
-// MMX
-def IIC_MMX_MOV_MM_RM : InstrItinClass;
-def IIC_MMX_MOV_REG_MM : InstrItinClass;
-def IIC_MMX_MOVQ_RM : InstrItinClass;
-def IIC_MMX_MOVQ_RR : InstrItinClass;
-
-def IIC_MMX_ALU_RM : InstrItinClass;
-def IIC_MMX_ALU_RR : InstrItinClass;
-def IIC_MMX_ALUQ_RM : InstrItinClass;
-def IIC_MMX_ALUQ_RR : InstrItinClass;
-def IIC_MMX_PHADDSUBW_RM : InstrItinClass;
-def IIC_MMX_PHADDSUBW_RR : InstrItinClass;
-def IIC_MMX_PHADDSUBD_RM : InstrItinClass;
-def IIC_MMX_PHADDSUBD_RR : InstrItinClass;
-def IIC_MMX_PMUL : InstrItinClass;
-def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;
-def IIC_MMX_MISC_FUNC_REG : InstrItinClass;
-def IIC_MMX_PSADBW : InstrItinClass;
-def IIC_MMX_SHIFT_RI : InstrItinClass;
-def IIC_MMX_SHIFT_RM : InstrItinClass;
-def IIC_MMX_SHIFT_RR : InstrItinClass;
-def IIC_MMX_UNPCK_H_RM : InstrItinClass;
-def IIC_MMX_UNPCK_H_RR : InstrItinClass;
-def IIC_MMX_UNPCK_L : InstrItinClass;
-def IIC_MMX_PCK_RM : InstrItinClass;
-def IIC_MMX_PCK_RR : InstrItinClass;
-def IIC_MMX_PSHUF : InstrItinClass;
-def IIC_MMX_PEXTR : InstrItinClass;
-def IIC_MMX_PINSRW : InstrItinClass;
-def IIC_MMX_MASKMOV : InstrItinClass;
-
-def IIC_MMX_CVT_PD_RR : InstrItinClass;
-def IIC_MMX_CVT_PD_RM : InstrItinClass;
-def IIC_MMX_CVT_PS_RR : InstrItinClass;
-def IIC_MMX_CVT_PS_RM : InstrItinClass;
-
-def IIC_CMPX_LOCK : InstrItinClass;
-def IIC_CMPX_LOCK_8 : InstrItinClass;
-def IIC_CMPX_LOCK_8B : InstrItinClass;
-def IIC_CMPX_LOCK_16B : InstrItinClass;
-
-def IIC_XADD_LOCK_MEM : InstrItinClass;
-def IIC_XADD_LOCK_MEM8 : InstrItinClass;
-
-def IIC_FILD : InstrItinClass;
-def IIC_FLD : InstrItinClass;
-def IIC_FLD80 : InstrItinClass;
-def IIC_FST : InstrItinClass;
-def IIC_FST80 : InstrItinClass;
-def IIC_FIST : InstrItinClass;
-def IIC_FLDZ : InstrItinClass;
-def IIC_FUCOM : InstrItinClass;
-def IIC_FUCOMI : InstrItinClass;
-def IIC_FCOMI : InstrItinClass;
-def IIC_FNSTSW : InstrItinClass;
-def IIC_FNSTCW : InstrItinClass;
-def IIC_FLDCW : InstrItinClass;
-def IIC_FNINIT : InstrItinClass;
-def IIC_FFREE : InstrItinClass;
-def IIC_FNCLEX : InstrItinClass;
-def IIC_WAIT : InstrItinClass;
-def IIC_FXAM : InstrItinClass;
-def IIC_FNOP : InstrItinClass;
-def IIC_FLDL : InstrItinClass;
-def IIC_F2XM1 : InstrItinClass;
-def IIC_FYL2X : InstrItinClass;
-def IIC_FPTAN : InstrItinClass;
-def IIC_FPATAN : InstrItinClass;
-def IIC_FXTRACT : InstrItinClass;
-def IIC_FPREM1 : InstrItinClass;
-def IIC_FPSTP : InstrItinClass;
-def IIC_FPREM : InstrItinClass;
-def IIC_FYL2XP1 : InstrItinClass;
-def IIC_FSINCOS : InstrItinClass;
-def IIC_FRNDINT : InstrItinClass;
-def IIC_FSCALE : InstrItinClass;
-def IIC_FCOMPP : InstrItinClass;
-def IIC_FXSAVE : InstrItinClass;
-def IIC_FXRSTOR : InstrItinClass;
-
-def IIC_FXCH : InstrItinClass;
-
-// System instructions
-def IIC_CPUID : InstrItinClass;
-def IIC_INT : InstrItinClass;
-def IIC_INT3 : InstrItinClass;
-def IIC_INVD : InstrItinClass;
-def IIC_INVLPG : InstrItinClass;
-def IIC_IRET : InstrItinClass;
-def IIC_HLT : InstrItinClass;
-def IIC_LXS : InstrItinClass;
-def IIC_LTR : InstrItinClass;
-def IIC_RDTSC : InstrItinClass;
-def IIC_RSM : InstrItinClass;
-def IIC_SIDT : InstrItinClass;
-def IIC_SGDT : InstrItinClass;
-def IIC_SLDT : InstrItinClass;
-def IIC_STR : InstrItinClass;
-def IIC_SWAPGS : InstrItinClass;
-def IIC_SYSCALL : InstrItinClass;
-def IIC_SYS_ENTER_EXIT : InstrItinClass;
-def IIC_IN_RR : InstrItinClass;
-def IIC_IN_RI : InstrItinClass;
-def IIC_OUT_RR : InstrItinClass;
-def IIC_OUT_IR : InstrItinClass;
-def IIC_INS : InstrItinClass;
-def IIC_LWP : InstrItinClass;
-def IIC_MOV_REG_DR : InstrItinClass;
-def IIC_MOV_DR_REG : InstrItinClass;
-def IIC_MOV_REG_CR : InstrItinClass;
-def IIC_MOV_CR_REG : InstrItinClass;
-def IIC_MOV_REG_SR : InstrItinClass;
-def IIC_MOV_MEM_SR : InstrItinClass;
-def IIC_MOV_SR_REG : InstrItinClass;
-def IIC_MOV_SR_MEM : InstrItinClass;
-def IIC_LAR_RM : InstrItinClass;
-def IIC_LAR_RR : InstrItinClass;
-def IIC_LSL_RM : InstrItinClass;
