diff options
Diffstat (limited to 'llvm/lib/Transforms')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp | 2704 | 
1 files changed, 0 insertions, 2704 deletions
| diff --git a/llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp b/llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp deleted file mode 100644 index b8ac1828db8..00000000000 --- a/llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp +++ /dev/null @@ -1,2704 +0,0 @@ -//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===// -// -//                     The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// Path-sensitive optimizer. In a branch where x == y, replace uses of -// x with y. Permits further optimization, such as the elimination of -// the unreachable call: -// -// void test(int *p, int *q) -// { -//   if (p != q) -//     return; -//  -//   if (*p != *q) -//     foo(); // unreachable -// } -// -//===----------------------------------------------------------------------===// -// -// The InequalityGraph focusses on four properties; equals, not equals, -// less-than and less-than-or-equals-to. The greater-than forms are also held -// just to allow walking from a lesser node to a greater one. These properties -// are stored in a lattice; LE can become LT or EQ, NE can become LT or GT. -// -// These relationships define a graph between values of the same type. Each -// Value is stored in a map table that retrieves the associated Node. This -// is how EQ relationships are stored; the map contains pointers from equal -// Value to the same node. The node contains a most canonical Value* form -// and the list of known relationships with other nodes. -// -// If two nodes are known to be inequal, then they will contain pointers to -// each other with an "NE" relationship. If node getNode(%x) is less than -// getNode(%y), then the %x node will contain <%y, GT> and %y will contain -// <%x, LT>. This allows us to tie nodes together into a graph like this: -// -//   %a < %b < %c < %d -// -// with four nodes representing the properties. The InequalityGraph provides -// querying with "isRelatedBy" and mutators "addEquality" and "addInequality". -// To find a relationship, we start with one of the nodes any binary search -// through its list to find where the relationships with the second node start. -// Then we iterate through those to find the first relationship that dominates -// our context node. -// -// To create these properties, we wait until a branch or switch instruction -// implies that a particular value is true (or false). The VRPSolver is -// responsible for analyzing the variable and seeing what new inferences -// can be made from each property. For example: -// -//   %P = icmp ne i32* %ptr, null -//   %a = and i1 %P, %Q -//   br i1 %a label %cond_true, label %cond_false -// -// For the true branch, the VRPSolver will start with %a EQ true and look at -// the definition of %a and find that it can infer that %P and %Q are both -// true. From %P being true, it can infer that %ptr NE null. For the false -// branch it can't infer anything from the "and" instruction. -// -// Besides branches, we can also infer properties from instruction that may -// have undefined behaviour in certain cases. For example, the dividend of -// a division may never be zero. After the division instruction, we may assume -// that the dividend is not equal to zero. -// -//===----------------------------------------------------------------------===// -// -// The ValueRanges class stores the known integer bounds of a Value. When we -// encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and -// %b = [0, 254]. -// -// It never stores an empty range, because that means that the code is -// unreachable. It never stores a single-element range since that's an equality -// relationship and better stored in the InequalityGraph, nor an empty range -// since that is better stored in UnreachableBlocks. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "predsimplify" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Instructions.h" -#include "llvm/Pass.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SetOperations.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Analysis/Dominators.h" -#include "llvm/Assembly/Writer.h" -#include "llvm/Support/CFG.h" -#include "llvm/Support/ConstantRange.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/InstVisitor.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetData.h" -#include "llvm/Transforms/Utils/Local.h" -#include <algorithm> -#include <deque> -#include <stack> -using namespace llvm; - -STATISTIC(NumVarsReplaced, "Number of argument substitutions"); -STATISTIC(NumInstruction , "Number of instructions removed"); -STATISTIC(NumSimple      , "Number of simple replacements"); -STATISTIC(NumBlocks      , "Number of blocks marked unreachable"); -STATISTIC(NumSnuggle     , "Number of comparisons snuggled"); - -static const ConstantRange empty(1, false); - -namespace { -  class DomTreeDFS { -  public: -    class Node { -      friend class DomTreeDFS; -    public: -      typedef std::vector<Node *>::iterator       iterator; -      typedef std::vector<Node *>::const_iterator const_iterator; - -      unsigned getDFSNumIn()  const { return DFSin;  } -      unsigned getDFSNumOut() const { return DFSout; } - -      BasicBlock *getBlock() const { return BB; } - -      iterator begin() { return Children.begin(); } -      iterator end()   { return Children.end();   } - -      const_iterator begin() const { return Children.begin(); } -      const_iterator end()   const { return Children.end();   } - -      bool dominates(const Node *N) const { -        return DFSin <= N->DFSin && DFSout >= N->DFSout; -      } - -      bool DominatedBy(const Node *N) const { -        return N->dominates(this); -      } - -      /// Sorts by the number of descendants. With this, you can iterate -      /// through a sorted list and the first matching entry is the most -      /// specific match for your basic block. The order provided is stable; -      /// DomTreeDFS::Nodes with the same number of descendants are sorted by -      /// DFS in number. -      bool operator<(const Node &N) const { -        unsigned   spread =   DFSout -   DFSin; -        unsigned N_spread = N.DFSout - N.DFSin; -        if (spread == N_spread) return DFSin < N.DFSin; -        return spread < N_spread; -      } -      bool operator>(const Node &N) const { return N < *this; } - -    private: -      unsigned DFSin, DFSout; -      BasicBlock *BB; - -      std::vector<Node *> Children; -    }; - -    // XXX: this may be slow. Instead of using "new" for each node, consider -    // putting them in a vector to keep them contiguous. -    explicit DomTreeDFS(DominatorTree *DT) { -      std::stack<std::pair<Node *, DomTreeNode *> > S; - -      Entry = new Node; -      Entry->BB = DT->getRootNode()->getBlock(); -      S.push(std::make_pair(Entry, DT->getRootNode())); - -      NodeMap[Entry->BB] = Entry; - -      while (!S.empty()) { -        std::pair<Node *, DomTreeNode *> &Pair = S.top(); -        Node *N = Pair.first; -        DomTreeNode *DTNode = Pair.second; -        S.pop(); - -        for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end(); -             I != E; ++I) { -          Node *NewNode = new Node; -          NewNode->BB = (*I)->getBlock(); -          N->Children.push_back(NewNode); -          S.push(std::make_pair(NewNode, *I)); - -          NodeMap[NewNode->BB] = NewNode; -        } -      } - -      renumber(); - -#ifndef NDEBUG -      DEBUG(dump()); -#endif -    } - -#ifndef NDEBUG -    virtual -#endif -    ~DomTreeDFS() { -      std::stack<Node *> S; - -      S.push(Entry); -      while (!S.empty()) { -        Node *N = S.top(); S.pop(); - -        for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) -          S.push(*I); - -        delete N; -      } -    } - -    /// getRootNode - This returns the entry node for the CFG of the function. -    Node *getRootNode() const { return Entry; } - -    /// getNodeForBlock - return the node for the specified basic block. -    Node *getNodeForBlock(BasicBlock *BB) const { -      if (!NodeMap.count(BB)) return 0; -      return const_cast<DomTreeDFS*>(this)->NodeMap[BB]; -    } - -    /// dominates - returns true if the basic block for I1 dominates that of -    /// the basic block for I2. If the instructions belong to the same basic -    /// block, the instruction first instruction sequentially in the block is -    /// considered dominating. -    bool dominates(Instruction *I1, Instruction *I2) { -      BasicBlock *BB1 = I1->getParent(), -                 *BB2 = I2->getParent(); -      if (BB1 == BB2) { -        if (isa<TerminatorInst>(I1)) return false; -        if (isa<TerminatorInst>(I2)) return true; -        if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true; -        if (!isa<PHINode>(I1) &&  isa<PHINode>(I2)) return false; - -        for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end(); -             I != E; ++I) { -          if (&*I == I1) return true; -          else if (&*I == I2) return false; -        } -        assert(!"Instructions not found in parent BasicBlock?"); -      } else { -        Node *Node1 = getNodeForBlock(BB1), -             *Node2 = getNodeForBlock(BB2); -        return Node1 && Node2 && Node1->dominates(Node2); -      } -      return false; // Not reached -    } - -  private: -    /// renumber - calculates the depth first search numberings and applies -    /// them onto the nodes. -    void renumber() { -      std::stack<std::pair<Node *, Node::iterator> > S; -      unsigned n = 0; - -      Entry->DFSin = ++n; -      S.push(std::make_pair(Entry, Entry->begin())); - -      while (!S.empty()) { -        std::pair<Node *, Node::iterator> &Pair = S.top(); -        Node *N = Pair.first; -        Node::iterator &I = Pair.second; - -        if (I == N->end()) { -          N->DFSout = ++n; -          S.pop(); -        } else { -          Node *Next = *I++; -          Next->DFSin = ++n; -          S.push(std::make_pair(Next, Next->begin())); -        } -      } -    } - -#ifndef NDEBUG -    virtual void dump() const { -      dump(errs()); -    } - -    void dump(raw_ostream &os) const { -      os << "Predicate simplifier DomTreeDFS: \n"; -      dump(Entry, 0, os); -      os << "\n\n"; -    } - -    void dump(Node *N, int depth, raw_ostream &os) const { -      ++depth; -      for (int i = 0; i < depth; ++i) { os << " "; } -      os << "[" << depth << "] "; - -      os << N->getBlock()->getNameStr() << " (" << N->getDFSNumIn() -         << ", " << N->getDFSNumOut() << ")\n"; - -      for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) -        dump(*I, depth, os); -    } -#endif - -    Node *Entry; -    std::map<BasicBlock *, Node *> NodeMap; -  }; - -  // SLT SGT ULT UGT EQ -  //   0   1   0   1  0 -- GT                  10 -  //   0   1   0   1  1 -- GE                  11 -  //   0   1   1   0  0 -- SGTULT              12 -  //   0   1   1   0  1 -- SGEULE              13 -  //   0   1   1   1  0 -- SGT                 14 -  //   0   1   1   1  1 -- SGE                 15 -  //   1   0   0   1  0 -- SLTUGT              18 -  //   1   0   0   1  1 -- SLEUGE              19 -  //   1   0   1   0  0 -- LT                  20 -  //   1   0   1   0  1 -- LE                  21 -  //   1   0   1   1  0 -- SLT                 22 -  //   1   0   1   1  1 -- SLE                 23 -  //   1   1   0   1  0 -- UGT                 26 -  //   1   1   0   1  1 -- UGE                 27 -  //   1   1   1   0  0 -- ULT                 28 -  //   1   1   1   0  1 -- ULE                 29 -  //   1   1   1   1  0 -- NE                  30 -  enum LatticeBits { -    EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16 -  }; -  enum LatticeVal { -    GT = SGT_BIT | UGT_BIT, -    GE = GT | EQ_BIT, -    LT = SLT_BIT | ULT_BIT, -    LE = LT | EQ_BIT, -    NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT, -    SGTULT = SGT_BIT | ULT_BIT, -    SGEULE = SGTULT | EQ_BIT, -    SLTUGT = SLT_BIT | UGT_BIT, -    SLEUGE = SLTUGT | EQ_BIT, -    ULT = SLT_BIT | SGT_BIT | ULT_BIT, -    UGT = SLT_BIT | SGT_BIT | UGT_BIT, -    SLT = SLT_BIT | ULT_BIT | UGT_BIT, -    SGT = SGT_BIT | ULT_BIT | UGT_BIT, -    SLE = SLT | EQ_BIT, -    SGE = SGT | EQ_BIT, -    ULE = ULT | EQ_BIT, -    UGE = UGT | EQ_BIT -  }; - -#ifndef NDEBUG -  /// validPredicate - determines whether a given value is actually a lattice -  /// value. Only used in assertions or debugging. -  static bool validPredicate(LatticeVal LV) { -    switch (LV) { -      case GT: case GE: case LT: case LE: case NE: -      case SGTULT: case SGT: case SGEULE: -      case SLTUGT: case SLT: case SLEUGE: -      case ULT: case UGT: -      case SLE: case SGE: case ULE: case UGE: -        return true; -      default: -        return false; -    } -  } -#endif - -  /// reversePredicate - reverse the direction of the inequality -  static LatticeVal reversePredicate(LatticeVal LV) { -    unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT - -    if ((reverse & (SLT_BIT|SGT_BIT)) == 0) -      reverse |= (SLT_BIT|SGT_BIT); - -    if ((reverse & (ULT_BIT|UGT_BIT)) == 0) -      reverse |= (ULT_BIT|UGT_BIT); - -    LatticeVal Rev = static_cast<LatticeVal>(reverse); -    assert(validPredicate(Rev) && "Failed reversing predicate."); -    return Rev; -  } - -  /// ValueNumbering stores the scope-specific value numbers for a given Value. -  class ValueNumbering { - -    /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It -    /// includes the comparison operators necessary to allow you to store it -    /// in a sorted vector. -    class VNPair { -    public: -      Value *V; -      unsigned index; -      DomTreeDFS::Node *Subtree; - -      VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree) -        : V(V), index(index), Subtree(Subtree) {} - -      bool operator==(const VNPair &RHS) const { -        return V == RHS.V && Subtree == RHS.Subtree; -      } - -      bool operator<(const VNPair &RHS) const { -        if (V != RHS.V) return V < RHS.V; -        return *Subtree < *RHS.Subtree; -      } - -      bool operator<(Value *RHS) const { -        return V < RHS; -      } - -      bool operator>(Value *RHS) const { -        return V > RHS; -      } - -      friend bool operator<(Value *RHS, const VNPair &pair) { -        return pair.operator>(RHS); -      } -    }; - -    typedef std::vector<VNPair> VNMapType; -    VNMapType VNMap; - -    /// The canonical choice for value number at index. -    std::vector<Value *> Values; - -    DomTreeDFS *DTDFS; - -  public: -#ifndef NDEBUG -    virtual ~ValueNumbering() {} -    virtual void dump() { -      print(errs()); -    } - -    void print(raw_ostream &os) { -      for (unsigned i = 1; i <= Values.size(); ++i) { -        os << i << " = "; -        WriteAsOperand(os, Values[i-1]); -        os << " {"; -        for (unsigned j = 0; j < VNMap.size(); ++j) { -          if (VNMap[j].index == i) { -            WriteAsOperand(os, VNMap[j].V); -            os << " (" << VNMap[j].Subtree->getDFSNumIn() << ")  "; -          } -        } -        os << "}\n"; -      } -    } -#endif - -    /// compare - returns true if V1 is a better canonical value than V2. -    bool compare(Value *V1, Value *V2) const { -      if (isa<Constant>(V1)) -        return !isa<Constant>(V2); -      else if (isa<Constant>(V2)) -        return false; -      else if (isa<Argument>(V1)) -        return !isa<Argument>(V2); -      else if (isa<Argument>(V2)) -        return false; - -      Instruction *I1 = dyn_cast<Instruction>(V1); -      Instruction *I2 = dyn_cast<Instruction>(V2); - -      if (!I1 || !I2) -        return V1->getNumUses() < V2->getNumUses(); - -      return DTDFS->dominates(I1, I2); -    } - -    ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {} - -    /// valueNumber - finds the value number for V under the Subtree. If -    /// there is no value number, returns zero. -    unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) { -      if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) ||  -          V->getType() == Type::getVoidTy(V->getContext())) return 0; - -      VNMapType::iterator E = VNMap.end(); -      VNPair pair(V, 0, Subtree); -      VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair); -      while (I != E && I->V == V) { -        if (I->Subtree->dominates(Subtree)) -          return I->index; -        ++I; -      } -      return 0; -    } - -    /// getOrInsertVN - always returns a value number, creating it if necessary. -    unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) { -      if (unsigned n = valueNumber(V, Subtree)) -        return n; -      else -        return newVN(V); -    } - -    /// newVN - creates a new value number. Value V must not already have a -    /// value number assigned. -    unsigned newVN(Value *V) { -      assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) && -             "Bad Value for value numbering."); -      assert(V->getType() != Type::getVoidTy(V->getContext()) && -             "Won't value number a void value"); - -      Values.push_back(V); - -      VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode()); -      VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair); -      assert((I == VNMap.end() || value(I->index) != V) && -             "Attempt to create a duplicate value number."); -      VNMap.insert(I, pair); - -      return Values.size(); -    } - -    /// value - returns the Value associated with a value number. -    Value *value(unsigned index) const { -      assert(index != 0 && "Zero index is reserved for not found."); -      assert(index <= Values.size() && "Index out of range."); -      return Values[index-1]; -    } - -    /// canonicalize - return a Value that is equal to V under Subtree. -    Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) { -      if (isa<Constant>(V)) return V; - -      if (unsigned n = valueNumber(V, Subtree)) -        return value(n); -      else -        return V; -    } - -    /// addEquality - adds that value V belongs to the set of equivalent -    /// values defined by value number n under Subtree. -    void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) { -      assert(canonicalize(value(n), Subtree) == value(n) && -             "Node's 'canonical' choice isn't best within this subtree."); - -      // Suppose that we are given "%x -> node #1 (%y)". The problem is that -      // we may already have "%z -> node #2 (%x)" somewhere above us in the -      // graph. We need to find those edges and add "%z -> node #1 (%y)" -      // to keep the lookups canonical. - -      std::vector<Value *> ToRepoint(1, V); - -      if (unsigned Conflict = valueNumber(V, Subtree)) { -        for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end(); -             I != E; ++I) { -          if (I->index == Conflict && I->Subtree->dominates(Subtree)) -            ToRepoint.push_back(I->V); -        } -      } - -      for (std::vector<Value *>::iterator VI = ToRepoint.begin(), -           VE = ToRepoint.end(); VI != VE; ++VI) { -        Value *V = *VI; - -        VNPair pair(V, n, Subtree); -        VNMapType::iterator B = VNMap.begin(), E = VNMap.end(); -        VNMapType::iterator I = std::lower_bound(B, E, pair); -        if (I != E && I->V == V && I->Subtree == Subtree) -          I->index = n; // Update best choice -        else -          VNMap.insert(I, pair); // New Value - -        // XXX: we currently don't have to worry about updating values with -        // more specific Subtrees, but we will need to for PHI node support. - -#ifndef NDEBUG -        Value *V_n = value(n); -        if (isa<Constant>(V) && isa<Constant>(V_n)) { -          assert(V == V_n && "Constant equals different constant?"); -        } -#endif -      } -    } - -    /// remove - removes all references to value V. -    void remove(Value *V) { -      VNMapType::iterator B = VNMap.begin(), E = VNMap.end(); -      VNPair pair(V, 0, DTDFS->getRootNode()); -      VNMapType::iterator J = std::upper_bound(B, E, pair); -      VNMapType::iterator I = J; - -      while (I != B && (I == E || I->V == V)) --I; - -      VNMap.erase(I, J); -    } -  }; - -  /// The InequalityGraph stores the relationships between values. -  /// Each Value in the graph is assigned to a Node. Nodes are pointer -  /// comparable for equality. The caller is expected to maintain the logical -  /// consistency of the system. -  /// -  /// The InequalityGraph class may invalidate Node*s after any mutator call. -  /// @brief The InequalityGraph stores the relationships between values. -  class InequalityGraph { -    ValueNumbering &VN; -    DomTreeDFS::Node *TreeRoot; - -    InequalityGraph();                  // DO NOT IMPLEMENT -    InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT -  public: -    InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot) -      : VN(VN), TreeRoot(TreeRoot) {} - -    class Node; - -    /// An Edge is contained inside a Node making one end of the edge implicit -    /// and contains a pointer to the other end. The edge contains a lattice -    /// value specifying the relationship and an DomTreeDFS::Node specifying -    /// the root in the dominator tree to which this edge applies. -    class Edge { -    public: -      Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST) -        : To(T), LV(V), Subtree(ST) {} - -      unsigned To; -      LatticeVal LV; -      DomTreeDFS::Node *Subtree; - -      bool operator<(const Edge &edge) const { -        if (To != edge.To) return To < edge.To; -        return *Subtree < *edge.Subtree; -      } - -      bool operator<(unsigned to) const { -        return To < to; -      } - -      bool operator>(unsigned to) const { -        return To > to; -      } - -      friend bool operator<(unsigned to, const Edge &edge) { -        return edge.operator>(to); -      } -    }; - -    /// A single node in the InequalityGraph. This stores the canonical Value -    /// for the node, as well as the relationships with the neighbours. -    /// -    /// @brief A single node in the InequalityGraph. -    class Node { -      friend class InequalityGraph; - -      typedef SmallVector<Edge, 4> RelationsType; -      RelationsType Relations; - -      // TODO: can this idea improve performance? -      //friend class std::vector<Node>; -      //Node(Node &N) { RelationsType.swap(N.RelationsType); } - -    public: -      typedef RelationsType::iterator       iterator; -      typedef RelationsType::const_iterator const_iterator; - -#ifndef NDEBUG -      virtual ~Node() {} -      virtual void dump() const { -        dump(errs()); -      } -    private: -      void dump(raw_ostream &os) const { -        static const std::string names[32] = -          { "000000", "000001", "000002", "000003", "000004", "000005", -            "000006", "000007", "000008", "000009", "     >", "    >=", -            "  s>u<", "s>=u<=", "    s>", "   s>=", "000016", "000017", -            "  s<u>", "s<=u>=", "     <", "    <=", "    s<", "   s<=", -            "000024", "000025", "    u>", "   u>=", "    u<", "   u<=", -            "    !