diff options
Diffstat (limited to 'llvm/lib/Transforms')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp | 440 | 
1 files changed, 220 insertions, 220 deletions
| diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp index 4be780ebdeb..d2faab52152 100644 --- a/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp +++ b/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp @@ -79,7 +79,7 @@ static bool HasSubOverflow(ConstantInt *Result,                             bool IsSigned) {    if (!IsSigned)      return Result->getValue().ugt(In1->getValue()); -   +    if (In2->isNegative())      return Result->getValue().slt(In1->getValue()); @@ -129,7 +129,7 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,      // True if LHS u> RHS and RHS == high-bit-mask - 1      TrueIfSigned = true;      return RHS->isMaxValue(true); -  case ICmpInst::ICMP_UGE:  +  case ICmpInst::ICMP_UGE:      // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)      TrueIfSigned = true;      return RHS->getValue().isSignBit(); @@ -144,7 +144,7 @@ static bool isHighOnes(const ConstantInt *CI) {    return (~CI->getValue() + 1).isPowerOf2();  } -/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a  +/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a  /// set of known zero and one bits, compute the maximum and minimum values that  /// could have the specified known zero and known one bits, returning them in  /// min/max. @@ -161,7 +161,7 @@ static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,    // bit if it is unknown.    Min = KnownOne;    Max = KnownOne|UnknownBits; -   +    if (UnknownBits.isNegative()) { // Sign bit is unknown      Min.setBit(Min.getBitWidth()-1);      Max.clearBit(Max.getBitWidth()-1); @@ -180,7 +180,7 @@ static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,           KnownZero.getBitWidth() == Max.getBitWidth() &&           "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");    APInt UnknownBits = ~(KnownZero|KnownOne); -   +    // The minimum value is when the unknown bits are all zeros.    Min = KnownOne;    // The maximum value is when the unknown bits are all ones. @@ -202,10 +202,10 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,                               CmpInst &ICI, ConstantInt *AndCst) {    // We need TD information to know the pointer size unless this is inbounds.    if (!GEP->isInBounds() && TD == 0) return 0; -   +    ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());    if (Init == 0 || Init->getNumOperands() > 1024) return 0; -   +    // There are many forms of this optimization we can handle, for now, just do    // the simple index into a single-dimensional array.    // @@ -220,15 +220,15 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,    // type they index.  Collect the indices.  This is typically for arrays of    // structs.    SmallVector<unsigned, 4> LaterIndices; -   +    Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();    for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {      ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));      if (Idx == 0) return 0;  // Variable index. -     +      uint64_t IdxVal = Idx->getZExtValue();      if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index. -     +      if (StructType *STy = dyn_cast<StructType>(EltTy))        EltTy = STy->getElementType(IdxVal);      else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { @@ -237,14 +237,14 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,      } else {        return 0; // Unknown type.      } -     +      LaterIndices.push_back(IdxVal);    } -   +    enum { Overdefined = -3, Undefined = -2 };    // Variables for our state machines. -   +    // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form    // "i == 47 | i == 87", where 47 is the first index the condition is true for,    // and 87 is the second (and last) index.  FirstTrueElement is -2 when @@ -255,7 +255,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,    // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the    // form "i != 47 & i != 87".  Same state transitions as for true elements.    int FirstFalseElement = Undefined, SecondFalseElement = Undefined; -   +    /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these    /// define a state machine that triggers for ranges of values that the index    /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'. @@ -263,25 +263,25 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,    /// index in the range (inclusive).  We use -2 for undefined here because we    /// use relative comparisons and don't want 0-1 to match -1.    int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; -   +    // MagicBitvector - This is a magic bitvector where we set a bit if the    // comparison is true for element 'i'.  If there are 64 elements or less in    // the array, this will fully represent all the comparison results.    uint64_t MagicBitvector = 0; -   -   + +    // Scan the array and see if one of our patterns matches.    Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {      Constant *Elt = Init->getOperand(i); -     +      // If this is indexing an array of structures, get the structure element.      if (!LaterIndices.empty())        Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); -     +      // If the element is masked, handle it.      if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); -     +      // Find out if the comparison would be true or false for the i'th element.      Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,                                                    CompareRHS, TD); @@ -295,15 +295,15 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,          FalseRangeEnd = i;        continue;      } -     +      // If we can't compute the result for any of the elements, we have to give      // up evaluating the entire conditional.      if (!isa<ConstantInt>(C)) return 0; -     +      // Otherwise, we know if the comparison is true or false for this element,      // update our state machines.      bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); -     +      // State machine for single/double/range index comparison.      if (IsTrueForElt) {        // Update the TrueElement state machine. @@ -315,7 +315,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,            SecondTrueElement = i;          else            SecondTrueElement = Overdefined; -         +          // Update range state machine.          if (TrueRangeEnd == (int)i-1)            TrueRangeEnd = i; @@ -332,7 +332,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,            SecondFalseElement = i;          else            SecondFalseElement = Overdefined; -         +          // Update range state machine.          if (FalseRangeEnd == (int)i-1)            FalseRangeEnd = i; @@ -340,12 +340,12 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,            FalseRangeEnd = Overdefined;        }      } -     -     + +      // If this element is in range, update our magic bitvector.      if (i < 64 && IsTrueForElt)        MagicBitvector |= 1ULL << i; -     +      // If all of our states become overdefined, bail out early.  