diff options
Diffstat (limited to 'llvm/lib')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/CorrelatedExprs.cpp | 1486 | 
1 files changed, 0 insertions, 1486 deletions
| diff --git a/llvm/lib/Transforms/Scalar/CorrelatedExprs.cpp b/llvm/lib/Transforms/Scalar/CorrelatedExprs.cpp deleted file mode 100644 index 9e1aa71e8b5..00000000000 --- a/llvm/lib/Transforms/Scalar/CorrelatedExprs.cpp +++ /dev/null @@ -1,1486 +0,0 @@ -//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===// -// -//                     The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// Correlated Expression Elimination propagates information from conditional -// branches to blocks dominated by destinations of the branch.  It propagates -// information from the condition check itself into the body of the branch, -// allowing transformations like these for example: -// -//  if (i == 7) -//    ... 4*i;  // constant propagation -// -//  M = i+1; N = j+1; -//  if (i == j) -//    X = M-N;  // = M-M == 0; -// -// This is called Correlated Expression Elimination because we eliminate or -// simplify expressions that are correlated with the direction of a branch.  In -// this way we use static information to give us some information about the -// dynamic value of a variable. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "cee" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Constants.h" -#include "llvm/Pass.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/Type.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/Dominators.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/ConstantRange.h" -#include "llvm/Support/Debug.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/Statistic.h" -#include <algorithm> -using namespace llvm; - -STATISTIC(NumCmpRemoved, "Number of cmp instruction eliminated"); -STATISTIC(NumOperandsCann, "Number of operands canonicalized"); -STATISTIC(BranchRevectors, "Number of branches revectored"); - -namespace { -  class ValueInfo; -  class VISIBILITY_HIDDEN Relation { -    Value *Val;          // Relation to what value? -    unsigned Rel;        // SetCC or ICmp relation, or Add if no information -  public: -    explicit Relation(Value *V) : Val(V), Rel(Instruction::Add) {} -    bool operator<(const Relation &R) const { return Val < R.Val; } -    Value *getValue() const { return Val; } -    unsigned getRelation() const { return Rel; } - -    // contradicts - Return true if the relationship specified by the operand -    // contradicts already known information. -    // -    bool contradicts(unsigned Rel, const ValueInfo &VI) const; - -    // incorporate - Incorporate information in the argument into this relation -    // entry.  This assumes that the information doesn't contradict itself.  If -    // any new information is gained, true is returned, otherwise false is -    // returned to indicate that nothing was updated. -    // -    bool incorporate(unsigned Rel, ValueInfo &VI); - -    // KnownResult - Whether or not this condition determines the result of a -    // setcc or icmp in the program.  False & True are intentionally 0 & 1  -    // so we can convert to bool by casting after checking for unknown. -    // -    enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 }; - -    // getImpliedResult - If this relationship between two values implies that -    // the specified relationship is true or false, return that.  If we cannot -    // determine the result required, return Unknown. -    // -    KnownResult getImpliedResult(unsigned Rel) const; - -    // print - Output this relation to the specified stream -    void print(std::ostream &OS) const; -    void dump() const; -  }; - - -  // ValueInfo - One instance of this record exists for every value with -  // relationships between other values.  It keeps track of all of the -  // relationships to other values in the program (specified with Relation) that -  // are known to be valid in a region. -  // -  class VISIBILITY_HIDDEN ValueInfo { -    // RelationShips - this value is know to have the specified relationships to -    // other values.  There can only be one entry per value, and this list is -    // kept sorted by the Val field. -    std::vector<Relation> Relationships; - -    // If information about this value is known or propagated from constant -    // expressions, this range contains the possible values this value may hold. -    ConstantRange Bounds; - -    // If we find that this value is equal to another value that has a lower -    // rank, this value is used as it's replacement. -    // -    Value *Replacement; -  public: -    explicit ValueInfo(const Type *Ty) -      : Bounds(Ty->isInteger() ? cast<IntegerType>(Ty)->getBitWidth()  : 32),  -               Replacement(0) {} - -    // getBounds() - Return the constant bounds of the value... -    const ConstantRange &getBounds() const { return Bounds; } -    ConstantRange &getBounds() { return Bounds; } - -    const std::vector<Relation> &getRelationships() { return Relationships; } - -    // getReplacement - Return the value this value is to be replaced with if it -    // exists, otherwise return null. -    // -    Value *getReplacement() const { return Replacement; } - -    // setReplacement - Used by the replacement calculation pass to figure out -    // what to replace this value with, if anything. -    // -    void setReplacement(Value *Repl) { Replacement = Repl; } - -    // getRelation - return the relationship entry for the specified value. -    // This can invalidate references to other Relations, so use it carefully. -    // -    Relation &getRelation(Value *V) { -      // Binary search for V's entry... -      std::vector<Relation>::iterator I = -        std::lower_bound(Relationships.begin(), Relationships.end(), -                         Relation(V)); - -      // If we found the entry, return it... -      if (I != Relationships.end() && I->getValue() == V) -        return *I; - -      // Insert and return the new relationship... -      return *Relationships.insert(I, Relation(V)); -    } - -    const Relation *requestRelation(Value *V) const { -      // Binary search for V's entry... -      std::vector<Relation>::const_iterator I = -        std::lower_bound(Relationships.begin(), Relationships.end(), -                         Relation(V)); -      if (I != Relationships.end() && I->getValue() == V) -        return &*I; -      return 0; -    } - -    // print - Output information about this value relation... -    void print(std::ostream &OS, Value *V) const; -    void dump() const; -  }; - -  // RegionInfo - Keeps track of all of the value relationships for a region.  A -  // region is the are dominated by a basic block.  