-def IIC_LSL_RR : InstrItinClass;
-def IIC_LGDT : InstrItinClass;
-def IIC_LIDT : InstrItinClass;
-def IIC_LLDT_REG : InstrItinClass;
-def IIC_LLDT_MEM : InstrItinClass;
-def IIC_PUSH_CS : InstrItinClass;
-def IIC_PUSH_SR : InstrItinClass;
-def IIC_POP_SR : InstrItinClass;
-def IIC_POP_SR_SS : InstrItinClass;
-def IIC_VERR : InstrItinClass;
-def IIC_VERW_REG : InstrItinClass;
-def IIC_VERW_MEM : InstrItinClass;
-def IIC_WRMSR : InstrItinClass;
-def IIC_RDMSR : InstrItinClass;
-def IIC_RDPMC : InstrItinClass;
-def IIC_SMSW : InstrItinClass;
-def IIC_LMSW_REG : InstrItinClass;
-def IIC_LMSW_MEM : InstrItinClass;
-def IIC_ENTER : InstrItinClass;
-def IIC_LEAVE : InstrItinClass;
-def IIC_POP_MEM : InstrItinClass;
-def IIC_POP_REG16 : InstrItinClass;
-def IIC_POP_REG : InstrItinClass;
-def IIC_POP_F : InstrItinClass;
-def IIC_POP_FD : InstrItinClass;
-def IIC_POP_A : InstrItinClass;
-def IIC_PUSH_IMM : InstrItinClass;
-def IIC_PUSH_MEM : InstrItinClass;
-def IIC_PUSH_REG : InstrItinClass;
-def IIC_PUSH_F : InstrItinClass;
-def IIC_PUSH_A : InstrItinClass;
-def IIC_BSWAP : InstrItinClass;
-def IIC_BIT_SCAN_MEM : InstrItinClass;
-def IIC_BIT_SCAN_REG : InstrItinClass;
-def IIC_MOVS : InstrItinClass;
-def IIC_STOS : InstrItinClass;
-def IIC_SCAS : InstrItinClass;
-def IIC_CMPS : InstrItinClass;
-def IIC_MOV : InstrItinClass;
-def IIC_MOV_MEM : InstrItinClass;
-def IIC_AHF : InstrItinClass;
-def IIC_BT_MI : InstrItinClass;
-def IIC_BT_MR : InstrItinClass;
-def IIC_BT_RI : InstrItinClass;
-def IIC_BT_RR : InstrItinClass;
-def IIC_BTX_MI : InstrItinClass;
-def IIC_BTX_MR : InstrItinClass;
-def IIC_BTX_RI : InstrItinClass;
-def IIC_BTX_RR : InstrItinClass;
-def IIC_XCHG_REG : InstrItinClass;
-def IIC_XCHG_MEM : InstrItinClass;
-def IIC_XADD_REG : InstrItinClass;
-def IIC_XADD_MEM : InstrItinClass;
-def IIC_CMPXCHG_MEM : InstrItinClass;
-def IIC_CMPXCHG_REG : InstrItinClass;
-def IIC_CMPXCHG_MEM8 : InstrItinClass;
-def IIC_CMPXCHG_REG8 : InstrItinClass;
-def IIC_CMPXCHG_8B : InstrItinClass;
-def IIC_CMPXCHG_16B : InstrItinClass;
-def IIC_LODS : InstrItinClass;
-def IIC_OUTS : InstrItinClass;
-def IIC_CLC : InstrItinClass;
-def IIC_CLD : InstrItinClass;
-def IIC_CLI : InstrItinClass;
-def IIC_CMC : InstrItinClass;
-def IIC_CLTS : InstrItinClass;
-def IIC_STC : InstrItinClass;
-def IIC_STI : InstrItinClass;
-def IIC_STD : InstrItinClass;
-def IIC_XLAT : InstrItinClass;
-def IIC_AAA : InstrItinClass;
-def IIC_AAD : InstrItinClass;
-def IIC_AAM : InstrItinClass;
-def IIC_AAS : InstrItinClass;
-def IIC_DAA : InstrItinClass;
-def IIC_DAS : InstrItinClass;
-def IIC_BOUND : InstrItinClass;
-def IIC_ARPL_REG : InstrItinClass;
-def IIC_ARPL_MEM : InstrItinClass;
-def IIC_MOVBE : InstrItinClass;
-def IIC_AES : InstrItinClass;
-def IIC_BLEND_MEM : InstrItinClass;
-def IIC_BLEND_NOMEM : InstrItinClass;
-def IIC_CBW : InstrItinClass;
-def IIC_CRC32_REG : InstrItinClass;
-def IIC_CRC32_MEM : InstrItinClass;
-def IIC_SSE_DPPD_RR : InstrItinClass;
-def IIC_SSE_DPPD_RM : InstrItinClass;
-def IIC_SSE_DPPS_RR : InstrItinClass;
-def IIC_SSE_DPPS_RM : InstrItinClass;
-def IIC_MMX_EMMS : InstrItinClass;
-def IIC_SSE_EXTRACTPS_RR : InstrItinClass;
-def IIC_SSE_EXTRACTPS_RM : InstrItinClass;
-def IIC_SSE_INSERTPS_RR : InstrItinClass;
-def IIC_SSE_INSERTPS_RM : InstrItinClass;
-def IIC_SSE_MPSADBW_RR : InstrItinClass;
-def IIC_SSE_MPSADBW_RM : InstrItinClass;
-def IIC_SSE_PMULLD_RR : InstrItinClass;
-def IIC_SSE_PMULLD_RM : InstrItinClass;
-def IIC_SSE_ROUNDPS_REG : InstrItinClass;
-def IIC_SSE_ROUNDPS_MEM : InstrItinClass;
-def IIC_SSE_ROUNDPD_REG : InstrItinClass;
-def IIC_SSE_ROUNDPD_MEM : InstrItinClass;
-def IIC_SSE_POPCNT_RR : InstrItinClass;
-def IIC_SSE_POPCNT_RM : InstrItinClass;
-def IIC_SSE_PCLMULQDQ_RR : InstrItinClass;
-def IIC_SSE_PCLMULQDQ_RM : InstrItinClass;
-
-def IIC_NOP : InstrItinClass;
-
-//===----------------------------------------------------------------------===//
-// Processor instruction itineraries.
