diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp')
-rw-r--r-- | llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp | 793 |
1 files changed, 0 insertions, 793 deletions
diff --git a/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp b/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp deleted file mode 100644 index 6bf48f17e97..00000000000 --- a/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp +++ /dev/null @@ -1,793 +0,0 @@ -//===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements loop unroll and jam as a routine, much like -// LoopUnroll.cpp implements loop unroll. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/DependenceAnalysis.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopAnalysisManager.h" -#include "llvm/Analysis/LoopIterator.h" -#include "llvm/Analysis/LoopPass.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpander.h" -#include "llvm/Analysis/Utils/Local.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/LoopSimplify.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Utils/SimplifyIndVar.h" -#include "llvm/Transforms/Utils/UnrollLoop.h" -using namespace llvm; - -#define DEBUG_TYPE "loop-unroll-and-jam" - -STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed"); -STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed"); - -static bool containsBB(std::vector<BasicBlock *> &V, BasicBlock *BB) { - return std::find(V.begin(), V.end(), BB) != V.end(); -} - -// Partition blocks in an outer/inner loop pair into blocks before and after -// the loop -static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, - std::vector<BasicBlock *> &ForeBlocks, - std::vector<BasicBlock *> &SubLoopBlocks, - std::vector<BasicBlock *> &AftBlocks, - DominatorTree *DT) { - BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); - SubLoopBlocks = SubLoop->getBlocks(); - - for (BasicBlock *BB : L->blocks()) { - if (!SubLoop->contains(BB)) { - if (DT->dominates(SubLoopLatch, BB)) - AftBlocks.push_back(BB); - else - ForeBlocks.push_back(BB); - } - } - - // Check that all blocks in ForeBlocks together dominate the subloop - // TODO: This might ideally be done better with a dominator/postdominators. - BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader(); - for (BasicBlock *BB : ForeBlocks) { - if (BB == SubLoopPreHeader) - continue; - TerminatorInst *TI = BB->getTerminator(); - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - if (!containsBB(ForeBlocks, TI->getSuccessor(i))) - return false; - } - - return true; -} - -// Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. -static void -moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header, BasicBlock *Latch, - Instruction *InsertLoc, - std::vector<BasicBlock *> &AftBlocks) { - // We need to ensure we move the instructions in the correct order, - // starting with the earliest required instruction and moving forward. - std::vector<Instruction *> Worklist; - std::vector<Instruction *> Visited; - for (auto &Phi : Header->phis()) { - Value *V = Phi.getIncomingValueForBlock(Latch); - if (Instruction *I = dyn_cast<Instruction>(V)) - Worklist.push_back(I); - } - - while (!Worklist.empty()) { - Instruction *I = Worklist.back(); - Worklist.pop_back(); - if (!containsBB(AftBlocks, I->getParent())) - continue; - - Visited.push_back(I); - for (auto &U : I->operands()) - if (Instruction *II = dyn_cast<Instruction>(U)) - Worklist.push_back(II); - } - - // Move all instructions in program order to before the InsertLoc - BasicBlock *InsertLocBB = InsertLoc->getParent(); - for (Instruction *I : reverse(Visited)) { - if (I->getParent() != InsertLocBB) - I->moveBefore(InsertLoc); - } -} - -/* - This method performs Unroll and Jam. For a simple loop like: - for (i = ..) - Fore(i) - for (j = ..) - SubLoop(i, j) - Aft(i) - - Instead of doing normal inner or outer unrolling, we do: - for (i = .., i+=2) - Fore(i) - Fore(i+1) - for (j = ..) - SubLoop(i, j) - SubLoop(i+1, j) - Aft(i) - Aft(i+1) - - So the outer loop is essetially unrolled and then the inner loops are fused - ("jammed") together into a single loop. This can increase speed when there - are loads in SubLoop that are invariant to i, as they become shared between - the