RegionInfo's keep track of -  // the RegionInfo for their dominator, because anything known in a dominator -  // is known to be true in a dominated block as well. -  // -  class VISIBILITY_HIDDEN RegionInfo { -    BasicBlock *BB; - -    // ValueMap - Tracks the ValueInformation known for this region -    typedef std::map<Value*, ValueInfo> ValueMapTy; -    ValueMapTy ValueMap; -  public: -    explicit RegionInfo(BasicBlock *bb) : BB(bb) {} - -    // getEntryBlock - Return the block that dominates all of the members of -    // this region. -    BasicBlock *getEntryBlock() const { return BB; } - -    // empty - return true if this region has no information known about it. -    bool empty() const { return ValueMap.empty(); } - -    const RegionInfo &operator=(const RegionInfo &RI) { -      ValueMap = RI.ValueMap; -      return *this; -    } - -    // print - Output information about this region... -    void print(std::ostream &OS) const; -    void dump() const; - -    // Allow external access. -    typedef ValueMapTy::iterator iterator; -    iterator begin() { return ValueMap.begin(); } -    iterator end() { return ValueMap.end(); } - -    ValueInfo &getValueInfo(Value *V) { -      ValueMapTy::iterator I = ValueMap.lower_bound(V); -      if (I != ValueMap.end() && I->first == V) return I->second; -      return ValueMap.insert(I, std::make_pair(V, V->getType()))->second; -    } - -    const ValueInfo *requestValueInfo(Value *V) const { -      ValueMapTy::const_iterator I = ValueMap.find(V); -      if (I != ValueMap.end()) return &I->second; -      return 0; -    } - -    /// removeValueInfo - Remove anything known about V from our records.  This -    /// works whether or not we know anything about V. -    /// -    void removeValueInfo(Value *V) { -      ValueMap.erase(V); -    } -  }; - -  /// CEE - Correlated Expression Elimination -  class VISIBILITY_HIDDEN CEE : public FunctionPass { -    std::map<Value*, unsigned> RankMap; -    std::map<BasicBlock*, RegionInfo> RegionInfoMap; -    DominatorTree *DT; -  public: -    static char ID; // Pass identification, replacement for typeid -    CEE() : FunctionPass((intptr_t)&ID) {} - -    virtual bool runOnFunction(Function &F); - -    // We don't modify the program, so we preserve all analyses -    virtual void getAnalysisUsage(AnalysisUsage &AU) const { -      AU.addRequired<DominatorTree>(); -      AU.addRequiredID(BreakCriticalEdgesID); -    }; - -    // print - Implement the standard print form to print out analysis -    // information. -    virtual void print(std::ostream &O, const Module *M) const; - -  private: -    RegionInfo &getRegionInfo(BasicBlock *BB) { -      std::map<BasicBlock*, RegionInfo>::iterator I -        = RegionInfoMap.lower_bound(BB); -      if (I != RegionInfoMap.end() && I->first == BB) return I->second; -      return RegionInfoMap.insert(I, std::make_pair(BB, BB))->second; -    } - -    void BuildRankMap(Function &F); -    unsigned getRank(Value *V) const { -      if (isa<Constant>(V)) return 0; -      std::map<Value*, unsigned>::const_iterator I = RankMap.find(V); -      if (I != RankMap.end()) return I->second; -      return 0; // Must be some other global thing -    } - -    bool TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks); - -    bool ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo, -                                          RegionInfo &RI); - -    void ForwardSuccessorTo(TerminatorInst *TI, unsigned Succ, BasicBlock *D, -                            RegionInfo &RI); -    void ReplaceUsesOfValueInRegion(Value *Orig, Value *New, -                                    BasicBlock *RegionDominator); -    void CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc, -                                   std::vector<BasicBlock*> &RegionExitBlocks); -    void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal, -                             const std::vector<BasicBlock*> &RegionExitBlocks); - -    void PropagateBranchInfo(BranchInst *BI); -    void PropagateSwitchInfo(SwitchInst *SI); -    void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI); -    void PropagateRelation(unsigned Opcode, Value *Op0, -                           Value *Op1, RegionInfo &RI); -    void UpdateUsersOfValue(Value *V, RegionInfo &RI); -    void IncorporateInstruction(Instruction *Inst, RegionInfo &RI); -    void ComputeReplacements(RegionInfo &RI); - -    // getCmpResult - Given a icmp instruction, determine if the result is -    // determined by facts we already know about the region under analysis. -    // Return KnownTrue, KnownFalse, or UnKnown based on what we can determine. -    Relation::KnownResult getCmpResult(CmpInst *ICI, const RegionInfo &RI); - -    bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI); -    bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI); -  }; -   -  char CEE::ID = 0; -  RegisterPass<CEE> X("cee", "Correlated Expression Elimination"); -} - -FunctionPass *llvm::createCorrelatedExpressionEliminationPass() { -  return new CEE(); -} - - -bool CEE::runOnFunction(Function &F) { -  // Build a rank map for the function... -  BuildRankMap(F); - -  // Traverse the dominator tree, computing information for each node in the -  // tree.  Note that our traversal will not even touch unreachable basic -  // blocks. -  DT = &getAnalysis<DominatorTree>(); - -  std::set<BasicBlock*> VisitedBlocks; -  bool Changed = TransformRegion(&F.getEntryBlock(), VisitedBlocks); - -  RegionInfoMap.clear(); -  RankMap.clear(); -  return Changed; -} - -// TransformRegion - Transform the region starting with BB according to the -// calculated region information for the block.  Transforming the region -// involves analyzing any information this block provides to successors, -// propagating the information to successors, and finally transforming -// successors. -// -// This method processes the function in depth first order, which guarantees -// that we process the immediate dominator of a block before the block itself. -// Because we are passing information from immediate dominators down to -// dominatees, we obviously have to process the information source before the -// information consumer. -// -bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){ -  // Prevent infinite recursion... -  if (VisitedBlocks.count(BB)) return false; -  VisitedBlocks.insert(BB); - -  // Get the computed region information for this block... -  RegionInfo &RI = getRegionInfo(BB); - -  // Compute the replacement information for this block... -  ComputeReplacements(RI); - -  // If debugging, print computed region information... -  DEBUG(RI.print(*cerr.stream())); - -  // Simplify the contents of this block... -  bool Changed = SimplifyBasicBlock(*BB, RI); - -  // Get the terminator of this basic block... -  TerminatorInst *TI = BB->getTerminator(); - -  // Loop over all of the blocks that this block is the immediate dominator for. -  // Because all information known in this region is also known in all of the -  // blocks that are dominated by this one, we can safely propagate the -  // information down now. -  // -  DomTreeNode *BBDom = DT->getNode(BB); -  if (!RI.empty()) {     // Time opt: only propagate if we can change something -    for (std::vector<DomTreeNode*>::iterator DI = BBDom->begin(), -           E = BBDom->end(); DI != E; ++DI) { -      BasicBlock *ChildBB = (*DI)->getBlock(); -      assert(RegionInfoMap.find(ChildBB) == RegionInfoMap.end() && -             "RegionInfo should be calculated in dominanace order!"); -      getRegionInfo(ChildBB) = RI; -    } -  } - -  // Now that all of our successors have information if they deserve it, -  // propagate any information our terminator instruction finds to our -  // successors. -  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { -    if (BI->isConditional()) -      PropagateBranchInfo(BI); -  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { -    PropagateSwitchInfo(SI); -  } - -  // If this is a branch to a block outside our region that simply performs -  // another conditional branch, one whose outcome is known inside of this -  // region, then vector this outgoing edge directly to the known destination. -  // -  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) -    while (ForwardCorrelatedEdgeDestination(TI, i, RI)) { -      ++BranchRevectors; -      Changed = true; -    } - -  // Now that all of our successors have information, recursively process them. -  for (std::vector<DomTreeNode*>::iterator DI = BBDom->begin(), -         E = BBDom->end(); DI != E; ++DI) { -    BasicBlock *ChildBB = (*DI)->getBlock(); -    Changed |= TransformRegion(ChildBB, VisitedBlocks); -  } - -  return Changed; -} - -// isBlockSimpleEnoughForCheck to see if the block is simple enough for us to -// revector the conditional branch in the bottom of the block, do so now. -// -static bool isBlockSimpleEnough(BasicBlock *BB) { -  assert(isa<BranchInst>(BB->getTerminator())); -  BranchInst *BI = cast<BranchInst>(BB->getTerminator()); -  assert(BI->isConditional()); - -  // Check the common case first: empty block, or block with just a setcc. -  if (BB->size() == 1 || -      (BB->size() == 2 && &BB->front() == BI->getCondition() && -       BI->getCondition()->hasOneUse())) -    return true; - -  // Check the more complex case now... -  BasicBlock::iterator I = BB->begin(); - -  // FIXME: This should be reenabled once the regression with SIM is fixed! -#if 0 -  // PHI Nodes are ok, just skip over them... -  while (isa<PHINode>(*I)) ++I; -#endif - -  // Accept the setcc instruction... -  if (&*I == BI->getCondition()) -    ++I; - -  // Nothing else is acceptable here yet.  We must not revector... unless we are -  // at the terminator instruction. -  if (&*I == BI) -    return true; - -  return false; -} - - -bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo, -                                           RegionInfo &RI) { -  // If this successor is a simple block not in the current region, which -  // contains only a conditional branch, we decide if the outcome of the branch -  // can be determined from information inside of the region.  Instead of going -  // to this block, we can instead go to the destination we know is the right -  // target. -  // - -  // Check to see if we dominate the block. If so, this block will get the -  // condition turned to a constant anyway. -  // -  //if (EF->dominates(RI.getEntryBlock(), BB)) -  // return 0; - -  BasicBlock *BB = TI->getParent(); - -  // Get the destination block of this edge... -  BasicBlock *OldSucc = TI->getSuccessor(SuccNo); - -  // Make sure that the block ends with a conditional branch and is simple -  // enough for use to be able to revector over. -  BranchInst *BI = dyn_cast<BranchInst>(OldSucc->getTerminator()); -  if (BI == 0 || !BI->isConditional() || !isBlockSimpleEnough(OldSucc)) -    return false; - -  // We can only forward the branch over the block if the block ends with a -  // cmp we can determine the outcome for. -  // -  // FIXME: we can make this more generic.  Code below already handles more -  // generic case. -  if (!isa<CmpInst>(BI->getCondition())) -    return false; - -  // Make a new RegionInfo structure so that we can simulate the effect of the -  // PHI nodes in the block we are skipping over... -  // -  RegionInfo NewRI(RI); - -  // Remove value information for all of the values we are simulating... to make -  // sure we don't have any stale information. -  for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I) -    if (I->getType() != Type::VoidTy) -      NewRI.removeValueInfo(I); - -  // Put the newly discovered information into the RegionInfo... -  for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I) -    if (PHINode *PN = dyn_cast<PHINode>(I)) { -      int OpNum = PN->getBasicBlockIndex(BB); -      assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?"); -      PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI); -    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) { -      Relation::KnownResult Res = getCmpResult(CI, NewRI); -      if (Res == Relation::Unknown) return false; -      PropagateEquality(CI, ConstantInt::get(Type::Int1Ty, Res), NewRI); -    } else { -      assert(isa<BranchInst>(*I) && "Unexpected instruction type!"); -    } - -  // Compute the facts implied by what we have discovered... -  ComputeReplacements(NewRI); - -  ValueInfo &PredicateVI = NewRI.getValueInfo(BI->getCondition()); -  if (PredicateVI.getReplacement() && -      isa<Constant>(PredicateVI.getReplacement()) && -      !isa<GlobalValue>(PredicateVI.getReplacement())) { -    ConstantInt *CB = cast<ConstantInt>(PredicateVI.getReplacement()); - -    // Forward to the successor that corresponds to the branch we will take. -    ForwardSuccessorTo(TI, SuccNo,  -                       BI->getSuccessor(!CB->getZExtValue()), NewRI); -    return true; -  } - -  return false; -} - -static Value *getReplacementOrValue(Value *V, RegionInfo &RI) { -  if (const ValueInfo *VI = RI.requestValueInfo(V)) -    if (Value *Repl = VI->getReplacement()) -      return Repl; -  return V; -} - -/// ForwardSuccessorTo - We have found that we can forward successor # 'SuccNo' -/// of Terminator 'TI' to the 'Dest' BasicBlock.  This method performs the -/// mechanics of updating SSA information and revectoring the branch. -/// -void CEE::ForwardSuccessorTo(TerminatorInst *TI, unsigned SuccNo, -                             BasicBlock *Dest, RegionInfo &RI) { -  // If there are any PHI nodes in the Dest BB, we must duplicate the entry -  // in the PHI node for the old successor to now include an entry from the -  // current basic block. -  // -  BasicBlock *OldSucc = TI->getSuccessor(SuccNo); -  BasicBlock *BB = TI->getParent(); - -  DOUT << "Forwarding branch in basic block %" << BB->getName() -       << " from block %" << OldSucc->getName() << " to block %" -       << Dest->getName() << "\n" -       << "Before forwarding: " << *BB->getParent(); - -  // Because we know that there cannot be critical edges in the flow graph, and -  // that OldSucc has multiple outgoing edges, this means that Dest cannot have -  // multiple incoming edges. -  // -#ifndef NDEBUG -  pred_iterator DPI = pred_begin(Dest); ++DPI; -  assert(DPI == pred_end(Dest) && "Critical edge found!!"); -#endif - -  // Loop over any PHI nodes in the destination, eliminating them, because they -  // may only have one input. -  // -  while (PHINode *PN = dyn_cast<PHINode>(&Dest->front())) { -    assert(PN->getNumIncomingValues() == 1 && "Crit edge found!"); -    // Eliminate the PHI node -    PN->replaceAllUsesWith(PN->getIncomingValue(0)); -    Dest->getInstList().erase(PN); -  } - -  // If there are values defined in the "OldSucc" basic block, we need to insert -  // PHI nodes in the regions we are dealing with to emulate them.  This can -  // insert dead phi nodes, but it is more trouble to see if they are used than -  // to just blindly insert them. -  // -  if (DT->dominates(OldSucc, Dest)) { -    // RegionExitBlocks - Find all of the blocks that are not dominated by Dest, -    // but have predecessors that are.  