-
-// IssueWidth is analogous to the number of decode units. Core and its
-// descendents, including Nehalem and SandyBridge have 4 decoders.
-// Resources beyond the decoder operate on micro-ops and are bufferred
-// so adjacent micro-ops don't directly compete.
-//
-// MicroOpBufferSize > 1 indicates that RAW dependencies can be
-// decoded in the same cycle. The value 32 is a reasonably arbitrary
-// number of in-flight instructions.
-//
-// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
-// indicates high latency opcodes. Alternatively, InstrItinData
-// entries may be included here to define specific operand
-// latencies. Since these latencies are not used for pipeline hazards,
-// they do not need to be exact.
-//
-// The GenericX86Model contains no instruction itineraries
-// and disables PostRAScheduler.
-class GenericX86Model : SchedMachineModel {
- let IssueWidth = 4;
- let MicroOpBufferSize = 32;
- let LoadLatency = 4;
- let HighLatency = 10;
- let PostRAScheduler = 0;
- let CompleteModel = 0;
-}
-
-def GenericModel : GenericX86Model;
-
-// Define a model with the PostRAScheduler enabled.
-def GenericPostRAModel : GenericX86Model {
- let PostRAScheduler = 1;
-}
-
-include "X86ScheduleAtom.td"
-include "X86SchedSandyBridge.td"
-include "X86SchedHaswell.td"
-include "X86ScheduleSLM.td"
-include "X86ScheduleBtVer2.td"
-
+//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +// InstrSchedModel annotations for out-of-order CPUs. +// +// These annotations are independent of the itinerary classes defined below. + +// Instructions with folded loads need to read the memory operand immediately, +// but other register operands don't have to be read until the load is ready. +// These operands are marked with ReadAfterLd. +def ReadAfterLd : SchedRead; + +// Instructions with both a load and a store folded are modeled as a folded +// load + WriteRMW. +def WriteRMW : SchedWrite; + +// Most instructions can fold loads, so almost every SchedWrite comes in two +// variants: With and without a folded load. +// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite +// with a folded load. +class X86FoldableSchedWrite : SchedWrite { + // The SchedWrite to use when a load is folded into the instruction. + SchedWrite Folded; +} + +// Multiclass that produces a linked pair of SchedWrites. +multiclass X86SchedWritePair { + // Register-Memory operation. + def Ld : SchedWrite; + // Register-Register operation. + def NAME : X86FoldableSchedWrite { + let Folded = !cast<SchedWrite>(NAME#"Ld"); + } +} + +// Arithmetic. +defm WriteALU : X86SchedWritePair; // Simple integer ALU op. +defm WriteIMul : X86SchedWritePair; // Integer multiplication. +def WriteIMulH : SchedWrite; // Integer multiplication, high part. +defm WriteIDiv : X86SchedWritePair; // Integer division. +def WriteLEA : SchedWrite; // LEA instructions can't fold loads. + +// Integer shifts and rotates. +defm WriteShift : X86SchedWritePair; + +// Loads, stores, and moves, not folded with other operations. +def WriteLoad : SchedWrite; +def WriteStore : SchedWrite; +def WriteMove : SchedWrite; + +// Idioms that clear a register, like xorps %xmm0, %xmm0. +// These can often bypass execution ports completely. +def WriteZero : SchedWrite; + +// Branches don't produce values, so they have no latency, but they still +// consume resources. Indirect branches can fold loads. +defm WriteJump : X86SchedWritePair; + +// Floating point. This covers both scalar and vector operations. +defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare. +defm WriteFMul : X86SchedWritePair; // Floating point multiplication. +defm WriteFDiv : X86SchedWritePair; // Floating point division. +defm WriteFSqrt : X86SchedWritePair; // Floating point square root. +defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal estimate. +defm WriteFRsqrt : X86SchedWritePair; // Floating point reciprocal square root estimate. +defm WriteFMA : X86SchedWritePair; // Fused Multiply Add. +defm WriteFShuffle : X86SchedWritePair; // Floating point vector shuffles. +defm WriteFBlend : X86SchedWritePair; // Floating point vector blends. +defm WriteFVarBlend : X86SchedWritePair; // Fp vector variable blends. + +// FMA Scheduling helper class. +class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; } + +// Vector