diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils')
| -rw-r--r-- | llvm/lib/Transforms/Utils/AddrModeMatcher.cpp | 593 | 
1 files changed, 593 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp b/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp new file mode 100644 index 00000000000..766f1eddcf7 --- /dev/null +++ b/llvm/lib/Transforms/Utils/AddrModeMatcher.cpp @@ -0,0 +1,593 @@ +//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements target addressing mode matcher class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/AddrModeMatcher.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalValue.h" +#include "llvm/Instruction.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/PatternMatch.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +void ExtAddrMode::print(OStream &OS) const { +  bool NeedPlus = false; +  OS << "["; +  if (BaseGV) { +    OS << (NeedPlus ? " + " : "") +       << "GV:"; +    WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false); +    NeedPlus = true; +  } + +  if (BaseOffs) +    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; + +  if (BaseReg) { +    OS << (NeedPlus ? " + " : "") +       << "Base:"; +    WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false); +    NeedPlus = true; +  } +  if (Scale) { +    OS << (NeedPlus ? " + " : "") +       << Scale << "*"; +    WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false); +    NeedPlus = true; +  } + +  OS << ']'; +} + +void ExtAddrMode::dump() const { +  print(cerr); +  cerr << '\n'; +} + + +/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. +/// Return true and update AddrMode if this addr mode is legal for the target, +/// false if not. +bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, +                                             unsigned Depth) { +  // If Scale is 1, then this is the same as adding ScaleReg to the addressing +  // mode.  Just process that directly. +  if (Scale == 1) +    return MatchAddr(ScaleReg, Depth); +   +  // If the scale is 0, it takes nothing to add this. +  if (Scale == 0) +    return true; +   +  // If we already have a scale of this value, we can add to it, otherwise, we +  // need an available scale field. +  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) +    return false; + +  ExtAddrMode TestAddrMode = AddrMode; + +  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like +  // [A+B + A*7] -> [B+A*8]. +  TestAddrMode.Scale += Scale; +  TestAddrMode.ScaledReg = ScaleReg; + +  // If the new address isn't legal, bail out. +  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) +    return false; + +  // It was legal, so commit it. +  AddrMode = TestAddrMode; +   +  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now +  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding +  // X*Scale + C*Scale to addr mode. +  ConstantInt *CI; Value *AddLHS; +  if (isa<Instruction>(ScaleReg) &&  // not a constant expr. +      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { +    TestAddrMode.ScaledReg = AddLHS; +    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; +       +    // If this addressing mode is legal, commit it and remember that we folded +    // this instruction. +    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { +      AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); +      AddrMode = TestAddrMode; +      return true; +    } +  } + +  // Otherwise, not (x+c)*scale, just return what we have. +  return true; +} + +/// MightBeFoldableInst - This is a little filter, which returns true if an +/// addressing computation involving I might be folded into a load/store +/// accessing it.  This doesn't need to be perfect, but needs to accept at least +/// the set of instructions that MatchOperationAddr can. +static bool MightBeFoldableInst(Instruction *I) { +  switch (I->getOpcode()) { +  case Instruction::BitCast: +    // Don't touch identity bitcasts. +    if (I->getType() == I->getOperand(0)->getType()) +      return false; +    return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType()); +  case Instruction::PtrToInt: +    // PtrToInt is always a noop, as we know that the int type is pointer sized. +    return true; +  case Instruction::IntToPtr: +    // We know the input is intptr_t, so this is foldable. +    return true; +  case Instruction::Add: +    return true; +  case Instruction::Mul: +  case Instruction::Shl: +    // Can only handle X*C and X << C. +    return isa<ConstantInt>(I->getOperand(1)); +  case Instruction::GetElementPtr: +    return true; +  default: +    return false; +  } +} + + +/// MatchOperationAddr - Given an instruction or constant expr, see if we can +/// fold the operation into the addressing mode.  If so, update the addressing +/// mode and return true, otherwise return false without modifying AddrMode. +bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, +                                               unsigned Depth) { +  // Avoid exponential behavior on extremely deep expression trees. +  if (Depth >= 5) return false; +   +  switch (Opcode) { +  case Instruction::PtrToInt: +    // PtrToInt is always a noop, as we know that the int type is pointer sized. +    return MatchAddr(AddrInst->getOperand(0), Depth); +  case Instruction::IntToPtr: +    // This inttoptr is a no-op if the integer type is pointer sized. +    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == +        TLI.getPointerTy()) +      return MatchAddr(AddrInst->getOperand(0), Depth); +    return false; +  case Instruction::BitCast: +    // BitCast is always a noop, and we can handle it as long as it is +    // int->int or pointer->pointer (we don't want int<->fp or something). +    if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) || +         isa<IntegerType>(AddrInst->getOperand(0)->getType())) && +        // Don't touch identity bitcasts.  