Additionally, prune down the set to only -    // include blocks that are dominated by OldSucc as well. -    // -    std::vector<BasicBlock*> RegionExitBlocks; -    CalculateRegionExitBlocks(Dest, OldSucc, RegionExitBlocks); - -    for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); -         I != E; ++I) -      if (I->getType() != Type::VoidTy) { -        // Create and insert the PHI node into the top of Dest. -        PHINode *NewPN = new PHINode(I->getType(), I->getName()+".fw_merge", -                                     Dest->begin()); -        // There is definitely an edge from OldSucc... add the edge now -        NewPN->addIncoming(I, OldSucc); - -        // There is also an edge from BB now, add the edge with the calculated -        // value from the RI. -        NewPN->addIncoming(getReplacementOrValue(I, RI), BB); - -        // Make everything in the Dest region use the new PHI node now... -        ReplaceUsesOfValueInRegion(I, NewPN, Dest); - -        // Make sure that exits out of the region dominated by NewPN get PHI -        // nodes that merge the values as appropriate. -        InsertRegionExitMerges(NewPN, I, RegionExitBlocks); -      } -  } - -  // If there were PHI nodes in OldSucc, we need to remove the entry for this -  // edge from the PHI node, and we need to replace any references to the PHI -  // node with a new value. -  // -  for (BasicBlock::iterator I = OldSucc->begin(); isa<PHINode>(I); ) { -    PHINode *PN = cast<PHINode>(I); - -    // Get the value flowing across the old edge and remove the PHI node entry -    // for this edge: we are about to remove the edge!  Don't remove the PHI -    // node yet though if this is the last edge into it. -    Value *EdgeValue = PN->removeIncomingValue(BB, false); - -    // Make sure that anything that used to use PN now refers to EdgeValue -    ReplaceUsesOfValueInRegion(PN, EdgeValue, Dest); - -    // If there is only one value left coming into the PHI node, replace the PHI -    // node itself with the one incoming value left. -    // -    if (PN->getNumIncomingValues() == 1) { -      assert(PN->getNumIncomingValues() == 1); -      PN->replaceAllUsesWith(PN->getIncomingValue(0)); -      PN->getParent()->getInstList().erase(PN); -      I = OldSucc->begin(); -    } else if (PN->getNumIncomingValues() == 0) {  // Nuke the PHI -      // If we removed the last incoming value to this PHI, nuke the PHI node -      // now. -      PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); -      PN->getParent()->getInstList().erase(PN); -      I = OldSucc->begin(); -    } else { -      ++I;  // Otherwise, move on to the next PHI node -    } -  } - -  // Actually revector the branch now... -  TI->setSuccessor(SuccNo, Dest); - -  // If we just introduced a critical edge in the flow graph, make sure to break -  // it right away... -  SplitCriticalEdge(TI, SuccNo, this); - -  // Make sure that we don't introduce critical edges from oldsucc now! -  for (unsigned i = 0, e = OldSucc->getTerminator()->getNumSuccessors(); -       i != e; ++i) -    SplitCriticalEdge(OldSucc->getTerminator(), i, this); - -  // Since we invalidated the CFG, recalculate the dominator set so that it is -  // useful for later processing! -  // FIXME: This is much worse than it really should be! -  //EF->recalculate(); - -  DOUT << "After forwarding: " << *BB->getParent(); -} - -/// ReplaceUsesOfValueInRegion - This method replaces all uses of Orig with uses -/// of New.  It only affects instructions that are defined in basic blocks that -/// are dominated by Head. -/// -void CEE::ReplaceUsesOfValueInRegion(Value *Orig, Value *New, -                                     BasicBlock *RegionDominator) { -  assert(Orig != New && "Cannot replace value with itself"); -  std::vector<Instruction*> InstsToChange; -  std::vector<PHINode*>     PHIsToChange; -  InstsToChange.reserve(Orig->getNumUses()); - -  // Loop over instructions adding them to InstsToChange vector, this allows us -  // an easy way to avoid invalidating the use_iterator at a bad time. -  for (Value::use_iterator I = Orig->use_begin(), E = Orig->use_end(); -       I != E; ++I) -    if (Instruction *User = dyn_cast<Instruction>(*I)) -      if (DT->dominates(RegionDominator, User->getParent())) -        InstsToChange.push_back(User); -      else if (PHINode *PN = dyn_cast<PHINode>(User)) { -        PHIsToChange.push_back(PN); -      } - -  // PHIsToChange contains PHI nodes that use Orig that do not live in blocks -  // dominated by orig.  If the block the value flows in from is dominated by -  // RegionDominator, then we rewrite the PHI -  for (unsigned i = 0, e = PHIsToChange.size(); i != e; ++i) { -    PHINode *PN = PHIsToChange[i]; -    for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j) -      if (PN->getIncomingValue(j) == Orig && -          DT->dominates(RegionDominator, PN->getIncomingBlock(j))) -        PN->setIncomingValue(j, New); -  } - -  // Loop over the InstsToChange list, replacing all uses of Orig with uses of -  // New.  This list contains all of the instructions in our region that use -  // Orig. -  for (unsigned i = 0, e = InstsToChange.size(); i != e; ++i) -    if (PHINode *PN = dyn_cast<PHINode>(InstsToChange[i])) { -      // PHINodes must be handled carefully.  If the PHI node itself is in the -      // region, we have to make sure to only do the replacement for incoming -      // values that correspond to basic blocks in the region. -      for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j) -        if (PN->getIncomingValue(j) == Orig && -            DT->dominates(RegionDominator, PN->getIncomingBlock(j))) -          PN->setIncomingValue(j, New); - -    } else { -      InstsToChange[i]->replaceUsesOfWith(Orig, New); -    } -} - -static void CalcRegionExitBlocks(BasicBlock *Header, BasicBlock *BB, -                                 std::set<BasicBlock*> &Visited, -                                 DominatorTree &DT, -                                 std::vector<BasicBlock*> &RegionExitBlocks) { -  if (Visited.count(BB)) return; -  Visited.insert(BB); - -  if (DT.dominates(Header, BB)) {  // Block in the region, recursively traverse -    for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) -      CalcRegionExitBlocks(Header, *I, Visited, DT, RegionExitBlocks); -  } else { -    // Header does not dominate this block, but we have a predecessor that does -    // dominate us.  Add ourself to the list. -    RegionExitBlocks.push_back(BB); -  } -} - -/// CalculateRegionExitBlocks - Find all of the blocks that are not dominated by -/// BB, but have predecessors that are.  Additionally, prune down the set to -/// only include blocks that are dominated by OldSucc as well. -/// -void CEE::CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc, -                                    std::vector<BasicBlock*> &RegionExitBlocks){ -  std::set<BasicBlock*> Visited;  // Don't infinite loop - -  // Recursively calculate blocks we are interested in... -  CalcRegionExitBlocks(BB, BB, Visited, *DT, RegionExitBlocks); - -  // Filter out blocks that are not dominated by OldSucc... -  for (unsigned i = 0; i != RegionExitBlocks.size(); ) { -    if (DT->dominates(OldSucc, RegionExitBlocks[i])) -      ++i;  // Block is ok, keep it. -    else { -      // Move to end of list... -      std::swap(RegionExitBlocks[i], RegionExitBlocks.back()); -      RegionExitBlocks.pop_back();        // Nuke the end -    } -  } -} - -void CEE::InsertRegionExitMerges(PHINode *BBVal, Instruction *OldVal, -                             const std::vector<BasicBlock*> &RegionExitBlocks) { -  assert(BBVal->getType() == OldVal->getType() && "Should be derived values!"); -  BasicBlock *BB = BBVal->getParent(); - -  // Loop over all of the blocks we have to place PHIs in, doing it. -  for (unsigned i = 0, e = RegionExitBlocks.size(); i != e; ++i) { -    BasicBlock *FBlock = RegionExitBlocks[i];  // Block on the frontier - -    // Create the new PHI node -    PHINode *NewPN = new PHINode(BBVal->getType(), -                                 OldVal->getName()+".fw_frontier", -                                 FBlock->begin()); - -    // Add an incoming value for every predecessor of the block... -    for (pred_iterator PI = pred_begin(FBlock), PE = pred_end(FBlock); -         PI != PE; ++PI) { -      // If the incoming edge is from the region dominated by BB, use BBVal, -      // otherwise use OldVal. -      NewPN->addIncoming(DT->dominates(BB, *PI) ? BBVal : OldVal, *PI); -    } - -    // Now make everyone dominated by this block use this new value! -    ReplaceUsesOfValueInRegion(OldVal, NewPN, FBlock); -  } -} - - - -// BuildRankMap - This method builds the rank map data structure which gives -// each instruction/value in the function a value based on how early it appears -// in the function.  