=", "000031" }; -        for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) { -          os << names[NI->LV] << " " << NI->To -             << " (" << NI->Subtree->getDFSNumIn() << "), "; -        } -      } -    public: -#endif - -      iterator begin()             { return Relations.begin(); } -      iterator end()               { return Relations.end();   } -      const_iterator begin() const { return Relations.begin(); } -      const_iterator end()   const { return Relations.end();   } - -      iterator find(unsigned n, DomTreeDFS::Node *Subtree) { -        iterator E = end(); -        for (iterator I = std::lower_bound(begin(), E, n); -             I != E && I->To == n; ++I) { -          if (Subtree->DominatedBy(I->Subtree)) -            return I; -        } -        return E; -      } - -      const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const { -        const_iterator E = end(); -        for (const_iterator I = std::lower_bound(begin(), E, n); -             I != E && I->To == n; ++I) { -          if (Subtree->DominatedBy(I->Subtree)) -            return I; -        } -        return E; -      } - -      /// update - updates the lattice value for a given node, creating a new -      /// entry if one doesn't exist. The new lattice value must not be -      /// inconsistent with any previously existing value. -      void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) { -        assert(validPredicate(R) && "Invalid predicate."); - -        Edge edge(n, R, Subtree); -        iterator B = begin(), E = end(); -        iterator I = std::lower_bound(B, E, edge); - -        iterator J = I; -        while (J != E && J->To == n) { -          if (Subtree->DominatedBy(J->Subtree)) -            break; -          ++J; -        } - -        if (J != E && J->To == n) { -          edge.LV = static_cast<LatticeVal>(J->LV & R); -          assert(validPredicate(edge.LV) && "Invalid union of lattice values."); - -          if (edge.LV == J->LV) -            return; // This update adds nothing new. -        } - -        if (I != B) { -          // We also have to tighten any edge beneath our update. -          for (iterator K = I - 1; K->To == n; --K) { -            if (K->Subtree->DominatedBy(Subtree)) { -              LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV); -              assert(validPredicate(LV) && "Invalid union of lattice values"); -              K->LV = LV; -            } -            if (K == B) break; -          } -        } - -        // Insert new edge at Subtree if it isn't already there. -        if (I == E || I->To != n || Subtree != I->Subtree) -          Relations.insert(I, edge); -      } -    }; - -  private: - -    std::vector<Node> Nodes; - -  public: -    /// node - returns the node object at a given value number. The pointer -    /// returned may be invalidated on the next call to node(). -    Node *node(unsigned index) { -      assert(VN.value(index)); // This triggers the necessary checks. -      if (Nodes.size() < index) Nodes.resize(index); -      return &Nodes[index-1]; -    } - -    /// isRelatedBy - true iff n1 op n2 -    bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, -                     LatticeVal LV) { -      if (n1 == n2) return LV & EQ_BIT; - -      Node *N1 = node(n1); -      Node::iterator I = N1->find(n2, Subtree), E = N1->end(); -      if (I != E) return (I->LV & LV) == I->LV; - -      return false; -    } - -    // The add* methods assume that your input is logically valid and may  -    // assertion-fail or infinitely loop if you attempt a contradiction. - -    /// addInequality - Sets n1 op n2. -    /// It is also an error to call this on an inequality that is already true. -    void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, -                       LatticeVal LV1) { -      assert(n1 != n2 && "A node can't be inequal to itself."); - -      if (LV1 != NE) -        assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) && -               "Contradictory inequality."); - -      // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and -      // add %a < %n2 too. This keeps the graph fully connected. -      if (LV1 != NE) { -        // Break up the relationship into signed and unsigned comparison parts. -        // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and -        // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship -        // should have the EQ_BIT iff it's set for both op1 and op2. - -        unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT); -        unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT); - -        for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) { -          if (I->LV != NE && I->To != n2) { - -            DomTreeDFS::Node *Local_Subtree = NULL; -            if (Subtree->DominatedBy(I->Subtree)) -              Local_Subtree = Subtree; -            else if (I->Subtree->DominatedBy(Subtree)) -              Local_Subtree = I->Subtree; - -            if (Local_Subtree) { -              unsigned new_relationship = 0; -              LatticeVal ILV = reversePredicate(I->LV); -              unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT); -              unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT); - -              if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s) -                new_relationship |= ILV_s; -              if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u) -                new_relationship |= ILV_u; - -              if (new_relationship) { -                if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0) -                  new_relationship |= (SLT_BIT|SGT_BIT); -                if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0) -                  new_relationship |= (ULT_BIT|UGT_BIT); -                if ((LV1 & EQ_BIT) && (ILV & EQ_BIT)) -                  new_relationship |= EQ_BIT; - -                LatticeVal NewLV = static_cast<LatticeVal>(new_relationship); - -                node(I->To)->update(n2, NewLV, Local_Subtree); -                node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree); -              } -            } -          } -        } - -        for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) { -          if (I->LV != NE && I->To != n1) { -            DomTreeDFS::Node *Local_Subtree = NULL; -            if (Subtree->DominatedBy(I->Subtree)) -              Local_Subtree = Subtree; -            else if (I->Subtree->DominatedBy(Subtree)) -              Local_Subtree = I->Subtree; - -            if (Local_Subtree) { -              unsigned new_relationship = 0; -              unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT); -              unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT); - -              if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s) -                new_relationship |= ILV_s; - -              if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u) -                new_relationship |= ILV_u; - -              if (new_relationship) { -                if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0) -                  new_relationship |= (SLT_BIT|SGT_BIT); -                if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0) -                  new_relationship |= (ULT_BIT|UGT_BIT); -                if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT)) -                  new_relationship |= EQ_BIT; - -                LatticeVal NewLV = static_cast<LatticeVal>(new_relationship); - -                node(n1)->update(I->To, NewLV, Local_Subtree); -                node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree); -              } -            } -          } -        } -      } - -      node(n1)->update(n2, LV1, Subtree); -      node(n2)->update(n1, reversePredicate(LV1), Subtree); -    } - -    /// remove - removes a node from the graph by removing all references to -    /// and from it. -    void remove(unsigned n) { -      Node *N = node(n); -      for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) { -        Node::iterator Iter = node(NI->To)->find(n, TreeRoot); -        do { -          node(NI->To)->Relations.erase(Iter); -          Iter = node(NI->To)->find(n, TreeRoot); -        } while (Iter != node(NI->To)->end()); -      } -      N->Relations.clear(); -    } - -#ifndef NDEBUG -    virtual ~InequalityGraph() {} -    virtual void dump() { -      dump(errs()); -    } - -    void dump(raw_ostream &os) { -      for (unsigned i = 1; i <= Nodes.size(); ++i) { -        os << i << " = {"; -        node(i)->dump(os); -        os << "}\n"; -      } -    } -#endif -  }; - -  class VRPSolver; - -  /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes -  /// in the InequalityGraph. -  class ValueRanges { -    ValueNumbering &VN; -    TargetData *TD; -    LLVMContext *Context; - -    class ScopedRange { -      typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> > -              RangeListType; -      RangeListType RangeList; - -      static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS, -                      const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) { -        return *LHS.first < *RHS.first; -      } - -    public: -#ifndef NDEBUG -      virtual ~ScopedRange() {} -      virtual void dump() const { -        dump(errs()); -      } - -      void dump(raw_ostream &os) const { -        os << "{"; -        for (const_iterator I = begin(), E = end(); I != E; ++I) { -          os << &I->second << " (" << I->first->getDFSNumIn() << "), "; -        } -        os << "}"; -      } -#endif - -      typedef RangeListType::iterator       iterator; -      typedef RangeListType::const_iterator const_iterator; - -      iterator begin() { return RangeList.begin(); } -      iterator end()   { return RangeList.end(); } -      const_iterator begin() const { return RangeList.begin(); } -      const_iterator end()   const { return RangeList.end(); } - -      iterator find(DomTreeDFS::Node *Subtree) { -        iterator E = end(); -        iterator I = std::lower_bound(begin(), E, -                                      std::make_pair(Subtree, empty), swo); - -        while (I != E && !I->first->dominates(Subtree)) ++I; -        return I; -      } - -      const_iterator find(DomTreeDFS::Node *Subtree) const { -        const_iterator E = end(); -        const_iterator I = std::lower_bound(begin(), E, -                                            std::make_pair(Subtree, empty), swo); - -        while (I != E && !I->first->dominates(Subtree)) ++I; -        return I; -      } - -      void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) { -        assert(!CR.isEmptySet() && "Empty ConstantRange."); -        assert(!CR.isSingleElement() && "Refusing to store single element."); - -        iterator E = end(); -        iterator I = -            std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo); - -        if (I != end() && I->first == Subtree) { -          ConstantRange CR2 = I->second.intersectWith(CR); -          assert(!CR2.isEmptySet() && !CR2.isSingleElement() && -                 "Invalid union of ranges."); -          I->second = CR2; -        } else -          RangeList.insert(I, std::make_pair(Subtree, CR)); -      } -    }; - -    std::vector<ScopedRange> Ranges; - -    void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){ -      if (CR.isFullSet()) return; -      if (Ranges.size() < n) Ranges.resize(n); -      Ranges[n-1].update(CR, Subtree); -    } - -    /// create - Creates a ConstantRange that matches the given LatticeVal -    /// relation with a given integer. -    ConstantRange create(LatticeVal LV, const ConstantRange &CR) { -      assert(!CR.isEmptySet() && "Can't deal with empty set."); - -      if (LV == NE) -        return ConstantRange::makeICmpRegion(ICmpInst::ICMP_NE, CR); - -      unsigned LV_s = LV & (SGT_BIT|SLT_BIT); -      unsigned LV_u = LV & (UGT_BIT|ULT_BIT); -      bool hasEQ = LV & EQ_BIT; - -      ConstantRange Range(CR.getBitWidth()); - -      if (LV_s == SGT_BIT) { -        Range = Range.intersectWith(ConstantRange::makeICmpRegion( -                    hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR)); -      } else if (LV_s == SLT_BIT) { -        Range = Range.intersectWith(ConstantRange::makeICmpRegion( -                    hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR)); -      } - -      if (LV_u == UGT_BIT) { -        Range = Range.intersectWith(ConstantRange::makeICmpRegion( -                    hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR)); -      } else if (LV_u == ULT_BIT) { -        Range = Range.intersectWith(ConstantRange::makeICmpRegion( -                    hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR)); -      } - -      return Range; -    } - -#ifndef NDEBUG -    bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) { -      return V == VN.canonicalize(V, Subtree); -    } -#endif - -  public: - -    ValueRanges(ValueNumbering &VN, TargetData *TD, LLVMContext *C) : -      VN(VN), TD(TD), Context(C) {} - -#ifndef NDEBUG -    virtual ~ValueRanges() {} - -    virtual void dump() const { -      dump(errs()); -    } - -    void dump(raw_ostream &os) const { -      for (unsigned i = 0, e = Ranges.size(); i != e; ++i) { -        os << (i+1) << " = "; -        Ranges[i].dump(os); -        os << "\n"; -      } -    } -#endif - -    /// range - looks up the ConstantRange associated with a value number. -    ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) { -      assert(VN.value(n)); // performs range checks - -      if (n <= Ranges.size()) { -        ScopedRange::iterator I = Ranges[n-1].find(Subtree); -        if (I != Ranges[n-1].end()) return I->second; -      } - -      Value *V = VN.value(n); -      ConstantRange CR = range(V); -      return CR; -    } - -    /// range - determine a range from a Value without performing any lookups. -    ConstantRange range(Value *V) const { -      if (ConstantInt *C = dyn_cast<ConstantInt>(V)) -        return ConstantRange(C->getValue()); -      else if (isa<ConstantPointerNull>(V)) -        return ConstantRange(APInt::getNullValue(typeToWidth(V->getType()))); -      else -        return ConstantRange(typeToWidth(V->getType())); -    } - -    // typeToWidth - returns the number of bits necessary to store a value of -    // this type, or zero if unknown. -    uint32_t typeToWidth(const Type *Ty) const { -      if (TD) -        return TD->getTypeSizeInBits(Ty); -      else -        return Ty->getPrimitiveSizeInBits(); -    } - -    static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2, -                            LatticeVal LV) { -      switch (LV) { -      default: assert(!"Impossible lattice value!"); -      case NE: -        return CR1.intersectWith(CR2).isEmptySet(); -      case ULT: -        return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()); -      case ULE: -        return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()); -      case UGT: -        return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()); -      case UGE: -        return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()); -      case SLT: -        return CR1.getSignedMax().slt(CR2.getSignedMin()); -      case SLE: -        return CR1.getSignedMax().sle(CR2.getSignedMin()); -      case SGT: -        return CR1.getSignedMin().sgt(CR2.getSignedMax()); -      case SGE: -        return CR1.getSignedMin().sge(CR2.getSignedMax()); -      case LT: -        return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) && -               CR1.getSignedMax().slt(CR2.getUnsignedMin()); -      case LE: -        return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) && -               CR1.getSignedMax().sle(CR2.getUnsignedMin()); -      case GT: -        return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) && -               CR1.getSignedMin().sgt(CR2.getSignedMax()); -      case GE: -        return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) && -               CR1.getSignedMin().sge(CR2.getSignedMax()); -      case SLTUGT: -        return CR1.getSignedMax().slt(CR2.getSignedMin()) && -               CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()); -      case SLEUGE: -        return CR1.getSignedMax().sle(CR2.getSignedMin()) && -               CR1.getUnsignedMin().uge(CR2.getUnsignedMax()); -      case SGTULT: -        return CR1.getSignedMin().sgt(CR2.getSignedMax()) && -               CR1.getUnsignedMax().ult(CR2.getUnsignedMin()); -      case SGEULE: -        return CR1.getSignedMin().sge(CR2.getSignedMax()) && -               CR1.getUnsignedMax().ule(CR2.getUnsignedMin()); -      } -    } - -    bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, -                     LatticeVal LV) { -      ConstantRange CR1 = range(n1, Subtree); -      ConstantRange CR2 = range(n2, Subtree); - -      // True iff all values in CR1 are LV to all values in CR2. -      return isRelatedBy(CR1, CR2, LV); -    } - -    void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred, -                       VRPSolver *VRP); -    void markBlock(VRPSolver *VRP); - -    void mergeInto(Value **I, unsigned n, unsigned New, -                   DomTreeDFS::Node *Subtree, VRPSolver *VRP) { -      ConstantRange CR_New = range(New, Subtree); -      ConstantRange Merged = CR_New; - -      for (; n != 0; ++I, --n) { -        unsigned i = VN.valueNumber(*I, Subtree); -        ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I); -        if (CR_Kill.isFullSet()) continue; -        Merged = Merged.intersectWith(CR_Kill); -      } - -      if (Merged.isFullSet() || Merged == CR_New) return; - -      applyRange(New, Merged, Subtree, VRP); -    } - -    void applyRange(unsigned n, const ConstantRange &CR, -                    DomTreeDFS::Node *Subtree, VRPSolver *VRP) { -      ConstantRange Merged = CR.intersectWith(range(n, Subtree)); -      if (Merged.isEmptySet()) { -        markBlock(VRP); -        return; -      } - -      if (const APInt *I = Merged.getSingleElement()) { -        Value *V = VN.value(n); // XXX: redesign worklist. -        const Type *Ty = V->getType(); -        if (Ty->isInteger()) { -          addToWorklist(V, ConstantInt::get(*Context, *I), -                        ICmpInst::ICMP_EQ, VRP); -          return; -        } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) { -          assert(*I == 0 && "Pointer is null but not zero?"); -          addToWorklist(V, ConstantPointerNull::get(PTy), -                        ICmpInst::ICMP_EQ, VRP); -          return; -        } -      } - -      update(n, Merged, Subtree); -    } - -    void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, -                      VRPSolver *VRP) { -      ConstantRange CR1 = range(n1, Subtree); -      ConstantRange CR2 = range(n2, Subtree); - -      uint32_t W = CR1.getBitWidth(); - -      if (const APInt *I = CR1.getSingleElement()) { -        if (CR2.isFullSet()) { -          ConstantRange NewCR2(CR1.getUpper(), CR1.getLower()); -          applyRange(n2, NewCR2, Subtree, VRP); -        } else if (*I == CR2.getLower()) { -          APInt NewLower(CR2.getLower() + 1), -                NewUpper(CR2.getUpper()); -          if (NewLower == NewUpper) -            NewLower = NewUpper = APInt::getMinValue(W); - -          ConstantRange NewCR2(NewLower, NewUpper); -          applyRange(n2, NewCR2, Subtree, VRP); -        } else if (*I == CR2.getUpper() - 1) { -          APInt NewLower(CR2.getLower()), -                NewUpper(CR2.getUpper() - 1); -          if (NewLower == NewUpper) -            NewLower = NewUpper = APInt::getMinValue(W); - -          ConstantRange NewCR2(NewLower, NewUpper); -          applyRange(n2, NewCR2, Subtree, VRP); -        } -      } - -      if (const APInt *I = CR2.getSingleElement()) { -        if (CR1.isFullSet()) { -          ConstantRange NewCR1(CR2.getUpper(), CR2.getLower()); -          applyRange(n1, NewCR1, Subtree, VRP); -        } else if (*I == CR1.getLower()) { -          APInt NewLower(CR1.getLower() + 1), -                NewUpper(CR1.getUpper()); -          if (NewLower == NewUpper) -            NewLower = NewUpper = APInt::getMinValue(W); - -          ConstantRange NewCR1(NewLower, NewUpper); -          applyRange(n1, NewCR1, Subtree, VRP); -        } else if (*I == CR1.getUpper() - 1) { -          APInt NewLower(CR1.getLower()), -                NewUpper(CR1.getUpper() - 1); -          if (NewLower == NewUpper) -            NewLower = NewUpper = APInt::getMinValue(W); - -          ConstantRange NewCR1(NewLower, NewUpper); -          applyRange(n1, NewCR1, Subtree, VRP); -        } -      } -    } - -    void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree, -                       LatticeVal LV, VRPSolver *VRP) { -      assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work."); - -      if (LV == NE) { -        addNotEquals(n1, n2, Subtree, VRP); -        return; -      } - -      ConstantRange CR1 = range(n1, Subtree); -      ConstantRange CR2 = range(n2, Subtree); - -      if (!CR1.isSingleElement()) { -        ConstantRange NewCR1 = CR1.intersectWith(create(LV, CR2)); -        if (NewCR1 != CR1) -          applyRange(n1, NewCR1, Subtree, VRP); -      } - -      if (!CR2.isSingleElement()) { -        ConstantRange NewCR2 = CR2.intersectWith( -                                       create(reversePredicate(LV), CR1)); -        if (NewCR2 != CR2) -          applyRange(n2, NewCR2, Subtree, VRP); -      } -    } -  }; - -  /// UnreachableBlocks keeps tracks of blocks that are for one reason or -  /// another discovered to be unreachable. This is used to cull the graph when -  /// analyzing instructions, and to mark blocks with the "unreachable" -  /// terminator instruction after the function has executed. -  class UnreachableBlocks { -  private: -    std::vector<BasicBlock *> DeadBlocks; - -  public: -    /// mark - mark a block as dead -    void mark(BasicBlock *BB) { -      std::vector<BasicBlock *>::iterator E = DeadBlocks.end(); -      std::vector<BasicBlock *>::iterator I = -        std::lower_bound(DeadBlocks.begin(), E, BB); - -      if (I == E || *I != BB) DeadBlocks.insert(I, BB); -    } - -    /// isDead - returns whether a block is known to be dead already -    bool isDead(BasicBlock *BB) { -      std::vector<BasicBlock *>::iterator E = DeadBlocks.end(); -      std::vector<BasicBlock *>::iterator I = -        std::lower_bound(DeadBlocks.begin(), E, BB); - -      return I != E && *I == BB; -    } - -    /// kill - replace the dead blocks' terminator with an UnreachableInst. -    bool kill() { -      bool modified = false; -      for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(), -           E = DeadBlocks.end(); I != E; ++I) { -        BasicBlock *BB = *I; - -        DEBUG(errs() << "unreachable block: " << BB->getName() << "\n"); - -        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); -             SI != SE; ++SI) { -          BasicBlock *Succ = *SI; -          Succ->removePredecessor(BB); -        } - -        TerminatorInst *TI = BB->getTerminator(); -        TI->replaceAllUsesWith(UndefValue::get(TI->getType())); -        TI->eraseFromParent(); -        new UnreachableInst(BB->getContext(), BB); -        ++NumBlocks; -        modified = true; -      } -      DeadBlocks.clear(); -      return modified; -    } -  }; - -  /// VRPSolver keeps track of how changes to one variable affect other -  /// variables, and forwards changes along to the InequalityGraph. It -  /// also maintains the correct choice for "canonical" in the IG. -  /// @brief VRPSolver calculates inferences from a new relationship. -  class VRPSolver { -  private: -    friend class ValueRanges; - -    struct Operation { -      Value *LHS, *RHS; -      ICmpInst::Predicate Op; - -      BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead -      Instruction *ContextInst; -    }; -    std::deque<Operation> WorkList; - -    ValueNumbering &VN; -    InequalityGraph &IG; -    UnreachableBlocks &UB; -    ValueRanges &VR; -    DomTreeDFS *DTDFS; -    DomTreeDFS::Node *Top; -    BasicBlock *TopBB; -    Instruction *TopInst; -    bool &modified; -    LLVMContext *Context; - -    typedef InequalityGraph::Node Node; - -    // below - true if the Instruction is dominated by the current context -    // block or instruction -    bool below(Instruction *I) { -      BasicBlock *BB = I->getParent(); -      if (TopInst && TopInst->getParent() == BB) { -        if (isa<TerminatorInst>(TopInst)) return false; -        if (isa<TerminatorInst>(I)) return true; -        if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true; -        if (!isa<PHINode>(TopInst) &&  isa<PHINode>(I)) return false; - -        for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end(); -             Iter != E; ++Iter) { -          if (&*Iter == TopInst) return true; -          else if (&*Iter == I) return false; -        } -        assert(!"Instructions not found in parent BasicBlock?"); -      } else { -        DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB); -        if (!Node) return false; -        return Top->dominates(Node); -      } -      return false; // Not reached -    } - -    // aboveOrBelow - true if the Instruction either dominates or is dominated -    // by the