Since the      // predicate is expensive, only check it every 8 elements.  This is only      // really useful for really huge arrays. @@ -365,20 +365,20 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,    if (!GEP->isInBounds() &&        Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())      Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext())); -   +    // If the comparison is only true for one or two elements, emit direct    // comparisons.    if (SecondTrueElement != Overdefined) {      // None true -> false.      if (FirstTrueElement == Undefined)        return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext())); -     +      Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); -     +      // True for one element -> 'i == 47'.      if (SecondTrueElement == Undefined)        return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); -     +      // True for two elements -> 'i == 47 | i == 72'.      Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);      Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); @@ -392,36 +392,36 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,      // None false -> true.      if (FirstFalseElement == Undefined)        return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext())); -     +      Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);      // False for one element -> 'i != 47'.      if (SecondFalseElement == Undefined)        return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); -      +      // False for two elements -> 'i != 47 & i != 72'.      Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);      Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);      Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);      return BinaryOperator::CreateAnd(C1, C2);    } -   +    // If the comparison can be replaced with a range comparison for the elements    // where it is true, emit the range check.    if (TrueRangeEnd != Overdefined) {      assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); -     +      // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).      if (FirstTrueElement) {        Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);        Idx = Builder->CreateAdd(Idx, Offs);      } -     +      Value *End = ConstantInt::get(Idx->getType(),                                    TrueRangeEnd-FirstTrueElement+1);      return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);    } -   +    // False range check.    if (FalseRangeEnd != Overdefined) {      assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); @@ -430,13 +430,13 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,        Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);        Idx = Builder->CreateAdd(Idx, Offs);      } -     +      Value *End = ConstantInt::get(Idx->getType(),                                    FalseRangeEnd-FirstFalseElement);      return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);    } -   -   + +    // If a 32-bit or 64-bit magic bitvector captures the entire comparison state    // of this load, replace it with computation that does:    //   ((magic_cst >> i) & 1) != 0 @@ -452,7 +452,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));    } -   +    return 0;  } @@ -466,11 +466,11 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,  /// to generate the first by knowing that pointer arithmetic doesn't overflow.  ///  /// If we can't emit an optimized form for this expression, this returns null. -///  +///  static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {    TargetData &TD = *IC.getTargetData();    gep_type_iterator GTI = gep_type_begin(GEP); -   +    // Check to see if this gep only has a single variable index.  If so, and if    // any constant indices are a multiple of its scale, then we can compute this    // in terms of the scale of the variable index.  For example, if the GEP @@ -482,7 +482,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {      if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {        // Compute the aggregate offset of constant indices.        if (CI->isZero()) continue; -       +        // Handle a struct index, which adds its field offset to the pointer.        if (StructType *STy = dyn_cast<StructType>(*GTI)) {          Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); @@ -495,24 +495,24 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {        break;      }    } -   +    // If there are no variable indices, we must have a constant offset, just    // evaluate it the general way.    if (i == e) return 0; -   +    Value *VariableIdx = GEP->getOperand(i);    // Determine the scale factor of the variable element.  For example, this is    // 4 if the variable index is into an array of i32.    uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); -   +    // Verify that there are no other variable indices.  If so, emit the hard way.    for (++i, ++GTI; i != e; ++i, ++GTI) {      ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));      if (!CI) return 0; -     +      // Compute the aggregate offset of constant indices.      if (CI->isZero()) continue; -     +      // Handle a struct index, which adds its field offset to the pointer.      if (StructType *STy = dyn_cast<StructType>(*GTI)) {        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); @@ -521,7 +521,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {        Offset += Size*CI->getSExtValue();      }    } -   +    // Okay, we know we have a single variable index, which must be a    // pointer/array/vector index.  If there is no offset, life is simple, return    // the index. @@ -536,14 +536,14 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {      }      return VariableIdx;    } -   +    // Otherwise, there is an index.  The computation we will do will be modulo    // the pointer size, so get it.    uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); -   +    Offset &= PtrSizeMask;    VariableScale &= PtrSizeMask; -   +    // To do this transformation, any constant index must be a multiple of the    // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",    // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a @@ -551,7 +551,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {    int64_t NewOffs = Offset / (int64_t)VariableScale;    if (Offset != NewOffs*(int64_t)VariableScale)      return 0; -   +    // Okay, we can do this evaluation.  Start by converting the index to intptr.    Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());    if (VariableIdx->getType() != IntPtrTy) @@ -577,7 +577,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,      // know pointers can't overflow since the gep is inbounds.  See if we can      // output an optimized form.      Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this); -     +      // If not, synthesize the offset the hard way.      if (Offset == 0)        Offset = EmitGEPOffset(GEPLHS); @@ -687,7 +687,7 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,      bool isTrue = ICmpInst::isTrueWhenEqual(Pred);      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));    } -   +    // (X+4) == X -> false.    