now jammed inner loops. - - We do this by spliting the blocks in the loop into Fore, Subloop and Aft. - Fore blocks are those before the inner loop, Aft are those after. Normal - Unroll code is used to copy each of these sets of blocks and the results are - combined together into the final form above. - - isSafeToUnrollAndJam should be used prior to calling this to make sure the - unrolling will be valid. Checking profitablility is also advisable. -*/ -LoopUnrollResult -llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, - unsigned TripMultiple, bool UnrollRemainder, - LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, - AssumptionCache *AC, OptimizationRemarkEmitter *ORE) { - - // When we enter here we should have already checked that it is safe - BasicBlock *Header = L->getHeader(); - assert(L->getSubLoops().size() == 1); - Loop *SubLoop = *L->begin(); - - // Don't enter the unroll code if there is nothing to do. - if (TripCount == 0 && Count < 2) { - LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); - return LoopUnrollResult::Unmodified; - } - - assert(Count > 0); - assert(TripMultiple > 0); - assert(TripCount == 0 || TripCount % TripMultiple == 0); - - // Are we eliminating the loop control altogether? - bool CompletelyUnroll = (Count == TripCount); - - // We use the runtime remainder in cases where we don't know trip multiple - if (TripMultiple == 1 || TripMultiple % Count != 0) { - if (!UnrollRuntimeLoopRemainder(L, Count, false /*AllowExpensiveTripCount*/, - /*UseEpilogRemainder*/ true, - UnrollRemainder, LI, SE, DT, AC, true)) { - LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " - "generated when assuming runtime trip count\n"); - return LoopUnrollResult::Unmodified; - } - } - - // Notify ScalarEvolution that the loop will be substantially changed, - // if not outright eliminated. - if (SE) { - SE->forgetLoop(L); - SE->forgetLoop(SubLoop); - } - - using namespace ore; - // Report the unrolling decision. - if (CompletelyUnroll) { - LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" - << Header->getName() << " with trip count " << TripCount - << "!\n"); - ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), - L->getHeader()) - << "completely unroll and jammed loop with " - << NV("UnrollCount", TripCount) << " iterations"); - } else { - auto DiagBuilder = [&]() { - OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), - L->getHeader()); - return Diag << "unroll and jammed loop by a factor of " - << NV("UnrollCount", Count); - }; - - LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() - << " by " << Count); - if (TripMultiple != 1) { - LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); - ORE->emit([&]() { - return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) - << " trips per branch"; - }); - } else { - LLVM_DEBUG(dbgs() << " with run-time trip count"); - ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; }); - } - LLVM_DEBUG(dbgs() << "!\n"); - } - - BasicBlock *Preheader = L->getLoopPreheader(); - BasicBlock *LatchBlock = L->getLoopLatch(); - BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); - assert(Preheader && LatchBlock && Header); - assert(BI && !BI->isUnconditional()); - bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); - BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); - bool SubLoopContinueOnTrue = SubLoop->contains( - SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0)); - - // Partition blocks in an outer/inner loop pair into blocks before and after - // the loop - std::vector<BasicBlock *> SubLoopBlocks; - std::vector<BasicBlock *> ForeBlocks; - std::vector<BasicBlock *> AftBlocks; - partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, - DT); - - // We keep track of the entering/first and exiting/last block of each - // of Fore/SubLoop/Aft in each iteration. This helps make the stapling up of - // blocks easier. - std::vector<BasicBlock *> ForeBlocksFirst; - std::vector<BasicBlock *> ForeBlocksLast; - std::vector<BasicBlock *> SubLoopBlocksFirst; - std::vector<BasicBlock *> SubLoopBlocksLast; - std::vector<BasicBlock *> AftBlocksFirst; - std::vector<BasicBlock *> AftBlocksLast; - ForeBlocksFirst.push_back(Header); - ForeBlocksLast.push_back(SubLoop->getLoopPreheader()); - SubLoopBlocksFirst.push_back(SubLoop->getHeader()); - SubLoopBlocksLast.push_back(SubLoop->getExitingBlock()); - AftBlocksFirst.push_back(SubLoop->getExitBlock()); - AftBlocksLast.push_back(L->getExitingBlock()); - // Maps Blocks[0] -> Blocks[It] - ValueToValueMapTy LastValueMap; - - // Move any instructions from fore phi operands from AftBlocks into Fore. - moveHeaderPhiOperandsToForeBlocks( - Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(), - AftBlocks); - - // The current on-the-fly SSA update requires blocks to be processed in - // reverse postorder so that LastValueMap contains the correct value at each - // exit. - LoopBlocksDFS DFS(L); - DFS.perform(LI); - // Stash the DFS iterators before adding blocks to the loop. - LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); - LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); - - if (Header->getParent()->isDebugInfoForProfiling()) - for (BasicBlock *BB : L->getBlocks()) - for (Instruction &I : *BB) - if (!isa<DbgInfoIntrinsic>(&I)) - if (const DILocation *DIL = I.getDebugLoc()) - I.setDebugLoc(DIL->cloneWithDuplicationFactor(Count)); - - // Copy all blocks - for (unsigned It = 1; It != Count; ++It) { - std::vector<BasicBlock *> NewBlocks; - // Maps Blocks[It] -> Blocks[It-1] - DenseMap<Value *, Value *> PrevItValueMap; - - for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { - ValueToValueMapTy VMap; - BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); - Header->getParent()->getBasicBlockList().push_back(New); - - if (containsBB(ForeBlocks, *BB)) { - L->addBasicBlockToLoop(New, *LI); - - if (*BB == ForeBlocksFirst[0]) - ForeBlocksFirst.push_back(New); - if (*BB == ForeBlocksLast[0]) - ForeBlocksLast.push_back(New); - } else if (containsBB(SubLoopBlocks, *BB)) { - SubLoop->addBasicBlockToLoop(New, *LI); - - if (*BB == SubLoopBlocksFirst[0]) - SubLoopBlocksFirst.push_back(New); - if (*BB == SubLoopBlocksLast[0]) - SubLoopBlocksLast.push_back(New); - } else if (containsBB(AftBlocks, *BB)) { - L->addBasicBlockToLoop(New, *LI); - - if (*BB == AftBlocksFirst[0]) - AftBlocksFirst.push_back(New); - if (*BB == AftBlocksLast[0]) - AftBlocksLast.push_back(New); - } else { - llvm_unreachable("BB being cloned should be in Fore/Sub/Aft"); - } - - // Update our running maps of newest clones - PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]); - LastValueMap[*BB] = New; - for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); - VI != VE; ++VI) { - PrevItValueMap[VI->second] = - const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]); - LastValueMap[VI->first] = VI->second; - } - - NewBlocks.push_back(New); - - // Update DomTree: - if (*BB == ForeBlocksFirst[0]) - DT->addNewBlock(New, ForeBlocksLast[It - 1]); - else if (*BB == SubLoopBlocksFirst[0]) - DT->addNewBlock(New, SubLoopBlocksLast[It - 1]); - else if (*BB == AftBlocksFirst[0]) - DT->addNewBlock(New, AftBlocksLast[It - 1]); - else { - // Each set of blocks (Fore/Sub/Aft) will have the same - // internal domtree structure. - auto BBDomNode = DT->getNode(*BB); - auto BBIDom = BBDomNode->getIDom(); - BasicBlock *OriginalBBIDom = BBIDom->getBlock(); - assert(OriginalBBIDom); - assert(LastValueMap[cast<Value>(OriginalBBIDom)]); - DT->addNewBlock( - New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); - } - } - - // Remap all instructions in the most recent iteration - for (BasicBlock *NewBlock : NewBlocks) { - for (Instruction &I : *NewBlock) { - ::remapInstruction(&I, LastValueMap); - if (auto *II = dyn_cast<IntrinsicInst>(&I)) - if (II->getIntrinsicID() == Intrinsic::assume) - AC->registerAssumption(II); - } - } - - // Alter the ForeBlocks phi's, pointing them at the latest version of the - // value from the previous iteration's phis - for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { - Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]); - assert(OldValue && "should have incoming edge from Aft[It]"); - Value *NewValue = OldValue; - if (Value *PrevValue = PrevItValueMap[OldValue]) - NewValue = PrevValue; - - assert(Phi.getNumOperands() == 2); - Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]); - Phi.setIncomingValue(0, NewValue); - Phi.removeIncomingValue(1); - } - } - - // Now