diff options
Diffstat (limited to 'llvm/lib/Transforms')
| -rw-r--r-- | llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp | 177 |
1 files changed, 120 insertions, 57 deletions
diff --git a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp index e27814526ce..eeaf29dceb5 100644 --- a/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp +++ b/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp @@ -410,8 +410,10 @@ private: /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; - /// Vectorize a single entry in the tree. - Value *vectorizeTree(TreeEntry *E); + /// Vectorize a single entry in the tree. VL icontains all isomorphic scalars + /// in order of its usage in a user program, for example ADD1, ADD2 and so on + /// or LOAD1 , LOAD2 etc. + Value *vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef<Value *> VL); @@ -452,7 +454,7 @@ private: SmallVectorImpl<Value *> &Right); struct TreeEntry { TreeEntry() : Scalars(), VectorizedValue(nullptr), - NeedToGather(0) {} + NeedToGather(0), NeedToShuffle(0) {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef<Value *> VL) const { @@ -460,6 +462,15 @@ private: return std::equal(VL.begin(), VL.end(), Scalars.begin()); } + /// \returns true if the scalars in VL are found in this tree entry. + bool isFoundJumbled(ArrayRef<Value *> VL, const DataLayout &DL, + ScalarEvolution &SE) const { + assert(VL.size() == Scalars.size() && "Invalid size"); + SmallVector<Value *, 8> List; + sortMemAccesses(VL, DL, SE, List); + return std::equal(List.begin(), List.end(), Scalars.begin()); + } + /// A vector of scalars. ValueList Scalars; @@ -468,15 +479,20 @@ private: /// Do we need to gather this sequence ? bool NeedToGather; + + /// Do we need to shuffle the load ? + bool NeedToShuffle; }; /// Create a new VectorizableTree entry. - TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { + TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, + bool NeedToShuffle) { VectorizableTree.emplace_back(); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; + Last->NeedToShuffle = NeedToShuffle; if (Vectorized) { for (int i = 0, e = VL.size(); i != e; ++i) { assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); @@ -983,21 +999,21 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (Depth == RecursionMaxDepth) { DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } // Don't handle vectors. if (VL[0]->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) if (SI->getValueOperand()->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } unsigned Opcode = getSameOpcode(VL); @@ -1014,7 +1030,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) { DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } @@ -1026,7 +1042,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (EphValues.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is ephemeral.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } @@ -1039,7 +1055,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); if (E->Scalars[i] != VL[i]) { DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } @@ -1052,7 +1068,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (ScalarToTreeEntry.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } @@ -1062,7 +1078,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (MustGather.count(VL[i])) { DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } @@ -1076,7 +1092,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { // Don't go into unreachable blocks. They may contain instructions with // dependency cycles which confuse the final scheduling. DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } @@ -1085,7 +1101,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned j = i+1; j < e; ++j) if (VL[i] == VL[j]) { DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } @@ -1100,7 +1116,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { assert((!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); @@ -1117,12 +1133,12 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (Term) { DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { @@ -1144,7 +1160,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { } else { BS.cancelScheduling(VL); } - newTreeEntry(VL, Reuse); + newTreeEntry(VL, Reuse, false); return; } case Instruction::Load: { @@ -1160,7 +1176,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); return; } @@ -1171,15 +1187,13 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { LoadInst *L = cast<LoadInst>(VL[i]); if (!L->isSimple()) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); return; } } // Check if the loads are consecutive, reversed, or neither. - // TODO: What we really want is to sort the loads, but for now, check - // the two likely directions. bool Consecutive = true; bool ReverseConsecutive = true; for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { @@ -1193,7 +1207,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (Consecutive) { ++NumLoadsWantToKeepOrder; - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of loads.