We give constants and globals rank 0, arguments are -// numbered starting at one, and instructions are numbered in reverse post-order -// from where the arguments leave off.  This gives instructions in loops higher -// values than instructions not in loops. -// -void CEE::BuildRankMap(Function &F) { -  unsigned Rank = 1;  // Skip rank zero. - -  // Number the arguments... -  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) -    RankMap[I] = Rank++; - -  // Number the instructions in reverse post order... -  ReversePostOrderTraversal<Function*> RPOT(&F); -  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), -         E = RPOT.end(); I != E; ++I) -    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); -         BBI != E; ++BBI) -      if (BBI->getType() != Type::VoidTy) -        RankMap[BBI] = Rank++; -} - - -// PropagateBranchInfo - When this method is invoked, we need to propagate -// information derived from the branch condition into the true and false -// branches of BI.  Since we know that there aren't any critical edges in the -// flow graph, this can proceed unconditionally. -// -void CEE::PropagateBranchInfo(BranchInst *BI) { -  assert(BI->isConditional() && "Must be a conditional branch!"); - -  // Propagate information into the true block... -  // -  PropagateEquality(BI->getCondition(), ConstantInt::getTrue(), -                    getRegionInfo(BI->getSuccessor(0))); - -  // Propagate information into the false block... -  // -  PropagateEquality(BI->getCondition(), ConstantInt::getFalse(), -                    getRegionInfo(BI->getSuccessor(1))); -} - - -// PropagateSwitchInfo - We need to propagate the value tested by the -// switch statement through each case block. -// -void CEE::PropagateSwitchInfo(SwitchInst *SI) { -  // Propagate information down each of our non-default case labels.  We -  // don't yet propagate information down the default label, because a -  // potentially large number of inequality constraints provide less -  // benefit per unit work than a single equality constraint. -  // -  Value *cond = SI->getCondition(); -  for (unsigned i = 1; i < SI->getNumSuccessors(); ++i) -    PropagateEquality(cond, SI->getSuccessorValue(i), -                      getRegionInfo(SI->getSuccessor(i))); -} - - -// PropagateEquality - If we discover that two values are equal to each other in -// a specified region, propagate this knowledge recursively. -// -void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) { -  if (Op0 == Op1) return;  // Gee whiz. Are these really equal each other? - -  if (isa<Constant>(Op0))  // Make sure the constant is always Op1 -    std::swap(Op0, Op1); - -  // Make sure we don't already know these are equal, to avoid infinite loops... -  ValueInfo &VI = RI.getValueInfo(Op0); - -  // Get information about the known relationship between Op0 & Op1 -  Relation &KnownRelation = VI.getRelation(Op1); - -  // If we already know they're equal, don't reprocess... -  if (KnownRelation.getRelation() == FCmpInst::FCMP_OEQ || -      KnownRelation.getRelation() == ICmpInst::ICMP_EQ) -    return; - -  // If this is boolean, check to see if one of the operands is a constant.  If -  // it's a constant, then see if the other one is one of a setcc instruction, -  // an AND, OR, or XOR instruction. -  // -  ConstantInt *CB = dyn_cast<ConstantInt>(Op1); -  if (CB && Op1->getType() == Type::Int1Ty) { -    if (Instruction *Inst = dyn_cast<Instruction>(Op0)) { -      // If we know that this instruction is an AND instruction, and the  -      // result is true, this means that both operands to the OR are known  -      // to be true as well. -      // -      if (CB->getZExtValue() && Inst->getOpcode() == Instruction::And) { -        PropagateEquality(Inst->getOperand(0), CB, RI); -        PropagateEquality(Inst->getOperand(1), CB, RI); -      } - -      // If we know that this instruction is an OR instruction, and the result -      // is false, this means that both operands to the OR are know to be  -      // false as well. -      // -      if (!CB->getZExtValue() && Inst->getOpcode() == Instruction::Or) { -        PropagateEquality(Inst->getOperand(0), CB, RI); -        PropagateEquality(Inst->getOperand(1), CB, RI); -      } - -      // If we know that this instruction is a NOT instruction, we know that  -      // the operand is known to be the inverse of whatever the current  -      // value is. -      // -      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst)) -        if (BinaryOperator::isNot(BOp)) -          PropagateEquality(BinaryOperator::getNotArgument(BOp), -                            ConstantInt::get(Type::Int1Ty,  -                                             !CB->getZExtValue()), RI); - -      // If we know the value of a FCmp instruction, propagate the information -      // about the relation into this region as well. -      // -      if (FCmpInst *FCI = dyn_cast<FCmpInst>(Inst)) { -        if (CB->getZExtValue()) {  // If we know the condition is true... -          // Propagate info about the LHS to the RHS & RHS to LHS -          PropagateRelation(FCI->getPredicate(), FCI->getOperand(0), -                            FCI->getOperand(1), RI); -          PropagateRelation(FCI->getSwappedPredicate(), -                            FCI->getOperand(1), FCI->getOperand(0), RI); - -        } else {               // If we know the condition is false... -          // We know the opposite of the condition is true... -          FCmpInst::Predicate C = FCI->getInversePredicate(); - -          PropagateRelation(C, FCI->getOperand(0), FCI->getOperand(1), RI); -          PropagateRelation(FCmpInst::getSwappedPredicate(C), -                            FCI->getOperand(1), FCI->getOperand(0), RI); -        } -      } -     -      // If we know the value of a ICmp instruction, propagate the information -      // about the relation into this region as well. -      // -      if (ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) { -        if (CB->getZExtValue()) { // If we know the condition is true... -          // Propagate info about the LHS to the RHS & RHS to LHS -          PropagateRelation(ICI->getPredicate(), ICI->getOperand(0), -                            ICI->getOperand(1), RI); -          PropagateRelation(ICI->getSwappedPredicate(), ICI->getOperand(1), -                            ICI->getOperand(1), RI); - -        } else {               // If we know the condition is false ... -          // We know the opposite of the condition is true... -          ICmpInst::Predicate C = ICI->getInversePredicate(); - -          PropagateRelation(C, ICI->getOperand(0), ICI->getOperand(1), RI); -          PropagateRelation(ICmpInst::getSwappedPredicate(C), -                            ICI->getOperand(1), ICI->getOperand(0), RI); -        } -      } -    } -  } - -  // Propagate information about Op0 to Op1 & visa versa -  PropagateRelation(ICmpInst::ICMP_EQ, Op0, Op1, RI); -  PropagateRelation(ICmpInst::ICMP_EQ, Op1, Op0, RI); -  PropagateRelation(FCmpInst::FCMP_OEQ, Op0, Op1, RI); -  PropagateRelation(FCmpInst::FCMP_OEQ, Op1, Op0, RI); -} - - -// PropagateRelation - We know that the specified relation is true in all of the -// blocks in the specified region.  