integer operations. +defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals. +defm WriteVecShift : X86SchedWritePair; // Vector integer shifts. +defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply. +defm WriteShuffle : X86SchedWritePair; // Vector shuffles. +defm WriteBlend : X86SchedWritePair; // Vector blends. +defm WriteVarBlend : X86SchedWritePair; // Vector variable blends. +defm WriteMPSAD : X86SchedWritePair; // Vector MPSAD. + +// Vector bitwise operations. +// These are often used on both floating point and integer vectors. +defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor. + +// Conversion between integer and float. +defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer. +defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float. +defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion. + +// Strings instructions. +// Packed Compare Implicit Length Strings, Return Mask +defm WritePCmpIStrM : X86SchedWritePair; +// Packed Compare Explicit Length Strings, Return Mask +defm WritePCmpEStrM : X86SchedWritePair; +// Packed Compare Implicit Length Strings, Return Index +defm WritePCmpIStrI : X86SchedWritePair; +// Packed Compare Explicit Length Strings, Return Index +defm WritePCmpEStrI : X86SchedWritePair; + +// AES instructions. +defm WriteAESDecEnc : X86SchedWritePair; // Decryption, encryption. +defm WriteAESIMC : X86SchedWritePair; // InvMixColumn. +defm WriteAESKeyGen : X86SchedWritePair; // Key Generation. + +// Carry-less multiplication instructions. +defm WriteCLMul : X86SchedWritePair; + +// Catch-all for expensive system instructions. +def WriteSystem : SchedWrite; + +// AVX2. +defm WriteFShuffle256 : X86SchedWritePair; // Fp 256-bit width vector shuffles. +defm WriteShuffle256 : X86SchedWritePair; // 256-bit width vector shuffles. +defm WriteVarVecShift : X86SchedWritePair; // Variable vector shifts. + +// Old microcoded instructions that nobody use. +def WriteMicrocoded : SchedWrite; + +// Fence instructions. +def WriteFence : SchedWrite; + +// Nop, not very useful expect it provides a model for nops! +def WriteNop : SchedWrite; + +//===----------------------------------------------------------------------===// +// Instruction Itinerary classes used for X86 +def IIC_ALU_MEM : InstrItinClass; +def IIC_ALU_NONMEM : InstrItinClass; +def IIC_LEA : InstrItinClass; +def IIC_LEA_16 : InstrItinClass; +def IIC_MUL8 : InstrItinClass; +def IIC_MUL16_MEM : InstrItinClass; +def IIC_MUL16_REG : InstrItinClass; +def IIC_MUL32_MEM : InstrItinClass; +def IIC_MUL32_REG : InstrItinClass; +def IIC_MUL64 : InstrItinClass; +// imul by al, ax, eax, tax +def IIC_IMUL8 : InstrItinClass; +def IIC_IMUL16_MEM : InstrItinClass; +def IIC_IMUL16_REG : InstrItinClass; +def IIC_IMUL32_MEM : InstrItinClass; +def IIC_IMUL32_REG : InstrItinClass; +def IIC_IMUL64 : InstrItinClass; +// imul reg by reg|mem +def IIC_IMUL16_RM : InstrItinClass; +def IIC_IMUL16_RR : InstrItinClass; +def IIC_IMUL32_RM : InstrItinClass; +def IIC_IMUL32_RR : InstrItinClass; +def IIC_IMUL64_RM : InstrItinClass; +def IIC_IMUL64_RR : InstrItinClass; +// imul reg = reg/mem * imm +def IIC_IMUL16_RMI : InstrItinClass; +def IIC_IMUL16_RRI : InstrItinClass; +def IIC_IMUL32_RMI : InstrItinClass; +def IIC_IMUL32_RRI : InstrItinClass; +def IIC_IMUL64_RMI : InstrItinClass; +def IIC_IMUL64_RRI : InstrItinClass; +// div +def IIC_DIV8_MEM : InstrItinClass; +def IIC_DIV8_REG : InstrItinClass; +def IIC_DIV16 : InstrItinClass; +def IIC_DIV32 : InstrItinClass; +def IIC_DIV64 : InstrItinClass; +// idiv +def IIC_IDIV8 : InstrItinClass; +def IIC_IDIV16 : InstrItinClass; +def IIC_IDIV32 : InstrItinClass; +def IIC_IDIV64 : InstrItinClass; +// neg/not/inc/dec +def IIC_UNARY_REG : InstrItinClass; +def IIC_UNARY_MEM : InstrItinClass; +// add/sub/and/or/xor/sbc/cmp/test +def IIC_BIN_MEM : InstrItinClass; +def IIC_BIN_NONMEM : InstrItinClass; +// adc/sbc +def IIC_BIN_CARRY_MEM : InstrItinClass; +def IIC_BIN_CARRY_NONMEM : InstrItinClass; +// shift/rotate +def IIC_SR : InstrItinClass; +// shift double +def IIC_SHD16_REG_IM : InstrItinClass; +def IIC_SHD16_REG_CL : InstrItinClass; +def IIC_SHD16_MEM_IM : InstrItinClass; +def IIC_SHD16_MEM_CL : InstrItinClass; +def IIC_SHD32_REG_IM : InstrItinClass; +def IIC_SHD32_REG_CL : InstrItinClass; +def IIC_SHD32_MEM_IM : InstrItinClass; +def IIC_SHD32_MEM_CL : InstrItinClass; +def IIC_SHD64_REG_IM : InstrItinClass; +def IIC_SHD64_REG_CL : InstrItinClass; +def IIC_SHD64_MEM_IM : InstrItinClass; +def IIC_SHD64_MEM_CL : InstrItinClass; +// cmov +def IIC_CMOV16_RM : InstrItinClass; +def IIC_CMOV16_RR : InstrItinClass; +def IIC_CMOV32_RM : InstrItinClass; +def IIC_CMOV32_RR : InstrItinClass; +def IIC_CMOV64_RM : InstrItinClass; +def IIC_CMOV64_RR : InstrItinClass; +// set +def IIC_SET_R : InstrItinClass; +def IIC_SET_M : InstrItinClass; +// jmp/jcc/jcxz +def IIC_Jcc : InstrItinClass; +def IIC_JCXZ : InstrItinClass; +def IIC_JMP_REL : InstrItinClass; +def IIC_JMP_REG : InstrItinClass; +def IIC_JMP_MEM : InstrItinClass; +def IIC_JMP_FAR_MEM : InstrItinClass; +def IIC_JMP_FAR_PTR : InstrItinClass; +// loop +def IIC_LOOP : InstrItinClass; +def IIC_LOOPE : InstrItinClass; +def IIC_LOOPNE : InstrItinClass; +// call +def IIC_CALL_RI : InstrItinClass; +def IIC_CALL_MEM : InstrItinClass; +def IIC_CALL_FAR_MEM : InstrItinClass; +def IIC_CALL_FAR_PTR : InstrItinClass; +// ret +def IIC_RET : InstrItinClass; +def IIC_RET_IMM : InstrItinClass; +//sign extension movs +def IIC_MOVSX : InstrItinClass; +def IIC_MOVSX_R16_R8 : InstrItinClass; +def IIC_MOVSX_R16_M8 : InstrItinClass; +def IIC_MOVSX_R16_R16 : InstrItinClass; +def IIC_MOVSX_R32_R32 : InstrItinClass; +//zero extension movs +def IIC_MOVZX : InstrItinClass; +def IIC_MOVZX_R16_R8 : InstrItinClass; +def IIC_MOVZX_R16_M8 : InstrItinClass; + +def IIC_REP_MOVS : InstrItinClass; +def IIC_REP_STOS : InstrItinClass; + +// SSE scalar/parallel binary operations +def IIC_SSE_ALU_F32S_RR : InstrItinClass; +def IIC_SSE_ALU_F32S_RM : InstrItinClass; +def IIC_SSE_ALU_F64S_RR : InstrItinClass; +def IIC_SSE_ALU_F64S_RM : InstrItinClass; +def IIC_SSE_MUL_F32S_RR : InstrItinClass; +def IIC_SSE_MUL_F32S_RM : InstrItinClass; +def IIC_SSE_MUL_F64S_RR : InstrItinClass; +def IIC_SSE_MUL_F64S_RM : InstrItinClass; +def IIC_SSE_DIV_F32S_RR : InstrItinClass; +def IIC_SSE_DIV_F32S_RM : InstrItinClass; +def IIC_SSE_DIV_F64S_RR : InstrItinClass; +def IIC_SSE_DIV_F64S_RM : InstrItinClass; +def IIC_SSE_ALU_F32P_RR : InstrItinClass; +def IIC_SSE_ALU_F32P_RM : InstrItinClass; +def IIC_SSE_ALU_F64P_RR : InstrItinClass; +def IIC_SSE_ALU_F64P_RM : InstrItinClass; +def IIC_SSE_MUL_F32P_RR : InstrItinClass; +def IIC_SSE_MUL_F32P_RM : InstrItinClass; +def IIC_SSE_MUL_F64P_RR : InstrItinClass; +def IIC_SSE_MUL_F64P_RM : InstrItinClass; +def IIC_SSE_DIV_F32P_RR : InstrItinClass; +def IIC_SSE_DIV_F32P_RM : InstrItinClass; +def IIC_SSE_DIV_F64P_RR : InstrItinClass; +def IIC_SSE_DIV_F64P_RM : InstrItinClass; + +def IIC_SSE_COMIS_RR : InstrItinClass; +def IIC_SSE_COMIS_RM : InstrItinClass; + +def IIC_SSE_HADDSUB_RR : InstrItinClass; +def IIC_SSE_HADDSUB_RM : InstrItinClass; + +def IIC_SSE_BIT_P_RR : InstrItinClass; +def IIC_SSE_BIT_P_RM : InstrItinClass; + +def IIC_SSE_INTALU_P_RR : InstrItinClass; +def IIC_SSE_INTALU_P_RM : InstrItinClass; +def IIC_SSE_INTALUQ_P_RR : InstrItinClass; +def IIC_SSE_INTALUQ_P_RM : InstrItinClass; + +def IIC_SSE_INTMUL_P_RR : InstrItinClass; +def IIC_SSE_INTMUL_P_RM : InstrItinClass; + +def IIC_SSE_INTSH_P_RR : InstrItinClass; +def IIC_SSE_INTSH_P_RM : InstrItinClass; +def IIC_SSE_INTSH_P_RI : InstrItinClass; + +def IIC_SSE_INTSHDQ_P_RI : InstrItinClass; + +def IIC_SSE_SHUFP : InstrItinClass; +def IIC_SSE_PSHUF_RI : InstrItinClass; +def IIC_SSE_PSHUF_MI : InstrItinClass; + +def IIC_SSE_UNPCK : InstrItinClass; + +def IIC_SSE_MOVMSK : InstrItinClass; +def IIC_SSE_MASKMOV : InstrItinClass; + +def IIC_SSE_PEXTRW : InstrItinClass; +def IIC_SSE_PINSRW : InstrItinClass; + +def IIC_SSE_PABS_RR : InstrItinClass; +def IIC_SSE_PABS_RM : InstrItinClass; + +def IIC_SSE_SQRTPS_RR : InstrItinClass; +def IIC_SSE_SQRTPS_RM : InstrItinClass; +def IIC_SSE_SQRTSS_RR : InstrItinClass; +def IIC_SSE_SQRTSS_RM : InstrItinClass; +def IIC_SSE_SQRTPD_RR : InstrItinClass; +def IIC_SSE_SQRTPD_RM : InstrItinClass; +def IIC_SSE_SQRTSD_RR : InstrItinClass; +def IIC_SSE_SQRTSD_RM : InstrItinClass; + +def IIC_SSE_RSQRTPS_RR : InstrItinClass; +def IIC_SSE_RSQRTPS_RM : InstrItinClass; +def IIC_SSE_RSQRTSS_RR : InstrItinClass; +def IIC_SSE_RSQRTSS_RM : InstrItinClass; + +def IIC_SSE_RCPP_RR : InstrItinClass; +def