if (Pred == ICmpInst::ICMP_EQ)      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext())); @@ -699,22 +699,22 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,    // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,    // so the values can never be equal.  Similarly for all other "or equals"    // operators. -   +    // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255    // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253    // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0    if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { -    Value *R =  +    Value *R =        ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);      return new ICmpInst(ICmpInst::ICMP_UGT, X, R);    } -   +    // (X+1) >u X        --> X <u (0-1)        --> X != 255    // (X+2) >u X        --> X <u (0-2)        --> X <u 254    // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0    if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)      return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); -   +    unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();    ConstantInt *SMax = ConstantInt::get(X->getContext(),                                         APInt::getSignedMaxValue(BitWidth)); @@ -727,14 +727,14 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,    // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127    if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)      return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); -   +    // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127    // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126    // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1    // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2    // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126    // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128 -   +    assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);    Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);    return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); @@ -746,14 +746,14 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,                                            ConstantInt *DivRHS) {    ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));    const APInt &CmpRHSV = CmpRHS->getValue(); -   -  // FIXME: If the operand types don't match the type of the divide  + +  // FIXME: If the operand types don't match the type of the divide    // then don't attempt this transform. The code below doesn't have the    // logic to deal with a signed divide and an unsigned compare (and -  // vice versa). This is because (x /s C1) <s C2  produces different  +  // vice versa). This is because (x /s C1) <s C2  produces different    // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even -  // (x /u C1) <u C2.  Simply casting the operands and result won't  -  // work. :(  The if statement below tests that condition and bails  +  // (x /u C1) <u C2.  Simply casting the operands and result won't +  // work. :(  The if statement below tests that condition and bails    // if it finds it.    bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;    if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) @@ -769,14 +769,14 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,    }    // Compute Prod = CI * DivRHS. We are essentially solving an equation -  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and  -  // C2 (CI). By solving for X we can turn this into a range check  -  // instead of computing a divide.  +  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and +  // C2 (CI). By solving for X we can turn this into a range check +  // instead of computing a divide.    Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);    // Determine if the product overflows by seeing if the product is    // not equal to the divide. Make sure we do the same kind of divide -  // as in the LHS instruction that we're folding.  +  // as in the LHS instruction that we're folding.    bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :                   ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; @@ -786,9 +786,9 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,    /// If the division is known to be exact, then there is no remainder from the    /// divide, so the covered range size is unit, otherwise it is the divisor.    ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; -   +    // Figure out the interval that is being checked.  For example, a comparison -  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).  +  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).    // Compute this interval based on the constants involved and the signedness of    // the compare/divide.  This computes a half-open interval, keeping track of    // whether either value in the interval overflows.  After analysis each @@ -806,7 +806,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,        // to the same result value.        HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);      } -     +    } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.      if (CmpRHSV == 0) {       // (X / pos) op 0        // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2) @@ -849,7 +849,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,        if (!HiOverflow)          HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);      } -     +      // Dividing by a negative swaps the condition.  LT <-> GT      Pred = ICmpInst::getSwappedPredicate(Pred);    } @@ -902,7 +902,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,  Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,                                            ConstantInt *ShAmt) {    const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); -   +    // Check that the shift amount is in range.  If not, don't perform    // undefined shifts.  When the shift is visited it will be    // simplified. @@ -910,48 +910,48 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,    uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);    if (ShAmtVal >= TypeBits || ShAmtVal == 0)      return 0; -   +    if (!ICI.isEquality()) {      // If we have an unsigned comparison and an ashr, we can't simplify this.      // Similarly for signed comparisons with lshr.      if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))        return 0; -     +      // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv      // by a power of 2.  Since we already have logic to simplify these,      // transform to div and then simplify the resultant comparison.      if (Shr->getOpcode() == Instruction::AShr &&          (!Shr->isExact() || ShAmtVal == TypeBits - 1))        return 0; -     +      // Revisit the shift (to delete it).      Worklist.Add(Shr); -     +      Constant *DivCst =        ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); -     +      Value *Tmp =        Shr->getOpcode() == Instruction::AShr ?        Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :        Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); -     +      ICI.setOperand(0, Tmp); -     +      // If the builder folded the binop, just return it.      BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);      if (TheDiv == 0)        return &ICI; -     +      // Otherwise, fold this div/compare.      