\n"); return; } @@ -1207,8 +1221,25 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { break; } + if (VL.size() > 2 && !ReverseConsecutive) { + bool ShuffledLoads = true; + SmallVector<Value *, 8> List; + sortMemAccesses(VL, *DL, *SE, List); + auto NewVL = makeArrayRef(List.begin(), List.end()); + for (unsigned i = 0, e = NewVL.size() - 1; i < e; ++i) { + if (!isConsecutiveAccess(NewVL[i], NewVL[i + 1], *DL, *SE)) { + ShuffledLoads = false; + break; + } + } + if (ShuffledLoads) { + newTreeEntry(NewVL, true, true); + return; + } + } + BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); if (ReverseConsecutive) { ++NumLoadsWantToChangeOrder; @@ -1231,16 +1262,16 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); - for (unsigned i = 0; i < VL.size(); ++i) { - Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); + for (Value *Val : VL) { + Type *Ty = cast<Instruction>(Val)->getOperand(0)->getType(); if (Ty != SrcTy || !isValidElementType(Ty)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { @@ -1263,13 +1294,13 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { @@ -1301,7 +1332,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { case Instruction::And: case Instruction::Or: case Instruction::Xor: { - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); // Sort operands of the instructions so that each side is more likely to @@ -1326,11 +1357,11 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { } case Instruction::GetElementPtr: { // We don't combine GEPs with complicated (nested) indexing. - for (unsigned j = 0; j < VL.size(); ++j) { - if (cast<Instruction>(VL[j])->getNumOperands() != 2) { + for (Value *Val : VL) { + if (cast<Instruction>(Val)->getNumOperands() != 2) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } @@ -1338,29 +1369,29 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { // We can't combine several GEPs into one vector if they operate on // different types. Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); - for (unsigned j = 0; j < VL.size(); ++j) { - Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); + for (Value *Val : VL) { + Type *CurTy = cast<Instruction>(Val)->getOperand(0)->getType(); if (Ty0 != CurTy) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } // We don't combine GEPs with non-constant indexes. - for (unsigned j = 0; j < VL.size(); ++j) { - auto Op = cast<Instruction>(VL[j])->getOperand(1); + for (Value *Val : VL) { + auto Op = cast<Instruction>(Val)->getOperand(1); if (!isa<ConstantInt>(Op)) { DEBUG( dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); return; } } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; @@ -1377,12 +1408,12 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; @@ -1400,7 +1431,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (!isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); return; } @@ -1414,7 +1445,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { getVectorIntrinsicIDForCall(CI2, TLI) != ID || !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] << "\n"); return; @@ -1425,7 +1456,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { Value *A1J = CI2->getArgOperand(1); if (A1I != A1J) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI << " argument "<< A1I<<"!=" << A1J << "\n"); @@ -1438,14 +1469,14 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { CI->op_begin() + CI->getBundleOperandsEndIndex(), CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" << *VL[i] << '\n'); return; } } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. @@ -1462,11 +1493,11 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { // then do not vectorize this instruction. if (!isAltShuffle) { BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); return; } - newTreeEntry(VL, true); + newTreeEntry(VL, true, false); DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); // Reorder operands if reordering would enable vectorization. @@ -1490,7 +1521,7 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { } default: BS.cancelScheduling(VL); - newTreeEntry(VL, false); + newTreeEntry(VL, false, false); DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } @@ -1723,6 +1754,10 @@ int BoUpSLP::getEntryCost(TreeEntry *E) { TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0); + if (E->NeedToShuffle) { + VecLdCost += TTI->getShuffleCost( + TargetTransformInfo::SK_PermuteSingleSrc, VecTy, 0); + } return VecLdCost - ScalarLdCost; } case Instruction::Store: { @@ -2285,8 +2320,8 @@ Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; - if (E->isSame(VL)) - return vectorizeTree(E); + if (E->isSame(VL) || (E->NeedToShuffle && E->isFoundJumbled(VL, *DL, *SE))) + return vectorizeTree(VL, E); } Type *ScalarTy = VL[0]->getType(); @@ -2297,10 +2332,10 @@ Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { return Gather(VL, VecTy); } -Value *BoUpSLP::vectorizeTree(TreeEntry *E) { +Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, TreeEntry *E) { IRBuilder<>::InsertPointGuard Guard(Builder); - if (E->VectorizedValue) { + if (E->VectorizedValue && !E->NeedToShuffle) { DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } @@ -2534,7 +2569,35 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) { LI->setAlignment(Alignment); E->VectorizedValue = LI; ++NumVectorInstructions; - return propagateMetadata(LI, E->Scalars); + propagateMetadata(LI, E->Scalars); + + // As program order of scalar loads are jumbled, the vectorized 'load' + // must be followed by a 'shuffle' with the required jumbled mask. + if (!VL.empty() && (E->NeedToShuffle)) { + assert(VL.size() == E->Scalars.size() && + "Equal number of scalars expected"); + SmallVector<Constant *, 8> Mask; + for (Value *Val : VL) { + if (ScalarToTreeEntry.count(Val)) { + int Idx = ScalarToTreeEntry[Val]; + TreeEntry *E = &VectorizableTree[Idx]; + for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { + if (E->Scalars[Lane] == Val) { + Mask.push_back(Builder.getInt32(Lane)); + break; + } + } + } + } + + // Generate shuffle for jumbled memory access + Value *Undef = UndefValue::get(VecTy); + Value *Shuf = Builder.CreateShuffleVector((Value *)LI, Undef, + ConstantVector::get(Mask)); + return Shuf; + } + + return LI; } case Instruction::Store: { StoreInst *SI = cast<StoreInst>(VL0); @@ -2709,7 +2772,7 @@ Value *BoUpSLP::vectorizeTree() { } Builder.SetInsertPoint(&F->getEntryBlock().front()); - auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); + auto *VectorRoot = vectorizeTree(ArrayRef<Value *>(), &VectorizableTree[0]); // If the vectorized tree can be rewritten in a smaller type, we truncate the // vectorized root. InstCombine will then rewrite the entire expression. We |