IIC_SSE_RCPP_RM : InstrItinClass; +def IIC_SSE_RCPS_RR : InstrItinClass; +def IIC_SSE_RCPS_RM : InstrItinClass; + +def IIC_SSE_MOV_S_RR : InstrItinClass; +def IIC_SSE_MOV_S_RM : InstrItinClass; +def IIC_SSE_MOV_S_MR : InstrItinClass; + +def IIC_SSE_MOVA_P_RR : InstrItinClass; +def IIC_SSE_MOVA_P_RM : InstrItinClass; +def IIC_SSE_MOVA_P_MR : InstrItinClass; + +def IIC_SSE_MOVU_P_RR : InstrItinClass; +def IIC_SSE_MOVU_P_RM : InstrItinClass; +def IIC_SSE_MOVU_P_MR : InstrItinClass; + +def IIC_SSE_MOVDQ : InstrItinClass; +def IIC_SSE_MOVD_ToGP : InstrItinClass; +def IIC_SSE_MOVQ_RR : InstrItinClass; + +def IIC_SSE_MOV_LH : InstrItinClass; + +def IIC_SSE_LDDQU : InstrItinClass; + +def IIC_SSE_MOVNT : InstrItinClass; + +def IIC_SSE_PHADDSUBD_RR : InstrItinClass; +def IIC_SSE_PHADDSUBD_RM : InstrItinClass; +def IIC_SSE_PHADDSUBSW_RR : InstrItinClass; +def IIC_SSE_PHADDSUBSW_RM : InstrItinClass; +def IIC_SSE_PHADDSUBW_RR : InstrItinClass; +def IIC_SSE_PHADDSUBW_RM : InstrItinClass; +def IIC_SSE_PSHUFB_RR : InstrItinClass; +def IIC_SSE_PSHUFB_RM : InstrItinClass; +def IIC_SSE_PSIGN_RR : InstrItinClass; +def IIC_SSE_PSIGN_RM : InstrItinClass; + +def IIC_SSE_PMADD : InstrItinClass; +def IIC_SSE_PMULHRSW : InstrItinClass; +def IIC_SSE_PALIGNRR : InstrItinClass; +def IIC_SSE_PALIGNRM : InstrItinClass; +def IIC_SSE_MWAIT : InstrItinClass; +def IIC_SSE_MONITOR : InstrItinClass; +def IIC_SSE_MWAITX : InstrItinClass; +def IIC_SSE_MONITORX : InstrItinClass; +def IIC_SSE_CLZERO : InstrItinClass; + +def IIC_SSE_PREFETCH : InstrItinClass; +def IIC_SSE_PAUSE : InstrItinClass; +def IIC_SSE_LFENCE : InstrItinClass; +def IIC_SSE_MFENCE : InstrItinClass; +def IIC_SSE_SFENCE : InstrItinClass; +def IIC_SSE_LDMXCSR : InstrItinClass; +def IIC_SSE_STMXCSR : InstrItinClass; + +def IIC_SSE_CVT_PD_RR : InstrItinClass; +def IIC_SSE_CVT_PD_RM : InstrItinClass; +def IIC_SSE_CVT_PS_RR : InstrItinClass; +def IIC_SSE_CVT_PS_RM : InstrItinClass; +def IIC_SSE_CVT_PI2PS_RR : InstrItinClass; +def IIC_SSE_CVT_PI2PS_RM : InstrItinClass; +def IIC_SSE_CVT_Scalar_RR : InstrItinClass; +def IIC_SSE_CVT_Scalar_RM : InstrItinClass; +def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass; +def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass; +def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass; +def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass; +def IIC_SSE_CVT_SD2SI_RM : InstrItinClass; +def IIC_SSE_CVT_SD2SI_RR : InstrItinClass; + +// MMX +def IIC_MMX_MOV_MM_RM : InstrItinClass; +def IIC_MMX_MOV_REG_MM : InstrItinClass; +def IIC_MMX_MOVQ_RM : InstrItinClass; +def IIC_MMX_MOVQ_RR : InstrItinClass; + +def IIC_MMX_ALU_RM : InstrItinClass; +def IIC_MMX_ALU_RR : InstrItinClass; +def IIC_MMX_ALUQ_RM : InstrItinClass; +def IIC_MMX_ALUQ_RR : InstrItinClass; +def IIC_MMX_PHADDSUBW_RM : InstrItinClass; +def IIC_MMX_PHADDSUBW_RR : InstrItinClass; +def IIC_MMX_PHADDSUBD_RM : InstrItinClass; +def IIC_MMX_PHADDSUBD_RR : InstrItinClass; +def IIC_MMX_PMUL : InstrItinClass; +def IIC_MMX_MISC_FUNC_MEM : InstrItinClass; +def IIC_MMX_MISC_FUNC_REG : InstrItinClass; +def IIC_MMX_PSADBW : InstrItinClass; +def IIC_MMX_SHIFT_RI : InstrItinClass; +def IIC_MMX_SHIFT_RM : InstrItinClass; +def IIC_MMX_SHIFT_RR : InstrItinClass; +def IIC_MMX_UNPCK_H_RM : InstrItinClass; +def IIC_MMX_UNPCK_H_RR : InstrItinClass; +def IIC_MMX_UNPCK_L : InstrItinClass; +def IIC_MMX_PCK_RM : InstrItinClass; +def IIC_MMX_PCK_RR : InstrItinClass; +def IIC_MMX_PSHUF : InstrItinClass; +def IIC_MMX_PEXTR : InstrItinClass; +def IIC_MMX_PINSRW : InstrItinClass; +def IIC_MMX_MASKMOV : InstrItinClass; + +def IIC_MMX_CVT_PD_RR : InstrItinClass; +def IIC_MMX_CVT_PD_RM : InstrItinClass; +def IIC_MMX_CVT_PS_RR : InstrItinClass; +def IIC_MMX_CVT_PS_RM : InstrItinClass; + +def IIC_CMPX_LOCK : InstrItinClass; +def IIC_CMPX_LOCK_8 : InstrItinClass; +def IIC_CMPX_LOCK_8B : InstrItinClass; +def IIC_CMPX_LOCK_16B : InstrItinClass; + +def IIC_XADD_LOCK_MEM : InstrItinClass; +def IIC_XADD_LOCK_MEM8 : InstrItinClass; + +def IIC_FILD : InstrItinClass; +def IIC_FLD : InstrItinClass; +def IIC_FLD80 : InstrItinClass; +def IIC_FST : InstrItinClass; +def IIC_FST80 : InstrItinClass; +def IIC_FIST : InstrItinClass; +def IIC_FLDZ : InstrItinClass; +def IIC_FUCOM : InstrItinClass; +def IIC_FUCOMI : InstrItinClass; +def IIC_FCOMI : InstrItinClass; +def IIC_FNSTSW : InstrItinClass; +def IIC_FNSTCW : InstrItinClass; +def IIC_FLDCW : InstrItinClass; +def IIC_FNINIT : InstrItinClass; +def IIC_FFREE : InstrItinClass; +def IIC_FNCLEX : InstrItinClass; +def IIC_WAIT : InstrItinClass; +def IIC_FXAM : InstrItinClass; +def IIC_FNOP : InstrItinClass; +def IIC_FLDL : InstrItinClass; +def IIC_F2XM1 : InstrItinClass; +def IIC_FYL2X : InstrItinClass; +def IIC_FPTAN : InstrItinClass; +def IIC_FPATAN : InstrItinClass; +def IIC_FXTRACT : InstrItinClass; +def IIC_FPREM1 : InstrItinClass; +def IIC_FPSTP : InstrItinClass; +def IIC_FPREM : InstrItinClass; +def IIC_FYL2XP1 : InstrItinClass; +def IIC_FSINCOS : InstrItinClass; +def IIC_FRNDINT : InstrItinClass; +def IIC_FSCALE : InstrItinClass; +def IIC_FCOMPP : InstrItinClass; +def IIC_FXSAVE : InstrItinClass; +def IIC_FXRSTOR : InstrItinClass; + +def IIC_FXCH : InstrItinClass; + +// System instructions +def IIC_CPUID : InstrItinClass; +def IIC_INT : InstrItinClass; +def IIC_INT3 : InstrItinClass; +def IIC_INVD : InstrItinClass; +def IIC_INVLPG : InstrItinClass; +def IIC_IRET : InstrItinClass; +def IIC_HLT : InstrItinClass; +def IIC_LXS : InstrItinClass; +def IIC_LTR : InstrItinClass; +def IIC_RDTSC : InstrItinClass; +def IIC_RSM : InstrItinClass; +def IIC_SIDT : InstrItinClass; +def IIC_SGDT : InstrItinClass; +def IIC_SLDT : InstrItinClass; +def IIC_STR : InstrItinClass; +def IIC_SWAPGS : InstrItinClass; +def IIC_SYSCALL : InstrItinClass; +def IIC_SYS_ENTER_EXIT : InstrItinClass; +def IIC_IN_RR : InstrItinClass; +def IIC_IN_RI : InstrItinClass; +def IIC_OUT_RR : InstrItinClass; +def IIC_OUT_IR : InstrItinClass; +def IIC_INS : InstrItinClass; +def IIC_MOV_REG_DR : InstrItinClass; +def IIC_MOV_DR_REG : InstrItinClass; +def IIC_MOV_REG_CR : InstrItinClass; +def IIC_MOV_CR_REG : InstrItinClass; +def IIC_MOV_REG_SR : InstrItinClass; +def IIC_MOV_MEM_SR : InstrItinClass; +def IIC_MOV_SR_REG : InstrItinClass; +def IIC_MOV_SR_MEM : InstrItinClass; +def IIC_LAR_RM : InstrItinClass; +def IIC_LAR_RR : InstrItinClass; +def IIC_LSL_RM : InstrItinClass; +def IIC_LSL_RR : InstrItinClass; +def IIC_LGDT : InstrItinClass; +def IIC_LIDT : InstrItinClass; +def IIC_LLDT_REG : InstrItinClass; +def IIC_LLDT_MEM : InstrItinClass; +def IIC_PUSH_CS : InstrItinClass; +def IIC_PUSH_SR : InstrItinClass; +def IIC_POP_SR : InstrItinClass; +def IIC_POP_SR_SS : InstrItinClass; +def IIC_VERR : InstrItinClass; +def IIC_VERW_REG : InstrItinClass; +def IIC_VERW_MEM : InstrItinClass; +def IIC_WRMSR : InstrItinClass; +def IIC_RDMSR : InstrItinClass; +def IIC_RDPMC : InstrItinClass; +def IIC_SMSW : InstrItinClass; +def IIC_LMSW_REG : InstrItinClass; +def IIC_LMSW_MEM : InstrItinClass; +def IIC_ENTER : InstrItinClass; +def IIC_LEAVE : InstrItinClass; +def IIC_POP_MEM : InstrItinClass; +def IIC_POP_REG16 : InstrItinClass; +def IIC_POP_REG : InstrItinClass; +def IIC_POP_F : InstrItinClass; +def IIC_POP_FD : InstrItinClass; +def IIC_POP_A : InstrItinClass; +def IIC_PUSH_IMM : InstrItinClass; +def IIC_PUSH_MEM : InstrItinClass; +def IIC_PUSH_REG : InstrItinClass; +def IIC_PUSH_F : InstrItinClass; +def IIC_PUSH_A : InstrItinClass; +def IIC_BSWAP : InstrItinClass; +def IIC_BIT_SCAN_MEM : InstrItinClass; +def IIC_BIT_SCAN_REG : InstrItinClass; +def IIC_MOVS : InstrItinClass; +def IIC_STOS : InstrItinClass; +def IIC_SCAS : InstrItinClass; +def IIC_CMPS : InstrItinClass; +def IIC_MOV : InstrItinClass; +def IIC_MOV_MEM : InstrItinClass; +def IIC_AHF : InstrItinClass; +def IIC_BT_MI : InstrItinClass; +def IIC_BT_MR : InstrItinClass; +def IIC_BT_RI : InstrItinClass; +def IIC_BT_RR : InstrItinClass; +def IIC_BTX_MI : InstrItinClass; +def IIC_BTX_MR : InstrItinClass; +def IIC_BTX_RI : InstrItinClass; +def IIC_BTX_RR : InstrItinClass; +def IIC_XCHG_REG : InstrItinClass; +def IIC_XCHG_MEM : InstrItinClass; +def IIC_XADD_REG : InstrItinClass; +def IIC_XADD_MEM : InstrItinClass; +def IIC_CMPXCHG_MEM : InstrItinClass; +def IIC_CMPXCHG_REG : InstrItinClass; +def IIC_CMPXCHG_MEM8 : InstrItinClass; +def IIC_CMPXCHG_REG8 : InstrItinClass; +def IIC_CMPXCHG_8B : InstrItinClass; +def IIC_CMPXCHG_16B : InstrItinClass; +def IIC_LODS : InstrItinClass; +def IIC_OUTS : InstrItinClass; +def IIC_CLC : InstrItinClass; +def IIC_CLD : InstrItinClass; +def IIC_CLI : InstrItinClass; +def IIC_CMC : InstrItinClass; +def IIC_CLTS : InstrItinClass; +def IIC_STC : InstrItinClass; +def IIC_STI : InstrItinClass; +def IIC_STD : InstrItinClass; +def IIC_XLAT : InstrItinClass; +def IIC_AAA : InstrItinClass; +def IIC_AAD : InstrItinClass; +def IIC_AAM : InstrItinClass; +def IIC_AAS : InstrItinClass; +def IIC_DAA : InstrItinClass; +def IIC_DAS : InstrItinClass; +def IIC_BOUND : InstrItinClass; +def IIC_ARPL_REG : InstrItinClass; +def IIC_ARPL_MEM : InstrItinClass; +def IIC_MOVBE : InstrItinClass; +def IIC_AES : InstrItinClass; +def IIC_BLEND_MEM : InstrItinClass; +def IIC_BLEND_NOMEM : InstrItinClass; +def IIC_CBW : InstrItinClass; +def IIC_CRC32_REG : InstrItinClass; +def IIC_CRC32_MEM : InstrItinClass; +def IIC_SSE_DPPD_RR : InstrItinClass; +def IIC_SSE_DPPD_RM : InstrItinClass; +def IIC_SSE_DPPS_RR : InstrItinClass; +def IIC_SSE_DPPS_RM : InstrItinClass; +def IIC_MMX_EMMS : InstrItinClass; +def IIC_SSE_EXTRACTPS_RR : InstrItinClass; +def IIC_SSE_EXTRACTPS_RM : InstrItinClass; +def IIC_SSE_INSERTPS_RR : InstrItinClass; +def IIC_SSE_INSERTPS_RM : InstrItinClass; +def IIC_SSE_MPSADBW_RR : InstrItinClass; +def IIC_SSE_MPSADBW_RM : InstrItinClass; +def IIC_SSE_PMULLD_RR : InstrItinClass; +def IIC_SSE_PMULLD_RM : InstrItinClass; +def IIC_SSE_ROUNDPS_REG : InstrItinClass; +def IIC_SSE_ROUNDPS_MEM : InstrItinClass; +def IIC_SSE_ROUNDPD_REG : InstrItinClass; +def IIC_SSE_ROUNDPD_MEM : InstrItinClass; +def IIC_SSE_POPCNT_RR : InstrItinClass; +def IIC_SSE_POPCNT_RM : InstrItinClass; +def IIC_SSE_PCLMULQDQ_RR : InstrItinClass; +def IIC_SSE_PCLMULQDQ_RM : InstrItinClass; + +def IIC_NOP : InstrItinClass; + +//===----------------------------------------------------------------------===// +// Processor instruction itineraries. + +// IssueWidth is analogous to the number of decode units. Core and its +// descendents, including Nehalem and SandyBridge have 4 decoders. +// Resources beyond the decoder operate on micro-ops and are bufferred +// so adjacent micro-ops don't directly compete. +// +// MicroOpBufferSize > 1 indicates that RAW dependencies can be +// decoded in the same cycle. The value 32 is a reasonably arbitrary +// number of in-flight instructions. +// +// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef +// indicates high latency opcodes. Alternatively, InstrItinData +// entries may be included here to define specific operand +// latencies. Since these latencies are not used for pipeline hazards, +// they do not need to be exact. +// +// The GenericX86Model contains no instruction itineraries +// and disables PostRAScheduler. +class GenericX86Model : SchedMachineModel { + let IssueWidth = 4; + let MicroOpBufferSize = 32; + let LoadLatency = 4; + let HighLatency = 10; + let PostRAScheduler = 0; + let CompleteModel = 0; +} + +def GenericModel : GenericX86Model; + +// Define a model with the PostRAScheduler enabled. +def GenericPostRAModel : GenericX86Model { + let PostRAScheduler = 1; +} + +include "X86ScheduleAtom.td" +include "X86SchedSandyBridge.td" +include "X86SchedHaswell.td" +include "X86ScheduleSLM.td" +include "X86ScheduleBtVer2.td" + diff --git a/llvm/lib/Target/X86/X86Subtarget.cpp b/llvm/lib/Target/X86/X86Subtarget.cpp index 9ab751e2b00..82ff436f7eb 100644 --- a/llvm/lib/Target/X86/X86Subtarget.cpp +++ b/llvm/lib/Target/X86/X86Subtarget.cpp @@ -265,7 +265,6 @@ void X86Subtarget::initializeEnvironment() { HasFMA4 = false; HasXOP = false; HasTBM = false; - HasLWP = false; HasMOVBE = false; HasRDRAND = false; HasF16C = false; diff --git a/llvm/lib/Target/X86/X86Subtarget.h b/llvm/lib/Target/X86/X86Subtarget.h index de1514243ae..8568cf04e7d 100644 --- a/llvm/lib/Target/X86/X86Subtarget.h +++ b/llvm/lib/Target/X86/X86Subtarget.h @@ -124,9 +124,6 @@ protected: /// Target has TBM instructions. bool HasTBM; - /// Target has LWP instructions - bool HasLWP; - /// True if the processor has the MOVBE instruction. bool HasMOVBE; @@ -450,7 +447,6 @@ public: bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } bool hasXOP() const { return HasXOP; } bool hasTBM() const { return HasTBM; } - bool hasLWP() const { return HasLWP; } bool hasMOVBE() const { return HasMOVBE; } bool hasRDRAND() const { return HasRDRAND; } bool hasF16C() const { return HasF16C; } |