assert(TheDiv->getOpcode() == Instruction::SDiv ||             TheDiv->getOpcode() == Instruction::UDiv); -     +      Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));      assert(Res && "This div/cst should have folded!");      return Res;    } -   -   + +    // If we are comparing against bits always shifted out, the    // comparison cannot succeed.    APInt Comp = CmpRHSV << ShAmtVal; @@ -960,25 +960,25 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,      Comp = Comp.lshr(ShAmtVal);    else      Comp = Comp.ashr(ShAmtVal); -   +    if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.      bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;      Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),                                       IsICMP_NE);      return ReplaceInstUsesWith(ICI, Cst);    } -   +    // Otherwise, check to see if the bits shifted out are known to be zero.    // If so, we can compare against the unshifted value:    //  (X & 4) >> 1 == 2  --> (X & 4) == 4.    if (Shr->hasOneUse() && Shr->isExact())      return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); -   +    if (Shr->hasOneUse()) {      // Otherwise strength reduce the shift into an and.      APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));      Constant *Mask = ConstantInt::get(ICI.getContext(), Val); -     +      Value *And = Builder->CreateAnd(Shr->getOperand(0),                                      Mask, Shr->getName()+".mask");      return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); @@ -993,7 +993,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,                                                            Instruction *LHSI,                                                            ConstantInt *RHS) {    const APInt &RHSV = RHS->getValue(); -   +    switch (LHSI->getOpcode()) {    case Instruction::Trunc:      if (ICI.isEquality() && LHSI->hasOneUse()) { @@ -1004,7 +1004,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,        APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));        APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);        ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); -       +        // If all the high bits are known, we can do this xform.        if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {          // Pull in the high bits from known-ones set. @@ -1015,7 +1015,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,        }      }      break; -       +    case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)      if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {        // If this is a comparison that tests the signbit (X < 0) or (x > -1), @@ -1023,7 +1023,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,        if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||            (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {          Value *CompareVal = LHSI->getOperand(0); -         +          // If the sign bit of the XorCST is not set, there is no change to          // the operation, just stop using the Xor.          if (!XorCST->isNegative()) { @@ -1031,13 +1031,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            Worklist.Add(LHSI);            return &ICI;          } -         +          // Was the old condition true if the operand is positive?          bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; -         +          // If so, the new one isn't.          isTrueIfPositive ^= true; -         +          if (isTrueIfPositive)            return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,                                SubOne(RHS)); @@ -1076,13 +1076,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,      if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&          LHSI->getOperand(0)->hasOneUse()) {        ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); -       +        // If the LHS is an AND of a truncating cast, we can widen the        // and/compare to be the input width without changing the value        // produced, eliminating a cast.        if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {          // We can do this transformation if either the AND constant does not -        // have its sign bit set or if it is an equality comparison.  +        // have its sign bit set or if it is an equality comparison.          // Extending a relational comparison when we're checking the sign          // bit would not work.          if (ICI.isEquality() || @@ -1119,12 +1119,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,        BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));        if (Shift && !Shift->isShift())          Shift = 0; -       +        ConstantInt *ShAmt;        ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;        Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.        Type *AndTy = AndCST->getType();          // Type of the and. -       +        // We can fold this as long as we can't shift unknown bits        // into the mask.  This can only happen with signed shift        // rights, as they sign-extend. @@ -1135,20 +1135,20 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            // of the bits shifted in could be tested after the mask.            uint32_t TyBits = Ty->getPrimitiveSizeInBits();            int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); -           +            uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); -          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &  +          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &                 AndCST->getValue()) == 0)              CanFold = true;          } -         +          if (CanFold) {            Constant *NewCst;            if (Shift->getOpcode() == Instruction::Shl)              NewCst = ConstantExpr::getLShr(RHS, ShAmt);            else              NewCst = ConstantExpr::getShl(RHS, ShAmt); -           +            // Check to see if we are shifting out any of the bits being            // compared.            if (ConstantExpr::get(Shift->getOpcode(), @@ -1176,7 +1176,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            }          }        } -       +        // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is        // preferable because it allows the C<<Y expression to be hoisted out        // of a loop if Y is invariant and X is not. @@ -1191,16 +1191,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            // Insert a logical shift.            NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));          } -         +          // Compute X & (C << Y). -        Value *NewAnd =  +        Value *NewAnd =            Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); -         +          ICI.setOperand(0, NewAnd);          return &ICI;        }      } -       +      // Try to optimize things like "A[i]&42 == 0" to index computations.      if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {        if (GetElementPtrInst *GEP = @@ -1235,19 +1235,19 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,      }      break;    } -     +    case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)      ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));      if (!ShAmt) break; -     +      uint32_t TypeBits = RHSV.getBitWidth(); -     +      // Check that the shift amount is in range.  