current context block or instruction -    bool aboveOrBelow(Instruction *I) { -      BasicBlock *BB = I->getParent(); -      DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB); -      if (!Node) return false; - -      return Top == Node || Top->dominates(Node) || Node->dominates(Top); -    } - -    bool makeEqual(Value *V1, Value *V2) { -      DEBUG(errs() << "makeEqual(" << *V1 << ", " << *V2 << ")\n"); -      DEBUG(errs() << "context is "); -      DEBUG(if (TopInst)  -              errs() << "I: " << *TopInst << "\n"; -            else  -              errs() << "BB: " << TopBB->getName() -                     << "(" << Top->getDFSNumIn() << ")\n"); - -      assert(V1->getType() == V2->getType() && -             "Can't make two values with different types equal."); - -      if (V1 == V2) return true; - -      if (isa<Constant>(V1) && isa<Constant>(V2)) -        return false; - -      unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top); - -      if (n1 && n2) { -        if (n1 == n2) return true; -        if (IG.isRelatedBy(n1, n2, Top, NE)) return false; -      } - -      if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical."); -      if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical."); - -      assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual."); - -      assert(!isa<Constant>(V2) && "Tried to remove a constant."); - -      SetVector<unsigned> Remove; -      if (n2) Remove.insert(n2); - -      if (n1 && n2) { -        // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z. -        // We can't just merge %x and %y because the relationship with %z would -        // be EQ and that's invalid. What we're doing is looking for any nodes -        // %z such that %x <= %z and %y >= %z, and vice versa. - -        Node::iterator end = IG.node(n2)->end(); - -        // Find the intersection between N1 and N2 which is dominated by -        // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to -        // Remove. -        for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end(); -             I != E; ++I) { -          if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue; - -          unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT); -          unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT); -          Node::iterator NI = IG.node(n2)->find(I->To, Top); -          if (NI != end) { -            LatticeVal NILV = reversePredicate(NI->LV); -            unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT); -            unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT); - -            if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) || -                (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u)) -              Remove.insert(I->To); -          } -        } - -        // See if one of the nodes about to be removed is actually a better -        // canonical choice than n1. -        unsigned orig_n1 = n1; -        SetVector<unsigned>::iterator DontRemove = Remove.end(); -        for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */, -             E = Remove.end(); I != E; ++I) { -          unsigned n = *I; -          Value *V = VN.value(n); -          if (VN.compare(V, V1)) { -            V1 = V; -            n1 = n; -            DontRemove = I; -          } -        } -        if (DontRemove != Remove.end()) { -          unsigned n = *DontRemove; -          Remove.remove(n); -          Remove.insert(orig_n1); -        } -      } - -      // We'd like to allow makeEqual on two values to perform a simple -      // substitution without creating nodes in the IG whenever possible. -      // -      // The first iteration through this loop operates on V2 before going -      // through the Remove list and operating on those too. If all of the -      // iterations performed simple replacements then we exit early. -      bool mergeIGNode = false; -      unsigned i = 0; -      for (Value *R = V2; i == 0 || i < Remove.size(); ++i) { -        if (i) R = VN.value(Remove[i]); // skip n2. - -        // Try to replace the whole instruction. If we can, we're done. -        Instruction *I2 = dyn_cast<Instruction>(R); -        if (I2 && below(I2)) { -          std::vector<Instruction *> ToNotify; -          for (Value::use_iterator UI = I2->use_begin(), UE = I2->use_end(); -               UI != UE;) { -            Use &TheUse = UI.getUse(); -            ++UI; -            Instruction *I = cast<Instruction>(TheUse.getUser()); -            ToNotify.push_back(I); -          } - -          DEBUG(errs() << "Simply removing " << *I2 -                       << ", replacing with " << *V1 << "\n"); -          I2->replaceAllUsesWith(V1); -          // leave it dead; it'll get erased later. -          ++NumInstruction; -          modified = true; - -          for (std::vector<Instruction *>::iterator II = ToNotify.begin(), -               IE = ToNotify.end(); II != IE; ++II) { -            opsToDef(*II); -          } - -          continue; -        } - -        // Otherwise, replace all dominated uses. -        for (Value::use_iterator UI = R->use_begin(), UE = R->use_end(); -             UI != UE;) { -          Use &TheUse = UI.getUse(); -          ++UI; -          if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) { -            if (below(I)) { -              TheUse.set(V1); -              modified = true; -              ++NumVarsReplaced; -              opsToDef(I); -            } -          } -        } - -        // If that killed the instruction, stop here. -        if (I2 && isInstructionTriviallyDead(I2)) { -          DEBUG(errs() << "Killed all uses of " << *I2 -                       << ", replacing with " << *V1 << "\n"); -          continue; -        } - -        // If we make it to here, then we will need to create a node for N1. -        // Otherwise, we can skip out early! -        mergeIGNode = true; -      } - -      if (!isa<Constant>(V1)) { -        if (Remove.empty()) { -          VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this); -        } else { -          std::vector<Value*> RemoveVals; -          RemoveVals.reserve(Remove.size()); - -          for (SetVector<unsigned>::iterator I = Remove.begin(), -               E = Remove.end(); I != E; ++I) { -            Value *V = VN.value(*I); -            if (!V->use_empty()) -              RemoveVals.push_back(V); -          } -          VR.mergeInto(&RemoveVals[0], RemoveVals.size(),  -                       VN.getOrInsertVN(V1, Top), Top, this); -        } -      } - -      if (mergeIGNode) { -        // Create N1. -        if (!n1) n1 = VN.getOrInsertVN(V1, Top); -        IG.node(n1); // Ensure that IG.Nodes won't get resized - -        // Migrate relationships from removed nodes to N1. -        for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end(); -             I != E; ++I) { -          unsigned n = *I; -          for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end(); -               NI != NE; ++NI) { -            if (NI->Subtree->DominatedBy(Top)) { -              if (NI->To == n1) { -                assert((NI->LV & EQ_BIT) && "Node inequal to itself."); -                continue; -              } -              if (Remove.count(NI->To)) -                continue; - -              IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top); -              IG.node(n1)->update(NI->To, NI->LV, Top); -            } -          } -        } - -        // Point V2 (and all items in Remove) to N1. -        if (!n2) -          VN.addEquality(n1, V2, Top); -        else { -          for (SetVector<unsigned>::iterator I = Remove.begin(), -               E = Remove.end(); I != E; ++I) { -            VN.addEquality(n1, VN.value(*I), Top); -          } -        } - -        // If !Remove.empty() then V2 = Remove[0]->getValue(). -        // Even when Remove is empty, we still want to process V2. -        i = 0; -        for (Value *R = V2; i == 0 || i < Remove.size(); ++i) { -          if (i) R = VN.value(Remove[i]); // skip n2. - -          if (Instruction *I2 = dyn_cast<Instruction>(R)) { -            if (aboveOrBelow(I2)) -            defToOps(I2); -          } -          for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end(); -               UI != UE;) { -            Use &TheUse = UI.getUse(); -            ++UI; -            if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) { -              if (aboveOrBelow(I)) -                opsToDef(I); -            } -          } -        } -      } - -      // re-opsToDef all dominated users of V1. -      if (Instruction *I = dyn_cast<Instruction>(V1)) { -        for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); -             UI != UE;) { -          Use &TheUse = UI.getUse(); -          ++UI; -          Value *V = TheUse.getUser(); -          if (!V->use_empty()) { -            Instruction *Inst = cast<Instruction>(V); -            if (aboveOrBelow(Inst)) -              opsToDef(Inst); -          } -        } -      } - -      return true; -    } - -    /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value -    /// Requires that the lattice value be valid; does not accept ICMP_EQ. -    static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) { -      switch (Pred) { -        case ICmpInst::ICMP_EQ: -          assert(!"No matching lattice value."); -          return static_cast<LatticeVal>(EQ_BIT); -        default: -          assert(!"Invalid 'icmp' predicate."); -        case ICmpInst::ICMP_NE: -          return NE; -        case ICmpInst::ICMP_UGT: -          return UGT; -        case ICmpInst::ICMP_UGE: -          return UGE; -        case ICmpInst::ICMP_ULT: -          return ULT; -        case ICmpInst::ICMP_ULE: -          return ULE; -        case ICmpInst::ICMP_SGT: -          return SGT; -        case ICmpInst::ICMP_SGE: -          return SGE; -        case ICmpInst::ICMP_SLT: -          return SLT; -        case ICmpInst::ICMP_SLE: -          return SLE; -      } -    } - -  public: -    VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB, -              ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified, -              BasicBlock *TopBB) -      : VN(VN), -        IG(IG), -        UB(UB), -        VR(VR), -        DTDFS(DTDFS), -        Top(DTDFS->getNodeForBlock(TopBB)), -        TopBB(TopBB), -        TopInst(NULL), -        modified(modified), -        Context(&TopBB->getContext()) -    { -      assert(Top && "VRPSolver created for unreachable basic block."); -    } - -    VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB, -              ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified, -              Instruction *TopInst) -      : VN(VN), -        IG(IG), -        UB(UB), -        VR(VR), -        DTDFS(DTDFS), -        Top(DTDFS->getNodeForBlock(TopInst->getParent())), -        TopBB(TopInst->getParent()), -        TopInst(TopInst), -        modified(modified), -        Context(&TopInst->getContext()) -    { -      assert(Top && "VRPSolver created for unreachable basic block."); -      assert(Top->getBlock() == TopInst->getParent() && "Context mismatch."); -    } - -    bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const { -      if (Constant *C1 = dyn_cast<Constant>(V1)) -        if (Constant *C2 = dyn_cast<Constant>(V2)) -          return ConstantExpr::getCompare(Pred, C1, C2) == -                 ConstantInt::getTrue(*Context); - -      unsigned n1 = VN.valueNumber(V1, Top); -      unsigned n2 = VN.valueNumber(V2, Top); - -      if (n1 && n2) { -        if (n1 == n2) return Pred == ICmpInst::ICMP_EQ || -                             Pred == ICmpInst::ICMP_ULE || -                             Pred == ICmpInst::ICMP_UGE || -                             Pred == ICmpInst::ICMP_SLE || -                             Pred == ICmpInst::ICMP_SGE; -        if (Pred == ICmpInst::ICMP_EQ) return false; -        if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true; -        if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true; -      } - -      if ((n1 && !n2 && isa<Constant>(V2)) || -          (n2 && !n1 && isa<Constant>(V1))) { -        ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1); -        ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2); - -        if (Pred == ICmpInst::ICMP_EQ) -          return CR1.isSingleElement() && -                 CR1.getSingleElement() == CR2.getSingleElement(); - -        return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred)); -      } -      if (Pred == ICmpInst::ICMP_EQ) return V1 == V2; -      return false; -    } - -    /// add - adds a new property to the work queue -    void add(Value *V1, Value *V2, ICmpInst::Predicate Pred, -             Instruction *I = NULL) { -      DEBUG(errs() << "adding " << *V1 << " " << Pred << " " << *V2); -      if (I) -        DEBUG(errs() << " context: " << *I); -      else  -        DEBUG(errs() << " default context (" << Top->getDFSNumIn() << ")"); -      DEBUG(errs() << "\n"); - -      assert(V1->getType() == V2->getType() && -             "Can't relate two values with different types."); - -      WorkList.push_back(Operation()); -      Operation &O = WorkList.back(); -      O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I; -      O.ContextBB = I ? I->getParent() : TopBB; -    } - -    /// defToOps - Given an instruction definition that we've learned something -    /// new about, find any new relationships between its operands. -    void defToOps(Instruction *I) { -      Instruction *NewContext = below(I) ? I : TopInst; -      Value *Canonical = VN.canonicalize(I, Top); - -      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { -        const Type *Ty = BO->getType(); -        assert(!Ty->isFPOrFPVector() && "Float in work queue!"); - -        Value *Op0 = VN.canonicalize(BO->getOperand(0), Top); -        Value *Op1 = VN.canonicalize(BO->getOperand(1), Top); - -        // TODO: "and i32 -1, %x" EQ %y then %x EQ %y. - -        switch (BO->getOpcode()) { -          case Instruction::And: { -            // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1 -            ConstantInt *CI = cast<ConstantInt>(Constant::getAllOnesValue(Ty)); -            if (Canonical == CI) { -              add(CI, Op0, ICmpInst::ICMP_EQ, NewContext); -              add(CI, Op1, ICmpInst::ICMP_EQ, NewContext); -            } -          } break; -          case Instruction::Or: { -            // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0 -            Constant *Zero = Constant::getNullValue(Ty); -            if (Canonical == Zero) { -              add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext); -              add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext); -            } -          } break; -          case Instruction::Xor: { -            // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b -            // "xor i32 %c, %a" EQ %c then %a EQ 0 -            // "xor i32 %c, %a" NE %c then %a NE 0 -            // Repeat the above, with order of operands reversed. -            Value *LHS = Op0; -            Value *RHS = Op1; -            if (!isa<Constant>(LHS)) std::swap(LHS, RHS); - -            if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) { -              if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) { -                add(RHS, -                  ConstantInt::get(*Context, CI->getValue() ^ Arg->getValue()), -                    ICmpInst::ICMP_EQ, NewContext); -              } -            } -            if (Canonical == LHS) { -              if (isa<ConstantInt>(Canonical)) -                add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ, -                    NewContext); -            } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) { -              add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE, -                  NewContext); -            } -          } break; -          default: -            break; -        } -      } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) { -        // "icmp ult i32 %a, %y" EQ true then %a u< y -        // etc. - -        if (Canonical == ConstantInt::getTrue(*Context)) { -          add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(), -              NewContext); -        } else if (Canonical == ConstantInt::getFalse(*Context)) { -          add(IC->getOperand(0), IC->getOperand(1), -              ICmpInst::getInversePredicate(IC->getPredicate()), NewContext); -        } -      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { -        if (I->getType()->isFPOrFPVector()) return; - -        // Given: "%a = select i1 %x, i32 %b, i32 %c" -        // %a EQ %b and %b NE %c then %x EQ true -        // %a EQ %c and %b NE %c then %x EQ false - -        Value *True  = SI->getTrueValue(); -        Value *False = SI->getFalseValue(); -        if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) { -          if (Canonical == VN.canonicalize(True, Top) || -              isRelatedBy(Canonical, False, ICmpInst::ICMP_NE)) -            add(SI->getCondition(), ConstantInt::getTrue(*Context), -                ICmpInst::ICMP_EQ, NewContext); -          else if (Canonical == VN.canonicalize(False, Top) || -                   isRelatedBy(Canonical, True, ICmpInst::ICMP_NE)) -            add(SI->getCondition(), ConstantInt::getFalse(*Context), -                ICmpInst::ICMP_EQ, NewContext); -        } -      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { -        for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(), -             OE = GEPI->idx_end(); OI != OE; ++OI) { -          ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top)); -          if (!Op || !Op->isZero()) return; -        } -        // TODO: The GEPI indices are all zero. Copy from definition to operand, -        // jumping the type plane as needed. -        if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()), -                        ICmpInst::ICMP_NE)) { -          Value *Ptr = GEPI->getPointerOperand(); -          add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE, -              NewContext); -        } -      } else if (CastInst *CI = dyn_cast<CastInst>(I)) { -        const Type *SrcTy = CI->getSrcTy(); - -        unsigned ci = VN.getOrInsertVN(CI, Top); -        uint32_t W = VR.typeToWidth(SrcTy); -        if (!W) return; -        ConstantRange CR = VR.range(ci, Top); - -        if (CR.isFullSet()) return; - -        switch (CI->getOpcode()) { -          default: break; -          case Instruction::ZExt: -          case Instruction::SExt: -            VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top), -                          CR.truncate(W), Top, this); -            break; -          case Instruction::BitCast: -            VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top), -                          CR, Top, this); -            break; -        } -      } -    } - -    /// opsToDef - A new relationship was discovered involving one of this -    /// instruction's operands. Find any new relationship involving the -    /// definition, or another operand. -    void opsToDef(Instruction *I) { -      Instruction *NewContext = below(I) ? I : TopInst; - -      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { -        Value *Op0 = VN.canonicalize(BO->getOperand(0), Top); -        Value *Op1 = VN.canonicalize(BO->getOperand(1), Top); - -        if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) -          if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) { -            add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1), -                ICmpInst::ICMP_EQ, NewContext); -            return; -          } - -        // "%y = and i1 true, %x" then %x EQ %y -        // "%y = or i1 false, %x" then %x EQ %y -        // "%x = add i32 %y, 0" then %x EQ %y -        // "%x = mul i32 %y, 0" then %x EQ 0 - -        Instruction::BinaryOps Opcode = BO->getOpcode(); -        const Type *Ty = BO->getType(); -        assert(!Ty->isFPOrFPVector() && "Float in work queue!"); - -        Constant *Zero = Constant::getNullValue(Ty); -        Constant *One = ConstantInt::get(Ty, 1); -        ConstantInt *AllOnes = cast<ConstantInt>(Constant::getAllOnesValue(Ty)); - -        switch (Opcode) { -          default: break; -          case Instruction::LShr: -          case Instruction::AShr: -          case Instruction::Shl: -            if (Op1 == Zero) { -              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            break; -          case Instruction::Sub: -            if (Op1 == Zero) { -              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) { -              unsigned n_ci0 = VN.getOrInsertVN(Op1, Top); -              ConstantRange CR = VR.range(n_ci0, Top); -              if (!CR.isFullSet()) { -                CR.subtract(CI0->getValue()); -                unsigned n_bo = VN.getOrInsertVN(BO, Top); -                VR.applyRange(n_bo, CR, Top, this); -                return; -              } -            } -            if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) { -              unsigned n_ci1 = VN.getOrInsertVN(Op0, Top); -              ConstantRange CR = VR.range(n_ci1, Top); -              if (!CR.isFullSet()) { -                CR.subtract(CI1->getValue()); -                unsigned n_bo = VN.getOrInsertVN(BO, Top); -                VR.applyRange(n_bo, CR, Top, this); -                return; -              } -            } -            break; -          case Instruction::Or: -            if (Op0 == AllOnes || Op1 == AllOnes) { -              add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            if (Op0 == Zero) { -              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); -              return; -            } else if (Op1 == Zero) { -              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            break; -          case Instruction::Add: -            if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) { -              unsigned n_ci0 = VN.getOrInsertVN(Op1, Top); -              ConstantRange CR = VR.range(n_ci0, Top); -              if (!CR.isFullSet()) { -                CR.subtract(-CI0->getValue()); -                unsigned n_bo = VN.getOrInsertVN(BO, Top); -                VR.applyRange(n_bo, CR, Top, this); -                return; -              } -            } -            if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) { -              unsigned n_ci1 = VN.getOrInsertVN(Op0, Top); -              ConstantRange CR = VR.range(n_ci1, Top); -              if (!CR.isFullSet()) { -                CR.subtract(-CI1->getValue()); -                unsigned n_bo = VN.getOrInsertVN(BO, Top); -                VR.applyRange(n_bo, CR, Top, this); -                return; -              } -            } -            // fall-through -          case Instruction::Xor: -            if (Op0 == Zero) { -              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); -              return; -            } else if (Op1 == Zero) { -              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            break; -          case Instruction::And: -            if (Op0 == AllOnes) { -              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); -              return; -            } else if (Op1 == AllOnes) { -              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            if (Op0 == Zero || Op1 == Zero) { -              add(BO, Zero, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            break; -          case Instruction::Mul: -            if (Op0 == Zero || Op1 == Zero) { -              add(BO, Zero, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            if (Op0 == One) { -              add(BO, Op1, ICmpInst::ICMP_EQ, NewContext); -              return; -            } else if (Op1 == One) { -              add(BO, Op0, ICmpInst::ICMP_EQ, NewContext); -              return; -            } -            break; -        } - -        // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0 -        // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0 -        // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0 -        // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1 - -        