Propagate the information about Op0 and -// anything derived from it into this region. -// -void CEE::PropagateRelation(unsigned Opcode, Value *Op0, -                            Value *Op1, RegionInfo &RI) { -  assert(Op0->getType() == Op1->getType() && "Equal types expected!"); - -  // Constants are already pretty well understood.  We will apply information -  // about the constant to Op1 in another call to PropagateRelation. -  // -  if (isa<Constant>(Op0)) return; - -  // Get the region information for this block to update... -  ValueInfo &VI = RI.getValueInfo(Op0); - -  // Get information about the known relationship between Op0 & Op1 -  Relation &Op1R = VI.getRelation(Op1); - -  // Quick bailout for common case if we are reprocessing an instruction... -  if (Op1R.getRelation() == Opcode) -    return; - -  // If we already have information that contradicts the current information we -  // are propagating, ignore this info.  Something bad must have happened! -  // -  if (Op1R.contradicts(Opcode, VI)) { -    Op1R.contradicts(Opcode, VI); -    cerr << "Contradiction found for opcode: " -         << ((isa<ICmpInst>(Op0)||isa<ICmpInst>(Op1)) ?  -                  Instruction::getOpcodeName(Instruction::ICmp) : -                  Instruction::getOpcodeName(Opcode)) -         << "\n"; -    Op1R.print(*cerr.stream()); -    return; -  } - -  // If the information propagated is new, then we want process the uses of this -  // instruction to propagate the information down to them. -  // -  if (Op1R.incorporate(Opcode, VI)) -    UpdateUsersOfValue(Op0, RI); -} - - -// UpdateUsersOfValue - The information about V in this region has been updated. -// Propagate this to all consumers of the value. -// -void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) { -  for (Value::use_iterator I = V->use_begin(), E = V->use_end(); -       I != E; ++I) -    if (Instruction *Inst = dyn_cast<Instruction>(*I)) { -      // If this is an instruction using a value that we know something about, -      // try to propagate information to the value produced by the -      // instruction.  We can only do this if it is an instruction we can -      // propagate information for (a setcc for example), and we only WANT to -      // do this if the instruction dominates this region. -      // -      // If the instruction doesn't dominate this region, then it cannot be -      // used in this region and we don't care about it.  If the instruction -      // is IN this region, then we will simplify the instruction before we -      // get to uses of it anyway, so there is no reason to bother with it -      // here.  This check is also effectively checking to make sure that Inst -      // is in the same function as our region (in case V is a global f.e.). -      // -      if (DT->properlyDominates(Inst->getParent(), RI.getEntryBlock())) -        IncorporateInstruction(Inst, RI); -    } -} - -// IncorporateInstruction - We just updated the information about one of the -// operands to the specified instruction.  Update the information about the -// value produced by this instruction -// -void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) { -  if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { -    // See if we can figure out a result for this instruction... -    Relation::KnownResult Result = getCmpResult(CI, RI); -    if (Result != Relation::Unknown) { -      PropagateEquality(CI, ConstantInt::get(Type::Int1Ty, Result != 0), RI); -    } -  } -} - - -// ComputeReplacements - Some values are known to be equal to other values in a -// region.  For example if there is a comparison of equality between a variable -// X and a constant C, we can replace all uses of X with C in the region we are -// interested in.  We generalize this replacement to replace variables with -// other variables if they are equal and there is a variable with lower rank -// than the current one.  This offers a canonicalizing property that exposes -// more redundancies for later transformations to take advantage of. -// -void CEE::ComputeReplacements(RegionInfo &RI) { -  // Loop over all of the values in the region info map... -  for (RegionInfo::iterator I = RI.begin(), E = RI.end(); I != E; ++I) { -    ValueInfo &VI = I->second; - -    // If we know that this value is a particular constant, set Replacement to -    // the constant... -    Value *Replacement = 0; -    const APInt * Rplcmnt = VI.getBounds().getSingleElement(); -    if (Rplcmnt) -      Replacement = ConstantInt::get(*Rplcmnt); - -    // If this value is not known to be some constant, figure out the lowest -    // rank value that it is known to be equal to (if anything). -    // -    if (Replacement == 0) { -      // Find out if there are any equality relationships with values of lower -      // rank than VI itself... -      unsigned MinRank = getRank(I->first); - -      // Loop over the relationships known about Op0. -      const std::vector<Relation> &Relationships = VI.getRelationships(); -      for (unsigned i = 0, e = Relationships.size(); i != e; ++i) -        if (Relationships[i].getRelation() == FCmpInst::FCMP_OEQ) { -          unsigned R = getRank(Relationships[i].getValue()); -          if (R < MinRank) { -            MinRank = R; -            Replacement = Relationships[i].getValue(); -          } -        } -        else if (Relationships[i].getRelation() == ICmpInst::ICMP_EQ) { -          unsigned R = getRank(Relationships[i].getValue()); -          if (R < MinRank) { -            MinRank = R; -            Replacement = Relationships[i].getValue(); -          } -        } -    } - -    // If we found something to replace this value with, keep track of it. -    if (Replacement) -      VI.setReplacement(Replacement); -  } -} - -// SimplifyBasicBlock - Given information about values in region RI, simplify -// the instructions in the specified basic block. -// -bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) { -  bool Changed = false; -  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { -    Instruction *Inst = I++; - -    // Convert instruction arguments to canonical forms... -    Changed |= SimplifyInstruction(Inst, RI); - -    if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { -      // Try to simplify a setcc instruction based on inherited information -      Relation::KnownResult Result = getCmpResult(CI, RI); -      if (Result != Relation::Unknown) { -        DEBUG(cerr << "Replacing icmp with " << Result -                   << " constant: " << *CI); - -        CI->replaceAllUsesWith(ConstantInt::get(Type::Int1Ty, (bool)Result)); -        // The instruction is now dead, remove it from the program. -        CI->getParent()->getInstList().erase(CI); -        ++NumCmpRemoved; -        Changed = true; -      } -    } -  } - -  return Changed; -} - -// SimplifyInstruction - Inspect the operands of the instruction, converting -// them to their canonical form if possible.  