If not, don't perform      // undefined shifts.  When the shift is visited it will be      // simplified.      if (ShAmt->uge(TypeBits))        break; -     +      if (ICI.isEquality()) {        // If we are comparing against bits always shifted out, the        // comparison cannot succeed. @@ -1260,34 +1260,34 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);          return ReplaceInstUsesWith(ICI, Cst);        } -       +        // If the shift is NUW, then it is just shifting out zeros, no need for an        // AND.        if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())          return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),                              ConstantExpr::getLShr(RHS, ShAmt)); -       +        if (LHSI->hasOneUse()) {          // Otherwise strength reduce the shift into an and.          uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);          Constant *Mask = -          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,  +          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,                                                         TypeBits-ShAmtVal)); -         +          Value *And =            Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");          return new ICmpInst(ICI.getPredicate(), And,                              ConstantExpr::getLShr(RHS, ShAmt));        }      } -     +      // Otherwise, if this is a comparison of the sign bit, simplify to and/test.      bool TrueIfSigned = false;      if (LHSI->hasOneUse() &&          isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {        // (X << 31) <s 0  --> (X&1) != 0        Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), -                                        APInt::getOneBitSet(TypeBits,  +                                        APInt::getOneBitSet(TypeBits,                                              TypeBits-ShAmt->getZExtValue()-1));        Value *And =          Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); @@ -1296,7 +1296,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,      }      break;    } -     +    case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)    case Instruction::AShr: {      // Handle equality comparisons of shift-by-constant. @@ -1313,13 +1313,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,      }      break;    } -     +    case Instruction::SDiv:    case Instruction::UDiv:      // Fold: icmp pred ([us]div X, C1), C2 -> range test -    // Fold this div into the comparison, producing a range check.  -    // Determine, based on the divide type, what the range is being  -    // checked.  If there is an overflow on the low or high side, remember  +    // Fold this div into the comparison, producing a range check. +    // Determine, based on the divide type, what the range is being +    // checked.  If there is an overflow on the low or high side, remember      // it, otherwise compute the range [low, hi) bounding the new value.      // See: InsertRangeTest above for the kinds of replacements possible.      if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) @@ -1358,12 +1358,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,      }      break;    } -   +    // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.    if (ICI.isEquality()) {      bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; -     -    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and  + +    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and      // the second operand is a constant, simplify a bit.      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {        switch (BO->getOpcode()) { @@ -1390,7 +1390,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            // Replace ((add A, B) != 0) with (A != -B) if A or B is            // efficiently invertible, or if the add has just this one use.            Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); -           +            if (Value *NegVal = dyn_castNegVal(BOp1))              return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);            if (Value *NegVal = dyn_castNegVal(BOp0)) @@ -1433,11 +1433,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            Constant *NotCI = ConstantExpr::getNot(RHS);            if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())              return ReplaceInstUsesWith(ICI, -                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),  +                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),                                         isICMP_NE));          }          break; -         +        case Instruction::And:          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {            // If bits are being compared against that are and'd out, then the @@ -1446,7 +1446,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,              return ReplaceInstUsesWith(ICI,                               ConstantInt::get(Type::getInt1Ty(ICI.getContext()),                                         isICMP_NE)); -           +            // If we have ((X & C) == C), turn it into ((X & C) != 0).            if (RHS == BOC && RHSV.isPowerOf2())              return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : @@ -1461,16 +1461,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,            if (BOC->getValue().isSignBit()) {              Value *X = BO->getOperand(0);              Constant *Zero = Constant::getNullValue(X->getType()); -            ICmpInst::Predicate pred = isICMP_NE ?  +            ICmpInst::Predicate pred = isICMP_NE ?                ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;              return new ICmpInst(pred, X, Zero);            } -           +            // ((X & ~7) == 0) --> X < 8            if (RHSV == 0 && isHighOnes(BOC)) {              Value *X = BO->getOperand(0);              Constant *NegX = ConstantExpr::getNeg(BOC); -            ICmpInst::Predicate pred = isICMP_NE ?  +            ICmpInst::Predicate pred = isICMP_NE ?                ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;              return new ICmpInst(pred, X, NegX);            } @@ -1522,7 +1522,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {    Type *DestTy    = LHSCI->getType();    Value *RHSCIOp; -  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the  +  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the    // integer type is the same size as the pointer type.    if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&        TD->getPointerSizeInBits() == @@ -1540,7 +1540,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {      if (RHSOp)        return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);    } -   +    // The code below only handles extension cast instructions, so far.    // Enforce this.    if (LHSCI->getOpcode() != Instruction::ZExt && @@ -1553,9 +1553,9 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {    if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {      // Not an extension from the same type?      