These were probably put here by LSR, +        // and we don't want to mess around with them.  Assume it knows what it +        // is doing. +        AddrInst->getOperand(0)->getType() != AddrInst->getType()) +      return MatchAddr(AddrInst->getOperand(0), Depth); +    return false; +  case Instruction::Add: { +    // Check to see if we can merge in the RHS then the LHS.  If so, we win. +    ExtAddrMode BackupAddrMode = AddrMode; +    unsigned OldSize = AddrModeInsts.size(); +    if (MatchAddr(AddrInst->getOperand(1), Depth+1) && +        MatchAddr(AddrInst->getOperand(0), Depth+1)) +      return true; +     +    // Restore the old addr mode info. +    AddrMode = BackupAddrMode; +    AddrModeInsts.resize(OldSize); +     +    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS. +    if (MatchAddr(AddrInst->getOperand(0), Depth+1) && +        MatchAddr(AddrInst->getOperand(1), Depth+1)) +      return true; +     +    // Otherwise we definitely can't merge the ADD in. +    AddrMode = BackupAddrMode; +    AddrModeInsts.resize(OldSize); +    break; +  } +  //case Instruction::Or: +  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. +  //break; +  case Instruction::Mul: +  case Instruction::Shl: { +    // Can only handle X*C and X << C. +    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); +    if (!RHS) return false; +    int64_t Scale = RHS->getSExtValue(); +    if (Opcode == Instruction::Shl) +      Scale = 1 << Scale; +     +    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); +  } +  case Instruction::GetElementPtr: { +    // Scan the GEP.  We check it if it contains constant offsets and at most +    // one variable offset. +    int VariableOperand = -1; +    unsigned VariableScale = 0; +     +    int64_t ConstantOffset = 0; +    const TargetData *TD = TLI.getTargetData(); +    gep_type_iterator GTI = gep_type_begin(AddrInst); +    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { +      if (const StructType *STy = dyn_cast<StructType>(*GTI)) { +        const StructLayout *SL = TD->getStructLayout(STy); +        unsigned Idx = +          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); +        ConstantOffset += SL->getElementOffset(Idx); +      } else { +        uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType()); +        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { +          ConstantOffset += CI->getSExtValue()*TypeSize; +        } else if (TypeSize) {  // Scales of zero don't do anything. +          // We only allow one variable index at the moment. +          if (VariableOperand != -1) +            return false; +           +          // Remember the variable index. +          VariableOperand = i; +          VariableScale = TypeSize; +        } +      } +    } +     +    // A common case is for the GEP to only do a constant offset.  In this case, +    // just add it to the disp field and check validity. +    if (VariableOperand == -1) { +      AddrMode.BaseOffs += ConstantOffset; +      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ +        // Check to see if we can fold the base pointer in too. +        if (MatchAddr(AddrInst->getOperand(0), Depth+1)) +          return true; +      } +      AddrMode.BaseOffs -= ConstantOffset; +      return false; +    } + +    // Save the valid addressing mode in case we can't match. +    ExtAddrMode BackupAddrMode = AddrMode; +     +    // Check that this has no base reg yet.  If so, we won't have a place to +    // put the base of the GEP (assuming it is not a null ptr). +    bool SetBaseReg = true; +    if (isa<ConstantPointerNull>(AddrInst->getOperand(0))) +      SetBaseReg = false;   // null pointer base doesn't need representation. +    else if (AddrMode.HasBaseReg) +      return false;  // Base register already specified, can't match GEP. +    else { +      // Otherwise, we'll use the GEP base as the BaseReg. +      AddrMode.HasBaseReg = true; +      AddrMode.BaseReg = AddrInst->getOperand(0); +    } +     +    // See if the scale and offset amount is valid for this target. +    AddrMode.BaseOffs += ConstantOffset; +     +    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, +                          Depth)) { +      AddrMode = BackupAddrMode; +      return false; +    } +     +    // If we have a null as the base of the GEP, folding in the constant offset +    // plus variable scale is all we can do. +    if (!SetBaseReg) return true; +       +    // If this match succeeded, we know that we can form an address with the +    // GepBase as the basereg.  Match the base pointer of the GEP more +    // aggressively by zeroing out BaseReg and rematching.  If the base is +    // (for example) another GEP, this allows merging in that other GEP into +    // the addressing mode we're forming. +    AddrMode.HasBaseReg = false; +    AddrMode.BaseReg = 0; +    bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1); +    assert(Success && "MatchAddr should be able to fill in BaseReg!"); +    Success=Success; +    return true; +  } +  } +  return false; +} + +/// MatchAddr - If we can, try to add the value of 'Addr' into the current +/// addressing mode.  