Value *Known = Op0, *Unknown = Op1, -              *TheBO = VN.canonicalize(BO, Top); -        if (Known != TheBO) std::swap(Known, Unknown); -        if (Known == TheBO) { -          switch (Opcode) { -            default: break; -            case Instruction::LShr: -            case Instruction::AShr: -            case Instruction::Shl: -              if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break; -              // otherwise, fall-through. -            case Instruction::Sub: -              if (Unknown == Op0) break; -              // otherwise, fall-through. -            case Instruction::Xor: -            case Instruction::Add: -              add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext); -              break; -            case Instruction::UDiv: -            case Instruction::SDiv: -              if (Unknown == Op1) break; -              if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) -                add(Unknown, One, ICmpInst::ICMP_EQ, NewContext); -              break; -          } -        } - -        // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z. - -      } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) { -        // "%a = icmp ult i32 %b, %c" and %b u<  %c then %a EQ true -        // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false -        // etc. - -        Value *Op0 = VN.canonicalize(IC->getOperand(0), Top); -        Value *Op1 = VN.canonicalize(IC->getOperand(1), Top); - -        ICmpInst::Predicate Pred = IC->getPredicate(); -        if (isRelatedBy(Op0, Op1, Pred)) -          add(IC, ConstantInt::getTrue(*Context), ICmpInst::ICMP_EQ, NewContext); -        else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred))) -          add(IC, ConstantInt::getFalse(*Context), -              ICmpInst::ICMP_EQ, NewContext); - -      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { -        if (I->getType()->isFPOrFPVector()) return; - -        // Given: "%a = select i1 %x, i32 %b, i32 %c" -        // %x EQ true  then %a EQ %b -        // %x EQ false then %a EQ %c -        // %b EQ %c then %a EQ %b - -        Value *Canonical = VN.canonicalize(SI->getCondition(), Top); -        if (Canonical == ConstantInt::getTrue(*Context)) { -          add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext); -        } else if (Canonical == ConstantInt::getFalse(*Context)) { -          add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext); -        } else if (VN.canonicalize(SI->getTrueValue(), Top) == -                   VN.canonicalize(SI->getFalseValue(), Top)) { -          add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext); -        } -      } else if (CastInst *CI = dyn_cast<CastInst>(I)) { -        const Type *DestTy = CI->getDestTy(); -        if (DestTy->isFPOrFPVector()) return; - -        Value *Op = VN.canonicalize(CI->getOperand(0), Top); -        Instruction::CastOps Opcode = CI->getOpcode(); - -        if (Constant *C = dyn_cast<Constant>(Op)) { -          add(CI, ConstantExpr::getCast(Opcode, C, DestTy), -              ICmpInst::ICMP_EQ, NewContext); -        } - -        uint32_t W = VR.typeToWidth(DestTy); -        unsigned ci = VN.getOrInsertVN(CI, Top); -        ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top); - -        if (!CR.isFullSet()) { -          switch (Opcode) { -            default: break; -            case Instruction::ZExt: -              VR.applyRange(ci, CR.zeroExtend(W), Top, this); -              break; -            case Instruction::SExt: -              VR.applyRange(ci, CR.signExtend(W), Top, this); -              break; -            case Instruction::Trunc: { -              ConstantRange Result = CR.truncate(W); -              if (!Result.isFullSet()) -                VR.applyRange(ci, Result, Top, this); -            } break; -            case Instruction::BitCast: -              VR.applyRange(ci, CR, Top, this); -              break; -            // TODO: other casts? -          } -        } -      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { -        for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(), -             OE = GEPI->idx_end(); OI != OE; ++OI) { -          ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top)); -          if (!Op || !Op->isZero()) return; -        } -        // TODO: The GEPI indices are all zero. Copy from operand to definition, -        // jumping the type plane as needed. -        Value *Ptr = GEPI->getPointerOperand(); -        if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()), -                        ICmpInst::ICMP_NE)) { -          add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE, -              NewContext); -        } -      } -    } - -    /// solve - process the work queue -    void solve() { -      //DEBUG(errs() << "WorkList entry, size: " << WorkList.size() << "\n"); -      while (!WorkList.empty()) { -        //DEBUG(errs() << "WorkList size: " << WorkList.size() << "\n"); - -        Operation &O = WorkList.front(); -        TopInst = O.ContextInst; -        TopBB = O.ContextBB; -        Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context - -        O.LHS = VN.canonicalize(O.LHS, Top); -        O.RHS = VN.canonicalize(O.RHS, Top); - -        assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't."); -        assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't."); - -        DEBUG(errs() << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS; -              if (O.ContextInst)  -                errs() << " context inst: " << *O.ContextInst; -              else -                errs() << " context block: " << O.ContextBB->getName(); -              errs() << "\n"; - -              VN.dump(); -              IG.dump(); -              VR.dump();); - -        // If they're both Constant, skip it. Check for contradiction and mark -        // the BB as unreachable if so. -        if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) { -          if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) { -            if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) == -                ConstantInt::getFalse(*Context)) -              UB.mark(TopBB); - -            WorkList.pop_front(); -            continue; -          } -        } - -        if (VN.compare(O.LHS, O.RHS)) { -          std::swap(O.LHS, O.RHS); -          O.Op = ICmpInst::getSwappedPredicate(O.Op); -        } - -        if (O.Op == ICmpInst::ICMP_EQ) { -          if (!makeEqual(O.RHS, O.LHS)) -            UB.mark(TopBB); -        } else { -          LatticeVal LV = cmpInstToLattice(O.Op); - -          if ((LV & EQ_BIT) && -              isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) { -            if (!makeEqual(O.RHS, O.LHS)) -              UB.mark(TopBB); -          } else { -            if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){ -              UB.mark(TopBB); -              WorkList.pop_front(); -              continue; -            } - -            unsigned n1 = VN.getOrInsertVN(O.LHS, Top); -            unsigned n2 = VN.getOrInsertVN(O.RHS, Top); - -            if (n1 == n2) { -              if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE && -                  O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE) -                UB.mark(TopBB); - -              WorkList.pop_front(); -              continue; -            } - -            if (VR.isRelatedBy(n1, n2, Top, LV) || -                IG.isRelatedBy(n1, n2, Top, LV)) { -              WorkList.pop_front(); -              continue; -            } - -            VR.addInequality(n1, n2, Top, LV, this); -            if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) || -                LV == NE) -              IG.addInequality(n1, n2, Top, LV); - -            if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) { -              if (aboveOrBelow(I1)) -                defToOps(I1); -            } -            if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) { -              for (Value::use_iterator UI = O.LHS->use_begin(), -                   UE = O.LHS->use_end(); UI != UE;) { -                Use &TheUse = UI.getUse(); -                ++UI; -                Instruction *I = cast<Instruction>(TheUse.getUser()); -                if (aboveOrBelow(I)) -                  opsToDef(I); -              } -            } -            if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) { -              if (aboveOrBelow(I2)) -              defToOps(I2); -            } -            if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) { -              for (Value::use_iterator UI = O.RHS->use_begin(), -                   UE = O.RHS->use_end(); UI != UE;) { -                Use &TheUse = UI.getUse(); -                ++UI; -                Instruction *I = cast<Instruction>(TheUse.getUser()); -                if (aboveOrBelow(I)) -                  opsToDef(I); -              } -            } -          } -        } -        WorkList.pop_front(); -      } -    } -  }; - -  void ValueRanges::addToWorklist(Value *V, Constant *C, -                                  ICmpInst::Predicate Pred, VRPSolver *VRP) { -    VRP->add(V, C, Pred, VRP->TopInst); -  } - -  void ValueRanges::markBlock(VRPSolver *VRP) { -    VRP->UB.mark(VRP->TopBB); -  } - -  /// PredicateSimplifier - This class is a simplifier that replaces -  /// one equivalent variable with another. It also tracks what -  /// can't be equal and will solve setcc instructions when possible. -  /// @brief Root of the predicate simplifier optimization. -  class PredicateSimplifier : public FunctionPass { -    DomTreeDFS *DTDFS; -    bool modified; -    ValueNumbering *VN; -    InequalityGraph *IG; -    UnreachableBlocks UB; -    ValueRanges *VR; - -    std::vector<DomTreeDFS::Node *> WorkList; - -    LLVMContext *Context; -  public: -    static char ID; // Pass identification, replacement for typeid -    PredicateSimplifier() : FunctionPass(&ID) {} - -    bool runOnFunction(Function &F); - -    virtual void getAnalysisUsage(AnalysisUsage &AU) const { -      AU.addRequiredID(BreakCriticalEdgesID); -      AU.addRequired<DominatorTree>(); -    } - -  private: -    /// Forwards - Adds new properties to VRPSolver and uses them to -    /// simplify instructions. Because new properties sometimes apply to -    /// a transition from one BasicBlock to another, this will use the -    /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the -    /// basic block. -    /// @brief Performs abstract execution of the program. -    class Forwards : public InstVisitor<Forwards> { -      friend class InstVisitor<Forwards>; -      PredicateSimplifier *PS; -      DomTreeDFS::Node *DTNode; - -    public: -      ValueNumbering &VN; -      InequalityGraph &IG; -      UnreachableBlocks &UB; -      ValueRanges &VR; - -      Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode) -        : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB), -          VR(*PS->VR) {} - -      void visitTerminatorInst(TerminatorInst &TI); -      void visitBranchInst(BranchInst &BI); -      void visitSwitchInst(SwitchInst &SI); - -      void visitAllocaInst(AllocaInst &AI); -      void visitLoadInst(LoadInst &LI); -      void visitStoreInst(StoreInst &SI); - -      void visitSExtInst(SExtInst &SI); -      void visitZExtInst(ZExtInst &ZI); - -      void visitBinaryOperator(BinaryOperator &BO); -      void visitICmpInst(ICmpInst &IC); -    }; -   -    // Used by terminator instructions to proceed from the current basic -    // block to the next. Verifies that "current" dominates "next", -    // then calls visitBasicBlock. -    void proceedToSuccessors(DomTreeDFS::Node *Current) { -      for (DomTreeDFS::Node::iterator I = Current->begin(), -           E = Current->end(); I != E; ++I) { -        WorkList.push_back(*I); -      } -    } - -    void proceedToSuccessor(DomTreeDFS::Node *Next) { -      WorkList.push_back(Next); -    } - -    // Visits each instruction in the basic block. -    void visitBasicBlock(DomTreeDFS::Node *Node) { -      BasicBlock *BB = Node->getBlock(); -      