RHSCIOp = CI->getOperand(0); -    if (RHSCIOp->getType() != LHSCIOp->getType())  +    if (RHSCIOp->getType() != LHSCIOp->getType())        return 0; -     +      // If the signedness of the two casts doesn't agree (i.e. one is a sext      // and the other is a zext), then we can't handle this.      if (CI->getOpcode() != LHSCI->getOpcode()) @@ -1600,7 +1600,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {      return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);    } -  // The re-extended constant changed so the constant cannot be represented  +  // The re-extended constant changed so the constant cannot be represented    // in the shorter type. Consequently, we cannot emit a simple comparison.    // All the cases that fold to true or false will have already been handled    // by SimplifyICmpInst, so only deal with the tricky case. @@ -1638,26 +1638,26 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,    // llvm.sadd.with.overflow.  To do this, we have to replace the original add    // with a narrower add, and discard the add-with-constant that is part of the    // range check (if we can't eliminate it, this isn't profitable). -   +    // In order to eliminate the add-with-constant, the compare can be its only    // use.    Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));    if (!AddWithCst->hasOneUse()) return 0; -   +    // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.    if (!CI2->getValue().isPowerOf2()) return 0;    unsigned NewWidth = CI2->getValue().countTrailingZeros();    if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0; -     +    // The width of the new add formed is 1 more than the bias.    ++NewWidth; -   +    // Check to see that CI1 is an all-ones value with NewWidth bits.    if (CI1->getBitWidth() == NewWidth ||        CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))      return 0; -   -  // In order to replace the original add with a narrower  + +  // In order to replace the original add with a narrower    // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant    // and truncates that discard the high bits of the add.  Verify that this is    // the case. @@ -1665,7 +1665,7 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,    for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();         UI != E; ++UI) {      if (*UI == AddWithCst) continue; -     +      // Only accept truncates for now.  We would really like a nice recursive      // predicate like SimplifyDemandedBits, but which goes downwards the use-def      // chain to see which bits of a value are actually demanded.  If the @@ -1675,32 +1675,32 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,      if (TI == 0 ||          TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;    } -   +    // If the pattern matches, truncate the inputs to the narrower type and    // use the sadd_with_overflow intrinsic to efficiently compute both the    // result and the overflow bit.    Module *M = I.getParent()->getParent()->getParent(); -   +    Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);    Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,                                         NewType);    InstCombiner::BuilderTy *Builder = IC.Builder; -   +    // Put the new code above the original add, in case there are any uses of the    // add between the add and the compare.    Builder->SetInsertPoint(OrigAdd); -   +    Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");    Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");    CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");    Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");    Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); -   +    // The inner add was the result of the narrow add, zero extended to the    // wider type.  Replace it with the result computed by the intrinsic.    IC.ReplaceInstUsesWith(*OrigAdd, ZExt); -   +    // The original icmp gets replaced with the overflow value.    return ExtractValueInst::Create(Call, 1, "sadd.overflow");  } @@ -1710,13 +1710,13 @@ static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,    // Don't bother doing this transformation for pointers, don't do it for    // vectors.    if (!isa<IntegerType>(OrigAddV->getType())) return 0; -   +    // If the add is a constant expr, then we don't bother transforming it.    Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);    if (OrigAdd == 0) return 0; -   +    Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1); -   +    // Put the new code above the original add, in case there are any uses of the    // add between the add and the compare.    InstCombiner::BuilderTy *Builder = IC.Builder; @@ -1741,13 +1741,13 @@ static APInt DemandedBitsLHSMask(ICmpInst &I,                                   unsigned BitWidth, bool isSignCheck) {    if (isSignCheck)      return APInt::getSignBit(BitWidth); -   +    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));    if (!CI) return APInt::getAllOnesValue(BitWidth);    const APInt &RHS = CI->getValue(); -   +    switch (I.getPredicate()) { -  // For a UGT comparison, we don't care about any bits that  +  // For a UGT comparison, we don't care about any bits that    // correspond to the trailing ones of the comparand.  The value of these    // bits doesn't impact the outcome of the comparison, because any value    // greater than the RHS must differ in a bit higher than these due to carry. @@ -1756,7 +1756,7 @@ static APInt DemandedBitsLHSMask(ICmpInst &I,      APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);      return ~lowBitsSet;    } -   +    // Similarly, for a ULT comparison, we don't care about the trailing zeros.    // Any value less than the RHS must differ in a higher bit because of carries.    case ICmpInst::ICMP_ULT: { @@ -1764,17 +1764,17 @@ static APInt DemandedBitsLHSMask(ICmpInst &I,      APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);      return ~lowBitsSet;    } -   +    default:      return APInt::getAllOnesValue(BitWidth);    } -   +  }  Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {    bool Changed = false;    Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); -   +    /// Orders the operands of the compare so that they are listed from most    /// complex to least complex.  This puts constants before unary operators,    /// before binary operators. @@ -1783,10 +1783,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {      std::swap(Op0, Op1);      Changed = true;    } -   +    if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))      return ReplaceInstUsesWith(I, V); -   +    Type *Ty = Op0->getType();    // icmp's with boolean values can always be turned into bitwise operations @@ -1836,13 +1836,13 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {      BitWidth = Ty->getScalarSizeInBits();    else if (TD)  // Pointers require TD info to get their size.      BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); -   +    bool isSignBit = false;    // See if we are doing a comparison with a constant.    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {      Value *A = 0, *B = 0; -     +      // Match the following pattern, which is a common idiom when writing      // overflow-safe integer arithmetic function.  