If Addr can't be added to AddrMode this returns false and +/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type +/// or intptr_t for the target. +/// +bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { +    // Fold in immediates if legal for the target. +    AddrMode.BaseOffs += CI->getSExtValue(); +    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) +      return true; +    AddrMode.BaseOffs -= CI->getSExtValue(); +  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { +    // If this is a global variable, try to fold it into the addressing mode. +    if (AddrMode.BaseGV == 0) { +      AddrMode.BaseGV = GV; +      if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) +        return true; +      AddrMode.BaseGV = 0; +    } +  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { +    ExtAddrMode BackupAddrMode = AddrMode; +    unsigned OldSize = AddrModeInsts.size(); + +    // Check to see if it is possible to fold this operation. +    if (MatchOperationAddr(I, I->getOpcode(), Depth)) { +      // Okay, it's possible to fold this.  Check to see if it is actually +      // *profitable* to do so.  We use a simple cost model to avoid increasing +      // register pressure too much. +      if (I->hasOneUse() || +          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { +        AddrModeInsts.push_back(I); +        return true; +      } +       +      // It isn't profitable to do this, roll back. +      //cerr << "NOT FOLDING: " << *I; +      AddrMode = BackupAddrMode; +      AddrModeInsts.resize(OldSize); +    } +  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { +    if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) +      return true; +  } else if (isa<ConstantPointerNull>(Addr)) { +    // Null pointer gets folded without affecting the addressing mode. +    return true; +  } + +  // Worse case, the target should support [reg] addressing modes. :) +  if (!AddrMode.HasBaseReg) { +    AddrMode.HasBaseReg = true; +    AddrMode.BaseReg = Addr; +    // Still check for legality in case the target supports [imm] but not [i+r]. +    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) +      return true; +    AddrMode.HasBaseReg = false; +    AddrMode.BaseReg = 0; +  } + +  // If the base register is already taken, see if we can do [r+r]. +  if (AddrMode.Scale == 0) { +    AddrMode.Scale = 1; +    AddrMode.ScaledReg = Addr; +    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) +      return true; +    AddrMode.Scale = 0; +    AddrMode.ScaledReg = 0; +  } +  // Couldn't match. +  return false; +} + + +/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified +/// inline asm call are due to memory operands.  If so, return true, otherwise +/// return false. +static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, +                                    const TargetLowering &TLI) { +  std::vector<InlineAsm::ConstraintInfo> +  Constraints = IA->ParseConstraints(); +   +  unsigned ArgNo = 1;   // ArgNo - The operand of the CallInst. +  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) { +    TargetLowering::AsmOperandInfo OpInfo(Constraints[i]); +     +    // Compute the value type for each operand. +    switch (OpInfo.Type) { +      case InlineAsm::isOutput: +        if (OpInfo.isIndirect) +          OpInfo.CallOperandVal = CI->getOperand(ArgNo++); +        break; +      case InlineAsm::isInput: +        OpInfo.CallOperandVal = CI->getOperand(ArgNo++); +        break; +      case InlineAsm::isClobber: +        // Nothing to do. +        break; +    } +     +    // Compute the constraint code and ConstraintType to use. +    TLI.ComputeConstraintToUse(OpInfo, SDValue(), +                             OpInfo.ConstraintType == TargetLowering::C_Memory); +     +    // If this asm operand is our Value*, and if it isn't an indirect memory +    // operand, we can't fold it! +    if (OpInfo.CallOperandVal == OpVal && +        (OpInfo.ConstraintType != TargetLowering::C_Memory || +         !OpInfo.isIndirect)) +      return false; +  } +   +  return true; +} + + +/// FindAllMemoryUses - Recursively walk all the uses of I until we find a +/// memory use.  If we find an obviously non-foldable instruction, return true. +/// Add the ultimately found memory instructions to MemoryUses. +static bool FindAllMemoryUses(Instruction *I, +                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, +                              SmallPtrSet<Instruction*, 16> &ConsideredInsts, +                              const TargetLowering &TLI) { +  // If we already considered this instruction, we're done. +  if (!ConsideredInsts.insert(I)) +    return false; +   +  // If this is an obviously unfoldable instruction, bail out. +  if (!MightBeFoldableInst(I)) +    return true; + +  // Loop over all the uses, recursively processing them. +  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); +       UI != E; ++UI) { +    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { +      MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo())); +      continue; +    } +     +    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { +      if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr. +      MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo())); +      continue; +    } +     +    if (CallInst *CI = dyn_cast<CallInst>(*UI)) { +      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); +      if (IA == 0) return true; +       +      // If this is a memory operand, we're cool, otherwise bail out. +      if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) +        return true; +      continue; +    } +     +    if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts, +                          TLI)) +      return true; +  } + +  return false; +} + + +/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at +/// the use site that we're folding it into.  