This takes care of, for example, -// replacing a value 'X' with a constant 'C' if the instruction in question is -// dominated by a true seteq 'X', 'C'. -// -bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) { -  bool Changed = false; - -  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) -    if (const ValueInfo *VI = RI.requestValueInfo(I->getOperand(i))) -      if (Value *Repl = VI->getReplacement()) { -        // If we know if a replacement with lower rank than Op0, make the -        // replacement now. -        DOUT << "In Inst: " << *I << "  Replacing operand #" << i -             << " with " << *Repl << "\n"; -        I->setOperand(i, Repl); -        Changed = true; -        ++NumOperandsCann; -      } - -  return Changed; -} - -// getCmpResult - Try to simplify a cmp instruction based on information -// inherited from a dominating icmp instruction.  V is one of the operands to -// the icmp instruction, and VI is the set of information known about it.  We -// take two cases into consideration here.  If the comparison is against a -// constant value, we can use the constant range to see if the comparison is -// possible to succeed.  If it is not a comparison against a constant, we check -// to see if there is a known relationship between the two values.  If so, we -// may be able to eliminate the check. -// -Relation::KnownResult CEE::getCmpResult(CmpInst *CI, -                                        const RegionInfo &RI) { -  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); -  unsigned short predicate = CI->getPredicate(); - -  if (isa<Constant>(Op0)) { -    if (isa<Constant>(Op1)) { -      if (Constant *Result = ConstantFoldInstruction(CI)) { -        // Wow, this is easy, directly eliminate the ICmpInst. -        DEBUG(cerr << "Replacing cmp with constant fold: " << *CI); -        return cast<ConstantInt>(Result)->getZExtValue() -          ? Relation::KnownTrue : Relation::KnownFalse; -      } -    } else { -      // We want to swap this instruction so that operand #0 is the constant. -      std::swap(Op0, Op1); -      if (isa<ICmpInst>(CI)) -        predicate = cast<ICmpInst>(CI)->getSwappedPredicate(); -      else -        predicate = cast<FCmpInst>(CI)->getSwappedPredicate(); -    } -  } - -  // Try to figure out what the result of this comparison will be... -  Relation::KnownResult Result = Relation::Unknown; - -  // We have to know something about the relationship to prove anything... -  if (const ValueInfo *Op0VI = RI.requestValueInfo(Op0)) { - -    // At this point, we know that if we have a constant argument that it is in -    // Op1.  Check to see if we know anything about comparing value with a -    // constant, and if we can use this info to fold the icmp. -    // -    if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { -      // Check to see if we already know the result of this comparison... -      ICmpInst::Predicate ipred = ICmpInst::Predicate(predicate); -      ConstantRange R = ICmpInst::makeConstantRange(ipred, C->getValue()); -      ConstantRange Int = R.intersectWith(Op0VI->getBounds()); - -      // If the intersection of the two ranges is empty, then the condition -      // could never be true! -      // -      if (Int.isEmptySet()) { -        Result = Relation::KnownFalse; - -      // Otherwise, if VI.getBounds() (the possible values) is a subset of R -      // (the allowed values) then we know that the condition must always be -      // true! -      // -      } else if (Int == Op0VI->getBounds()) { -        Result = Relation::KnownTrue; -      } -    } else { -      // If we are here, we know that the second argument is not a constant -      // integral.  See if we know anything about Op0 & Op1 that allows us to -      // fold this anyway. -      // -      // Do we have value information about Op0 and a relation to Op1? -      if (const Relation *Op2R = Op0VI->requestRelation(Op1)) -        Result = Op2R->getImpliedResult(predicate); -    } -  } -  return Result; -} - -//===----------------------------------------------------------------------===// -//  Relation Implementation -//===----------------------------------------------------------------------===// - -// contradicts - Return true if the relationship specified by the operand -// contradicts already known information. -// -bool Relation::contradicts(unsigned Op, -                           const ValueInfo &VI) const { -  assert (Op != Instruction::Add && "Invalid relation argument!"); - -  // If this is a relationship with a constant, make sure that this relationship -  // does not contradict properties known about the bounds of the constant. -  // -  if (ConstantInt *C = dyn_cast<ConstantInt>(Val)) -    if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&  -        Op <= ICmpInst::LAST_ICMP_PREDICATE) { -      ICmpInst::Predicate ipred = ICmpInst::Predicate(Op); -      if (ICmpInst::makeConstantRange(ipred, C->getValue()) -                    .intersectWith(VI.getBounds()).isEmptySet()) -        return true; -    } - -  switch (Rel) { -  default: assert(0 && "Unknown Relationship code!"); -  case Instruction::Add: return false;  // Nothing known, nothing contradicts -  case ICmpInst::ICMP_EQ: -    return Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_SLT || -           Op == ICmpInst::ICMP_UGT || Op == ICmpInst::ICMP_SGT || -           Op == ICmpInst::ICMP_NE; -  case ICmpInst::ICMP_NE:  return Op == ICmpInst::ICMP_EQ; -  case ICmpInst::ICMP_ULE: -  case ICmpInst::ICMP_SLE: return Op == ICmpInst::ICMP_UGT || -                                  Op == ICmpInst::ICMP_SGT; -  case ICmpInst::ICMP_UGE: -  case ICmpInst::ICMP_SGE: return Op == ICmpInst::ICMP_ULT || -                                  Op == ICmpInst::ICMP_SLT; -  case ICmpInst::ICMP_ULT: -  case ICmpInst::ICMP_SLT: -    return Op == ICmpInst::ICMP_EQ  || Op == ICmpInst::ICMP_UGT || -           Op == ICmpInst::ICMP_SGT || Op == ICmpInst::ICMP_UGE || -           Op == ICmpInst::ICMP_SGE; -  case ICmpInst::ICMP_UGT: -  case ICmpInst::ICMP_SGT: -    return Op == ICmpInst::ICMP_EQ  || Op == ICmpInst::ICMP_ULT || -           Op == ICmpInst::ICMP_SLT || Op == ICmpInst::ICMP_ULE || -           Op == ICmpInst::ICMP_SLE; -  case FCmpInst::FCMP_OEQ: -    return Op == FCmpInst::FCMP_OLT || Op == FCmpInst::FCMP_OGT || -           Op == FCmpInst::FCMP_ONE; -  case FCmpInst::FCMP_ONE: return Op == FCmpInst::FCMP_OEQ; -  case FCmpInst::FCMP_OLE: return Op == FCmpInst::FCMP_OGT; -  case FCmpInst::FCMP_OGE: return Op == FCmpInst::FCMP_OLT; -  case FCmpInst::FCMP_OLT: -    return Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OGT || -           Op == FCmpInst::FCMP_OGE; -  case FCmpInst::FCMP_OGT: -    return Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OLT || -           Op == FCmpInst::FCMP_OLE; -  } -} - -// incorporate - Incorporate information in the argument into this relation -// entry.  This assumes that the information doesn't contradict itself.  