The source performs an      // addition in wider type, and explicitly checks for overflow using @@ -1850,9 +1850,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {      // sadd_with_overflow intrinsic.      //      // TODO: This could probably be generalized to handle other overflow-safe -    // operations if we worked out the formulas to compute the appropriate  +    // operations if we worked out the formulas to compute the appropriate      // magic constants. -    //  +    //      // sum = a + b      // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8      { @@ -1862,14 +1862,14 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))          return Res;      } -     +      // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)      if (I.isEquality() && CI->isZero() &&          match(Op0, m_Sub(m_Value(A), m_Value(B)))) {        // (icmp cond A B) if cond is equality        return new ICmpInst(I.getPredicate(), A, B);      } -     +      // If we have an icmp le or icmp ge instruction, turn it into the      // appropriate icmp lt or icmp gt instruction.  This allows us to rely on      // them being folded in the code below.  The SimplifyICmpInst code has @@ -1893,7 +1893,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        return new ICmpInst(ICmpInst::ICMP_SGT, Op0,                            ConstantInt::get(CI->getContext(), CI->getValue()-1));      } -     +      // If this comparison is a normal comparison, it demands all      // bits, if it is a sign bit comparison, it only demands the sign bit.      bool UnusedBit; @@ -1949,7 +1949,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {      case ICmpInst::ICMP_EQ: {        if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); -         +        // If all bits are known zero except for one, then we know at most one        // bit is set.   If the comparison is against zero, then this is a check        // to see if *that* bit is set. @@ -1961,7 +1961,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {          if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||              LHSC->getValue() != Op0KnownZeroInverted)            LHS = Op0; -         +          // If the LHS is 1 << x, and we know the result is a power of 2 like 8,          // then turn "((1 << x)&8) == 0" into "x != 3".          Value *X = 0; @@ -1970,7 +1970,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {            return new ICmpInst(ICmpInst::ICMP_NE, X,                                ConstantInt::get(X->getType(), CmpVal));          } -         +          // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,          // then turn "((8 >>u x)&1) == 0" into "x != 3".          const APInt *CI; @@ -1980,13 +1980,13 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {                                ConstantInt::get(X->getType(),                                                 CI->countTrailingZeros()));        } -         +        break;      }      case ICmpInst::ICMP_NE: {        if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); -       +        // If all bits are known zero except for one, then we know at most one        // bit is set.   If the comparison is against zero, then this is a check        // to see if *that* bit is set. @@ -1998,7 +1998,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {          if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||              LHSC->getValue() != Op0KnownZeroInverted)            LHS = Op0; -         +          // If the LHS is 1 << x, and we know the result is a power of 2 like 8,          // then turn "((1 << x)&8) != 0" into "x == 3".          Value *X = 0; @@ -2007,7 +2007,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {            return new ICmpInst(ICmpInst::ICMP_EQ, X,                                ConstantInt::get(X->getType(), CmpVal));          } -         +          // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,          // then turn "((8 >>u x)&1) != 0" into "x == 3".          const APInt *CI; @@ -2017,7 +2017,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {                                ConstantInt::get(X->getType(),                                                 CI->countTrailingZeros()));        } -       +        break;      }      case ICmpInst::ICMP_ULT: @@ -2138,9 +2138,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {    // See if we are doing a comparison between a constant and an instruction that    // can be folded into the comparison.    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { -    // Since the RHS is a ConstantInt (CI), if the left hand side is an  -    // instruction, see if that instruction also has constants so that the  -    // instruction can be folded into the icmp  +    // Since the RHS is a ConstantInt (CI), if the left hand side is an +    // instruction, see if that instruction also has constants so that the +    // instruction can be folded into the icmp      if (Instruction *LHSI = dyn_cast<Instruction>(Op0))        if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))          return Res; @@ -2195,7 +2195,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        case Instruction::IntToPtr:          // icmp pred inttoptr(X), null -> icmp pred X, 0          if (RHSC->isNullValue() && TD && -            TD->getIntPtrType(RHSC->getContext()) ==  +            TD->getIntPtrType(RHSC->getContext()) ==                 LHSI->getOperand(0)->getType())            return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),                          Constant::getNullValue(LHSI->getOperand(0)->getType())); @@ -2228,8 +2228,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {    // values.  If the ptr->ptr cast can be stripped off both arguments, we do so    // now.    if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { -    if (Op0->getType()->isPointerTy() &&  -        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {  +    if (Op0->getType()->isPointerTy() && +        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {        // We keep moving the cast from the left operand over to the right        // operand, where it can often be eliminated completely.        Op0 = CI->getOperand(0); @@ -2251,7 +2251,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        return new ICmpInst(I.getPredicate(), Op0, Op1);      }    } -   +    if (isa<CastInst>(Op0)) {      // Handle the special case of: icmp (cast bool to X), <cst>      // This comes up when you have code like @@ -2385,7 +2385,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {              return new ICmpInst(Pred, BO0->getOperand(0),                                  BO1->getOperand(0));            } -           +            if (CI->isMaxValue(true)) {              ICmpInst::Predicate Pred = I.isSigned()                                             ? I.getUnsignedPredicate() @@ -2405,7 +2405,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {            // Mask = -1 >> count-trailing-zeros(Cst).            