If so, there is no cost to +/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values +/// that we know are live at the instruction already. +bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, +                                                   Value *KnownLive2) { +  // If Val is either of the known-live values, we know it is live! +  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2) +    return true; +   +  // All values other than instructions and arguments (e.g. constants) are live. +  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; +   +  // If Val is a constant sized alloca in the entry block, it is live, this is +  // true because it is just a reference to the stack/frame pointer, which is +  // live for the whole function. +  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) +    if (AI->isStaticAlloca()) +      return true; +   +  // Check to see if this value is already used in the memory instruction's +  // block.  If so, it's already live into the block at the very least, so we +  // can reasonably fold it. +  BasicBlock *MemBB = MemoryInst->getParent(); +  for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end(); +       UI != E; ++UI) +    // We know that uses of arguments and instructions have to be instructions. +    if (cast<Instruction>(*UI)->getParent() == MemBB) +      return true; +   +  return false; +} + + + +/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing +/// mode of the machine to fold the specified instruction into a load or store +/// that ultimately uses it.  However, the specified instruction has multiple +/// uses.  Given this, it may actually increase register pressure to fold it +/// into the load.  For example, consider this code: +/// +///     X = ... +///     Y = X+1 +///     use(Y)   -> nonload/store +///     Z = Y+1 +///     load Z +/// +/// In this case, Y has multiple uses, and can be folded into the load of Z +/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to +/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one +/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the +/// number of computations either. +/// +/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If +/// X was live across 'load Z' for other reasons, we actually *would* want to +/// fold the addressing mode in the Z case.  This would make Y die earlier. +bool AddressingModeMatcher:: +IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, +                                     ExtAddrMode &AMAfter) { +  if (IgnoreProfitability) return true; +   +  // AMBefore is the addressing mode before this instruction was folded into it, +  // and AMAfter is the addressing mode after the instruction was folded.  Get +  // the set of registers referenced by AMAfter and subtract out those +  // referenced by AMBefore: this is the set of values which folding in this +  // address extends the lifetime of. +  // +  // Note that there are only two potential values being referenced here, +  // BaseReg and ScaleReg (global addresses are always available, as are any +  // folded immediates). +  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; +   +  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their +  // lifetime wasn't extended by adding this instruction. +  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) +    BaseReg = 0; +  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) +    ScaledReg = 0; + +  // If folding this instruction (and it's subexprs) didn't extend any live +  // ranges, we're ok with it. +  if (BaseReg == 0 && ScaledReg == 0) +    return true; + +  // If all uses of this instruction are ultimately load/store/inlineasm's, +  // check to see if their addressing modes will include this instruction.  If +  // so, we can fold it into all uses, so it doesn't matter if it has multiple +  // uses. +  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; +  SmallPtrSet<Instruction*, 16> ConsideredInsts; +  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) +    return false;  // Has a non-memory, non-foldable use! +   +  // Now that we know that all uses of this instruction are part of a chain of +  // computation involving only operations that could theoretically be folded +  // into a memory use, loop over each of these uses and see if they could +  // *actually* fold the instruction. +  SmallVector<Instruction*, 32> MatchedAddrModeInsts; +  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { +    Instruction *User = MemoryUses[i].first; +    unsigned OpNo = MemoryUses[i].second; +     +    // Get the access type of this use.  If the use isn't a pointer, we don't +    // know what it accesses. +    Value *Address = User->getOperand(OpNo); +    if (!isa<PointerType>(Address->getType())) +      return false; +    const Type *AddressAccessTy = +      cast<PointerType>(Address->getType())->getElementType(); +     +    // Do a match against the root of this address, ignoring profitability. This +    // will tell us if the addressing mode for the memory operation will +    // *actually* cover the shared instruction. +    ExtAddrMode Result; +    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, +                                  MemoryInst, Result); +    Matcher.IgnoreProfitability = true; +    bool Success = Matcher.MatchAddr(Address, 0); +    Success = Success; assert(Success && "Couldn't select *anything*?"); + +    // If the match didn't cover I, then it won't be shared by it. +    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), +                  I) == MatchedAddrModeInsts.end()) +      return false; +     +    MatchedAddrModeInsts.clear(); +  } +   +  return true; +} | 