DEBUG(errs() << "Entering Basic Block: " << BB->getName() -            << " (" << Node->getDFSNumIn() << ")\n"); -      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { -        visitInstruction(I++, Node); -      } -    } - -    // Tries to simplify each Instruction and add new properties. -    void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) { -      DEBUG(errs() << "Considering instruction " << *I << "\n"); -      DEBUG(VN->dump()); -      DEBUG(IG->dump()); -      DEBUG(VR->dump()); - -      // Sometimes instructions are killed in earlier analysis. -      if (isInstructionTriviallyDead(I)) { -        ++NumSimple; -        modified = true; -        if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode())) -          if (VN->value(n) == I) IG->remove(n); -        VN->remove(I); -        I->eraseFromParent(); -        return; -      } - -#ifndef NDEBUG -      // Try to replace the whole instruction. -      Value *V = VN->canonicalize(I, DT); -      assert(V == I && "Late instruction canonicalization."); -      if (V != I) { -        modified = true; -        ++NumInstruction; -        DEBUG(errs() << "Removing " << *I << ", replacing with " << *V << "\n"); -        if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode())) -          if (VN->value(n) == I) IG->remove(n); -        VN->remove(I); -        I->replaceAllUsesWith(V); -        I->eraseFromParent(); -        return; -      } - -      // Try to substitute operands. -      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { -        Value *Oper = I->getOperand(i); -        Value *V = VN->canonicalize(Oper, DT); -        assert(V == Oper && "Late operand canonicalization."); -        if (V != Oper) { -          modified = true; -          ++NumVarsReplaced; -          DEBUG(errs() << "Resolving " << *I); -          I->setOperand(i, V); -          DEBUG(errs() << " into " << *I); -        } -      } -#endif - -      std::string name = I->getParent()->getName(); -      DEBUG(errs() << "push (%" << name << ")\n"); -      Forwards visit(this, DT); -      visit.visit(*I); -      DEBUG(errs() << "pop (%" << name << ")\n"); -    } -  }; - -  bool PredicateSimplifier::runOnFunction(Function &F) { -    DominatorTree *DT = &getAnalysis<DominatorTree>(); -    DTDFS = new DomTreeDFS(DT); -    TargetData *TD = getAnalysisIfAvailable<TargetData>(); - -    // FIXME: PredicateSimplifier should still be able to do basic -    // optimizations without TargetData. But for now, just exit if -    // it's not available. -    if (!TD) return false; - -    Context = &F.getContext(); - -    DEBUG(errs() << "Entering Function: " << F.getName() << "\n"); - -    modified = false; -    DomTreeDFS::Node *Root = DTDFS->getRootNode(); -    VN = new ValueNumbering(DTDFS); -    IG = new InequalityGraph(*VN, Root); -    VR = new ValueRanges(*VN, TD, Context); -    WorkList.push_back(Root); - -    do { -      DomTreeDFS::Node *DTNode = WorkList.back(); -      WorkList.pop_back(); -      if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode); -    } while (!WorkList.empty()); - -    delete DTDFS; -    delete VR; -    delete IG; -    delete VN; - -    modified |= UB.kill(); - -    return modified; -  } - -  void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) { -    PS->proceedToSuccessors(DTNode); -  } - -  void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) { -    if (BI.isUnconditional()) { -      PS->proceedToSuccessors(DTNode); -      return; -    } - -    Value *Condition = BI.getCondition(); -    BasicBlock *TrueDest  = BI.getSuccessor(0); -    BasicBlock *FalseDest = BI.getSuccessor(1); - -    if (isa<Constant>(Condition) || TrueDest == FalseDest) { -      PS->proceedToSuccessors(DTNode); -      return; -    } - -    LLVMContext *Context = &BI.getContext(); - -    for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end(); -         I != E; ++I) { -      BasicBlock *Dest = (*I)->getBlock(); -      DEBUG(errs() << "Branch thinking about %" << Dest->getName() -            << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n"); - -      if (Dest == TrueDest) { -        DEBUG(errs() << "(" << DTNode->getBlock()->getName()  -              << ") true set:\n"); -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest); -        VRP.add(ConstantInt::getTrue(*Context), Condition, ICmpInst::ICMP_EQ); -        VRP.solve(); -        DEBUG(VN.dump()); -        DEBUG(IG.dump()); -        DEBUG(VR.dump()); -      } else if (Dest == FalseDest) { -        DEBUG(errs() << "(" << DTNode->getBlock()->getName()  -              << ") false set:\n"); -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest); -        VRP.add(ConstantInt::getFalse(*Context), Condition, ICmpInst::ICMP_EQ); -        VRP.solve(); -        DEBUG(VN.dump()); -        DEBUG(IG.dump()); -        DEBUG(VR.dump()); -      } - -      PS->proceedToSuccessor(*I); -    } -  } - -  void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) { -    Value *Condition = SI.getCondition(); - -    // Set the EQProperty in each of the cases BBs, and the NEProperties -    // in the default BB. - -    for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end(); -         I != E; ++I) { -      BasicBlock *BB = (*I)->getBlock(); -      DEBUG(errs() << "Switch thinking about BB %" << BB->getName() -            << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n"); - -      VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB); -      if (BB == SI.getDefaultDest()) { -        for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i) -          if (SI.getSuccessor(i) != BB) -            VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE); -        VRP.solve(); -      } else if (ConstantInt *CI = SI.findCaseDest(BB)) { -        VRP.add(Condition, CI, ICmpInst::ICMP_EQ); -        VRP.solve(); -      } -      PS->proceedToSuccessor(*I); -    } -  } - -  void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) { -    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI); -    VRP.add(Constant::getNullValue(AI.getType()), -            &AI, ICmpInst::ICMP_NE); -    VRP.solve(); -  } - -  void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) { -    Value *Ptr = LI.getPointerOperand(); -    // avoid "load i8* null" -> null NE null. -    if (isa<Constant>(Ptr)) return; - -    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI); -    VRP.add(Constant::getNullValue(Ptr->getType()), -            Ptr, ICmpInst::ICMP_NE); -    VRP.solve(); -  } - -  void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) { -    Value *Ptr = SI.getPointerOperand(); -    if (isa<Constant>(Ptr)) return; - -    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI); -    VRP.add(Constant::getNullValue(Ptr->getType()), -            Ptr, ICmpInst::ICMP_NE); -    VRP.solve(); -  } - -  void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) { -    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI); -    LLVMContext &Context = SI.getContext(); -    uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth(); -    uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth(); -    APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1)); -    APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1)); -    VRP.add(ConstantInt::get(Context, Min), &SI, ICmpInst::ICMP_SLE); -    VRP.add(ConstantInt::get(Context, Max), &SI, ICmpInst::ICMP_SGE); -    VRP.solve(); -  } - -  void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) { -    VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI); -    LLVMContext &Context = ZI.getContext(); -    uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth(); -    uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth(); -    APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth)); -    VRP.add(ConstantInt::get(Context, Max), &ZI, ICmpInst::ICMP_UGE); -    VRP.solve(); -  } - -  void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) { -    Instruction::BinaryOps ops = BO.getOpcode(); - -    switch (ops) { -    default: break; -      case Instruction::URem: -      case Instruction::SRem: -      case Instruction::UDiv: -      case Instruction::SDiv: { -        Value *Divisor = BO.getOperand(1); -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(Constant::getNullValue(Divisor->getType()),  -                Divisor, ICmpInst::ICMP_NE); -        VRP.solve(); -        break; -      } -    } - -    switch (ops) { -      default: break; -      case Instruction::Shl: { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE); -        VRP.solve(); -      } break; -      case Instruction::AShr: { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE); -        VRP.solve(); -      } break; -      case Instruction::LShr: -      case Instruction::UDiv: { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE); -        VRP.solve(); -      } break; -      case Instruction::URem: { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE); -        VRP.solve(); -      } break; -      case Instruction::And: { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE); -        VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE); -        VRP.solve(); -      } break; -      case Instruction::Or: { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO); -        VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE); -        VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE); -        VRP.solve(); -      } break; -    } -  } - -  void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) { -    // If possible, squeeze the ICmp predicate into something simpler. -    // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change -    // the predicate to eq. - -    // XXX: once we do full PHI handling, modifying the instruction in the -    // Forwards visitor will cause missed optimizations. - -    ICmpInst::Predicate Pred = IC.getPredicate(); - -    switch (Pred) { -      default: break; -      case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break; -      case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break; -      case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break; -      case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break; -    } -    if (Pred != IC.getPredicate()) { -      VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC); -      if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0), -                          ICmpInst::ICMP_NE)) { -        ++NumSnuggle; -        PS->modified = true; -        IC.setPredicate(Pred); -      } -    } - -    Pred = IC.getPredicate(); - -    LLVMContext &Context = IC.getContext(); - -    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) { -      ConstantInt *NextVal = 0; -      switch (Pred) { -        default: break; -        case ICmpInst::ICMP_SLT: -        case ICmpInst::ICMP_ULT: -          if (Op1->getValue() != 0) -            NextVal = ConstantInt::get(Context, Op1->getValue()-1); -         break; -        case ICmpInst::ICMP_SGT: -        case ICmpInst::ICMP_UGT: -          if (!Op1->getValue().isAllOnesValue()) -            NextVal = ConstantInt::get(Context, Op1->getValue()+1); -         break; -      } - -      if (NextVal) { -        VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC); -        if (VRP.isRelatedBy(IC.getOperand(0), NextVal, -                            ICmpInst::getInversePredicate(Pred))) { -          ICmpInst *NewIC = new ICmpInst(&IC, ICmpInst::ICMP_EQ,  -                                         IC.getOperand(0), NextVal, ""); -          NewIC->takeName(&IC); -          IC.replaceAllUsesWith(NewIC); - -          // XXX: prove this isn't necessary -          if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode())) -            if (VN.value(n) == &IC) IG.remove(n); -          VN.remove(&IC); - -          IC.eraseFromParent(); -          ++NumSnuggle; -          PS->modified = true; -        } -      } -    } -  } -} - -char PredicateSimplifier::ID = 0; -static RegisterPass<PredicateSimplifier> -X("predsimplify", "Predicate Simplifier"); - -FunctionPass *llvm::createPredicateSimplifierPass() { -  return new PredicateSimplifier(); -} | 