If any -// new information is gained, true is returned, otherwise false is returned to -// indicate that nothing was updated. -// -bool Relation::incorporate(unsigned Op, ValueInfo &VI) { -  assert(!contradicts(Op, VI) && -         "Cannot incorporate contradictory information!"); - -  // If this is a relationship with a constant, make sure that we update the -  // range that is possible for the value to have... -  // -  if (ConstantInt *C = dyn_cast<ConstantInt>(Val)) -    if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&  -        Op <= ICmpInst::LAST_ICMP_PREDICATE) { -      ICmpInst::Predicate ipred = ICmpInst::Predicate(Op); -      VI.getBounds() =  -        ICmpInst::makeConstantRange(ipred, C->getValue()) -                  .intersectWith(VI.getBounds()); -    } - -  switch (Rel) { -  default: assert(0 && "Unknown prior value!"); -  case Instruction::Add:   Rel = Op; return true; -  case ICmpInst::ICMP_EQ: -  case ICmpInst::ICMP_NE: -  case ICmpInst::ICMP_ULT: -  case ICmpInst::ICMP_SLT: -  case ICmpInst::ICMP_UGT: -  case ICmpInst::ICMP_SGT: return false;  // Nothing is more precise -  case ICmpInst::ICMP_ULE: -  case ICmpInst::ICMP_SLE: -    if (Op == ICmpInst::ICMP_EQ  || Op == ICmpInst::ICMP_ULT || -        Op == ICmpInst::ICMP_SLT) { -      Rel = Op; -      return true; -    } else if (Op == ICmpInst::ICMP_NE) { -      Rel = Rel == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_ULT : -            ICmpInst::ICMP_SLT; -      return true; -    } -    return false; -  case ICmpInst::ICMP_UGE: -  case ICmpInst::ICMP_SGE: -    if (Op == ICmpInst::ICMP_EQ  || ICmpInst::ICMP_UGT || -        Op == ICmpInst::ICMP_SGT) { -      Rel = Op; -      return true; -    } else if (Op == ICmpInst::ICMP_NE) { -      Rel = Rel == ICmpInst::ICMP_UGE ? ICmpInst::ICMP_UGT : -            ICmpInst::ICMP_SGT; -      return true; -    } -    return false; -  case FCmpInst::FCMP_OEQ: return false;  // Nothing is more precise -  case FCmpInst::FCMP_ONE: return false;  // Nothing is more precise -  case FCmpInst::FCMP_OLT: return false;  // Nothing is more precise -  case FCmpInst::FCMP_OGT: return false;  // Nothing is more precise -  case FCmpInst::FCMP_OLE: -    if (Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OLT) { -      Rel = Op; -      return true; -    } else if (Op == FCmpInst::FCMP_ONE) { -      Rel = FCmpInst::FCMP_OLT; -      return true; -    } -    return false; -  case FCmpInst::FCMP_OGE:  -    if (Op == FCmpInst::FCMP_OEQ || Op == FCmpInst::FCMP_OGT) { -      Rel = Op; -      return true; -    } else if (Op == FCmpInst::FCMP_ONE) { -      Rel = FCmpInst::FCMP_OGT; -      return true; -    } -    return false; -  } -} - -// getImpliedResult - If this relationship between two values implies that -// the specified relationship is true or false, return that.  If we cannot -// determine the result required, return Unknown. -// -Relation::KnownResult -Relation::getImpliedResult(unsigned Op) const { -  if (Rel == Op) return KnownTrue; -  if (Op >= ICmpInst::FIRST_ICMP_PREDICATE &&  -      Op <= ICmpInst::LAST_ICMP_PREDICATE) { -    if (Rel == unsigned(ICmpInst::getInversePredicate(ICmpInst::Predicate(Op)))) -      return KnownFalse; -  } else if (Op <= FCmpInst::LAST_FCMP_PREDICATE) { -    if (Rel == unsigned(FCmpInst::getInversePredicate(FCmpInst::Predicate(Op)))) -    return KnownFalse; -  } - -  switch (Rel) { -  default: assert(0 && "Unknown prior value!"); -  case ICmpInst::ICMP_EQ: -    if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_SLE ||  -        Op == ICmpInst::ICMP_UGE || Op == ICmpInst::ICMP_SGE) return KnownTrue; -    if (Op == ICmpInst::ICMP_ULT || Op == ICmpInst::ICMP_SLT ||  -        Op == ICmpInst::ICMP_UGT || Op == ICmpInst::ICMP_SGT) return KnownFalse; -    break; -  case ICmpInst::ICMP_ULT: -  case ICmpInst::ICMP_SLT: -    if (Op == ICmpInst::ICMP_ULE || Op == ICmpInst::ICMP_SLE || -        Op == ICmpInst::ICMP_NE) return KnownTrue; -    if (Op == ICmpInst::ICMP_EQ) return KnownFalse; -    break; -  case ICmpInst::ICMP_UGT: -  case ICmpInst::ICMP_SGT: -    if (Op == ICmpInst::ICMP_UGE || Op == ICmpInst::ICMP_SGE || -        Op == ICmpInst::ICMP_NE) return KnownTrue; -    if (Op == ICmpInst::ICMP_EQ) return KnownFalse; -    break; -  case FCmpInst::FCMP_OEQ: -    if (Op == FCmpInst::FCMP_OLE || Op == FCmpInst::FCMP_OGE) return KnownTrue; -    if (Op == FCmpInst::FCMP_OLT || Op == FCmpInst::FCMP_OGT) return KnownFalse; -    break; -  case FCmpInst::FCMP_OLT: -    if (Op == FCmpInst::FCMP_ONE || Op == FCmpInst::FCMP_OLE) return KnownTrue; -    if (Op == FCmpInst::FCMP_OEQ) return KnownFalse; -    break; -  case FCmpInst::FCMP_OGT: -    if (Op == FCmpInst::FCMP_ONE || Op == FCmpInst::FCMP_OGE) return KnownTrue; -    if (Op == FCmpInst::FCMP_OEQ) return KnownFalse; -    break; -  case ICmpInst::ICMP_NE: -  case ICmpInst::ICMP_SLE: -  case ICmpInst::ICMP_ULE: -  case ICmpInst::ICMP_UGE: -  case ICmpInst::ICMP_SGE: -  case FCmpInst::FCMP_ONE: -  case FCmpInst::FCMP_OLE: -  case FCmpInst::FCMP_OGE: -  case FCmpInst::FCMP_FALSE: -  case FCmpInst::FCMP_ORD: -  case FCmpInst::FCMP_UNO: -  case FCmpInst::FCMP_UEQ: -  case FCmpInst::FCMP_UGT: -  case FCmpInst::FCMP_UGE: -  case FCmpInst::FCMP_ULT: -  case FCmpInst::FCMP_ULE: -  case FCmpInst::FCMP_UNE: -  case FCmpInst::FCMP_TRUE: -    break; -  } -  return Unknown; -} - - -//===----------------------------------------------------------------------===// -// Printing Support... -//===----------------------------------------------------------------------===// - -// print - Implement the standard print form to print out analysis information. -void CEE::print(std::ostream &O, const Module *M) const { -  O << "\nPrinting Correlated Expression Info:\n"; -  for (std::map<BasicBlock*, RegionInfo>::const_iterator I = -         RegionInfoMap.begin(), E = RegionInfoMap.end(); I != E; ++I) -    I->second.print(O); -} - -// print - Output information about this region... -void RegionInfo::print(std::ostream &OS) const { -  if (ValueMap.empty()) return; - -  OS << " RegionInfo for basic block: " << BB->getName() << "\n"; -  for (std::map<Value*, ValueInfo>::const_iterator -         I = ValueMap.begin(), E = ValueMap.end(); I != E; ++I) -    I->second.print(OS, I->first); -  OS << "\n"; -} - -// print - Output information about this value relation... -void ValueInfo::print(std::ostream &OS, Value *V) const { -  if (Relationships.empty()) return; - -  if (V) { -    OS << "  ValueInfo for: "; -    WriteAsOperand(OS, V); -  } -  OS << "\n    Bounds = " << Bounds << "\n"; -  if (Replacement) { -    OS << "    Replacement = "; -    WriteAsOperand(OS, Replacement); -    OS << "\n"; -  } -  for (unsigned i = 0, e = Relationships.size(); i != e; ++i) -    Relationships[i].print(OS); -} - -// print - Output this relation to the specified stream -void Relation::print(std::ostream &OS) const { -  OS << "    is "; -  switch (Rel) { -  default:           OS << "*UNKNOWN*"; break; -  case ICmpInst::ICMP_EQ: -  case FCmpInst::FCMP_ORD: -  case FCmpInst::FCMP_UEQ: -  case FCmpInst::FCMP_OEQ: OS << "== "; break; -  case ICmpInst::ICMP_NE: -  case FCmpInst::FCMP_UNO: -  case FCmpInst::FCMP_UNE: -  case FCmpInst::FCMP_ONE: OS << "!= "; break; -  case ICmpInst::ICMP_ULT: -  case ICmpInst::ICMP_SLT: -  case FCmpInst::FCMP_ULT: -  case FCmpInst::FCMP_OLT: OS << "< "; break; -  case ICmpInst::ICMP_UGT: -  case ICmpInst::ICMP_SGT: -  case FCmpInst::FCMP_UGT: -  case FCmpInst::FCMP_OGT: OS << "> "; break; -  case ICmpInst::ICMP_ULE: -  case ICmpInst::ICMP_SLE: -  case FCmpInst::FCMP_ULE: -  case FCmpInst::FCMP_OLE: OS << "<= "; break; -  case ICmpInst::ICMP_UGE: -  case ICmpInst::ICMP_SGE: -  case FCmpInst::FCMP_UGE: -  case FCmpInst::FCMP_OGE: OS << ">= "; break; -  } - -  WriteAsOperand(OS, Val); -  OS << "\n"; -} - -// Don't inline these methods or else we won't be able to call them from GDB! -void Relation::dump() const { print(*cerr.stream()); } -void ValueInfo::dump() const { print(*cerr.stream(), 0); } -void RegionInfo::dump() const { print(*cerr.stream()); } | 