if (!CI->isZero() && !CI->isOne()) {              const APInt &AP = CI->getValue(); -            ConstantInt *Mask = ConstantInt::get(I.getContext(),  +            ConstantInt *Mask = ConstantInt::get(I.getContext(),                                      APInt::getLowBitsSet(AP.getBitWidth(),                                                           AP.getBitWidth() -                                                      AP.countTrailingZeros())); @@ -2439,7 +2439,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        }      }    } -   +    { Value *A, *B;      // ~x < ~y --> y < x      // ~x < cst --> ~cst < x @@ -2453,11 +2453,11 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {      // (a+b) <u a  --> llvm.uadd.with.overflow.      // (a+b) <u b  --> llvm.uadd.with.overflow.      if (I.getPredicate() == ICmpInst::ICMP_ULT && -        match(Op0, m_Add(m_Value(A), m_Value(B))) &&  +        match(Op0, m_Add(m_Value(A), m_Value(B))) &&          (Op1 == A || Op1 == B))        if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))          return R; -                                  +      // a >u (a+b)  --> llvm.uadd.with.overflow.      // b >u (a+b)  --> llvm.uadd.with.overflow.      if (I.getPredicate() == ICmpInst::ICMP_UGT && @@ -2466,7 +2466,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))          return R;    } -   +    if (I.isEquality()) {      Value *A, *B, *C, *D; @@ -2487,7 +2487,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {            Value *Xor = Builder->CreateXor(C, NC);            return new ICmpInst(I.getPredicate(), A, Xor);          } -         +          // A^B == A^D -> B == D          if (A == C) return new ICmpInst(I.getPredicate(), B, D);          if (A == D) return new ICmpInst(I.getPredicate(), B, C); @@ -2495,7 +2495,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {          if (B == D) return new ICmpInst(I.getPredicate(), A, C);        }      } -     +      if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&          (A == Op0 || B == Op0)) {        // A == (A^B)  ->  B == 0 @@ -2505,10 +2505,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {      }      // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 -    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&  +    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&          match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {        Value *X = 0, *Y = 0, *Z = 0; -       +        if (A == C) {          X = B; Y = D; Z = A;        } else if (A == D) { @@ -2518,7 +2518,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {        } else if (B == D) {          X = A; Y = C; Z = B;        } -       +        if (X) {   // Build (X^Y) & Z          Op1 = Builder->CreateXor(X, Y);          Op1 = Builder->CreateAnd(Op1, Z); @@ -2527,7 +2527,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {          return &I;        }      } -     +      // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to      // "icmp (and X, mask), cst"      uint64_t ShAmt = 0; @@ -2540,21 +2540,21 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {          // when it exposes other optimizations.          !A->hasOneUse()) {        unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); -       +        if (ShAmt < ASize) {          APInt MaskV =            APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());          MaskV <<= ShAmt; -         +          APInt CmpV = Cst1->getValue().zext(ASize);          CmpV <<= ShAmt; -         +          Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));          return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));        }      }    } -   +    {      Value *X; ConstantInt *Cst;      // icmp X+Cst, X @@ -2580,31 +2580,31 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,                                                  Constant *RHSC) {    if (!isa<ConstantFP>(RHSC)) return 0;    const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); -   +    // Get the width of the mantissa.  We don't want to hack on conversions that    // might lose information from the integer, e.g. "i64 -> float"    int MantissaWidth = LHSI->getType()->getFPMantissaWidth();    if (MantissaWidth == -1) return 0;  // Unknown. -   +    // Check to see that the input is converted from an integer type that is small    // enough that preserves all bits.  TODO: check here for "known" sign bits.    // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.    unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); -   +    // If this is a uitofp instruction, we need an extra bit to hold the sign.    bool LHSUnsigned = isa<UIToFPInst>(LHSI);    if (LHSUnsigned)      ++InputSize; -   +    // If the conversion would lose info, don't hack on this.    if ((int)InputSize > MantissaWidth)      return 0; -   +    // Otherwise, we can potentially simplify the comparison.  We know that it    // will always come through as an integer value and we know the constant is    // not a NAN (it would have been previously simplified).    assert(!RHS.isNaN() && "NaN comparison not already folded!"); -   +    ICmpInst::Predicate Pred;    switch (I.getPredicate()) {    default: llvm_unreachable("Unexpected predicate!"); @@ -2637,15 +2637,15 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,    case FCmpInst::FCMP_UNO:      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));    } -   +    IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); -   +    // Now we know that the APFloat is a normal number, zero or inf. -   +    // See if the FP constant is too large for the integer.  For example,    // comparing an i8 to 300.0.    unsigned IntWidth = IntTy->getScalarSizeInBits(); -   +    if (!LHSUnsigned) {      // If the RHS value is > SignedMax, fold the comparison.  This handles +INF      // and large values. @@ -2671,7 +2671,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));      }    } -   +    if (!LHSUnsigned) {      // See if the RHS value is < SignedMin.      APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); @@ -2767,7 +2767,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,  Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {    bool Changed = false; -   +    /// Orders the operands of the compare so that they are listed from most    /// complex to least complex.  This puts constants before unary operators,    /// before binary operators. @@ -2777,7 +2777,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {    }    Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); -   +    if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))      return ReplaceInstUsesWith(I, V); @@ -2793,7 +2793,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {        I.setPredicate(FCmpInst::FCMP_UNO);        I.setOperand(1, Constant::getNullValue(Op0->getType()));        return &I; -       +      case FCmpInst::FCMP_ORD:    // True if ordered (no nans)      case FCmpInst::FCMP_OEQ:    // True if ordered and equal      case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal @@ -2804,7 +2804,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {        return &I;      }    } -     +    // Handle fcmp with constant RHS    if (Constant *RHSC = dyn_cast<Constant>(Op1)) {      if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) | 