that all the basic blocks for the unrolled iterations are in place, - // finish up connecting the blocks and phi nodes. At this point LastValueMap - // is the last unrolled iterations values. - - // Update Phis in BB from OldBB to point to NewBB - auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB, - BasicBlock *NewBB) { - for (PHINode &Phi : BB->phis()) { - int I = Phi.getBasicBlockIndex(OldBB); - Phi.setIncomingBlock(I, NewBB); - } - }; - // Update Phis in BB from OldBB to point to NewBB and use the latest value - // from LastValueMap - auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, - BasicBlock *NewBB, - ValueToValueMapTy &LastValueMap) { - for (PHINode &Phi : BB->phis()) { - for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { - if (Phi.getIncomingBlock(b) == OldBB) { - Value *OldValue = Phi.getIncomingValue(b); - if (Value *LastValue = LastValueMap[OldValue]) - Phi.setIncomingValue(b, LastValue); - Phi.setIncomingBlock(b, NewBB); - break; - } - } - } - }; - // Move all the phis from Src into Dest - auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { - Instruction *insertPoint = Dest->getFirstNonPHI(); - while (PHINode *Phi = dyn_cast<PHINode>(Src->begin())) - Phi->moveBefore(insertPoint); - }; - - // Update the PHI values outside the loop to point to the last block - updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), - LastValueMap); - - // Update ForeBlocks successors and phi nodes - BranchInst *ForeTerm = - cast<BranchInst>(ForeBlocksLast.back()->getTerminator()); - BasicBlock *Dest = SubLoopBlocksFirst[0]; - ForeTerm->setSuccessor(0, Dest); - - if (CompletelyUnroll) { - while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) { - Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader)); - Phi->getParent()->getInstList().erase(Phi); - } - } else { - // Update the PHI values to point to the last aft block - updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], - AftBlocksLast.back(), LastValueMap); - } - - for (unsigned It = 1; It != Count; It++) { - // Remap ForeBlock successors from previous iteration to this - BranchInst *ForeTerm = - cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator()); - BasicBlock *Dest = ForeBlocksFirst[It]; - ForeTerm->setSuccessor(0, Dest); - } - - // Subloop successors and phis - BranchInst *SubTerm = - cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator()); - SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]); - SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]); - updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0], - ForeBlocksLast.back()); - updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0], - SubLoopBlocksLast.back()); - - for (unsigned It = 1; It != Count; It++) { - // Replace the conditional branch of the previous iteration subloop - // with an unconditional one to this one - BranchInst *SubTerm = - cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator()); - BranchInst::Create(SubLoopBlocksFirst[It], SubTerm); - SubTerm->eraseFromParent(); - - updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It], - ForeBlocksLast.back()); - updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It], - SubLoopBlocksLast.back()); - movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); - } - - // Aft blocks successors and phis - BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator()); - if (CompletelyUnroll) { - BranchInst::Create(LoopExit, Term); - Term->eraseFromParent(); - } else { - Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]); - } - updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0], - SubLoopBlocksLast.back()); - - for (unsigned It = 1; It != Count; It++) { - // Replace the conditional branch of the previous iteration subloop - // with an unconditional one to this one - BranchInst *AftTerm = - cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator()); - BranchInst::Create(AftBlocksFirst[It], AftTerm); - AftTerm->eraseFromParent(); - - updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It], - SubLoopBlocksLast.back()); - movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); - } - - // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the - // new ones required. - if (Count != 1) { - SmallVector<DominatorTree::UpdateType, 4> DTUpdates; - DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0], - SubLoopBlocksFirst[0]); - DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, - SubLoopBlocksLast[0], AftBlocksFirst[0]); - - DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, - ForeBlocksLast.back(), SubLoopBlocksFirst[0]); - DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, - SubLoopBlocksLast.back(), AftBlocksFirst[0]); - DT->applyUpdates(DTUpdates); - } - - // Merge adjacent basic blocks, if possible. - SmallPtrSet<BasicBlock *, 16> MergeBlocks; - MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end()); - MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end()); - MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end()); - while (!MergeBlocks.empty()) { - BasicBlock *BB = *MergeBlocks.begin(); - BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator()); - if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) { - BasicBlock *Dest = Term->getSuccessor(0); - if (BasicBlock *Fold = foldBlockIntoPredecessor(Dest, LI, SE, DT)) { - // Don't remove BB and add Fold as they are the same BB - assert(Fold == BB); - (void)Fold; - MergeBlocks.erase(Dest); - } else - MergeBlocks.erase(BB); - } else - MergeBlocks.erase(BB); - } - - // At this point, the code is well formed. We now do a quick sweep over the - // inserted code, doing constant propagation and dead code elimination as we - // go. - simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC); - simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC); - - NumCompletelyUnrolledAndJammed += CompletelyUnroll; - ++NumUnrolledAndJammed; - -#ifndef NDEBUG - Loop *OuterL = L->getParentLoop(); -#endif - - // Update LoopInfo if the loop is completely removed. - if (CompletelyUnroll) - LI->erase(L); - -#ifndef NDEBUG - // We shouldn't have done anything to break loop simplify form or LCSSA. - Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop); - assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); - if (!CompletelyUnroll) - assert(L->isLoopSimplifyForm()); - assert(SubLoop->isLoopSimplifyForm()); - assert(DT->verify()); -#endif - - return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled - : LoopUnrollResult::PartiallyUnrolled; -} - -static bool getLoadsAndStores(std::vector<BasicBlock *> &Blocks, - SmallVector<Value *, 4> &MemInstr) { - // Scan the BBs and collect legal loads and stores. - // Returns false if non-simple loads/stores are found. - for (BasicBlock *BB : Blocks) { - for (Instruction &I : *BB) { - if (auto *Ld = dyn_cast<LoadInst>(&I)) { - if (!Ld->isSimple()) - return false; - MemInstr.push_back(&I); - } else if (auto *St = dyn_cast<StoreInst>(&I)) { - if (!St->isSimple()) - return false; - MemInstr.push_back(&I); - } else if (I.mayReadOrWriteMemory()) { - return false; - } - } - } - return true; -} - -static bool checkDependencies(SmallVector<Value *, 4> &Earlier, - SmallVector<Value *, 4> &Later, - unsigned LoopDepth, bool InnerLoop, - DependenceInfo &DI) { - // Use DA to check for dependencies between loads and - // stores that make unroll and jam invalid - for (Value *I : Earlier) { - for (Value *J : Later) { - Instruction *Src = cast<Instruction>(I); - Instruction *Dst = cast<Instruction>(J); - if (Src == Dst) - continue; - // Ignore Input dependencies. - if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) - continue; - - // Track dependencies, and if we find them take a conservative approach - // by allowing only = or > (not <), altough some < would be safe - // (depending upon unroll width). - // FIXME: Allow < so long as distance is less than unroll width - if (auto D = DI.depends(Src, Dst, true)) { - assert(D->isOrdered() && "Expected an output, flow or anti dep."); - - if (D->isConfused()) - return false; - if (!InnerLoop) { - if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) - return false; - } else { - assert(LoopDepth + 1 <= D->getLevels()); - if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT && - D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) - return false; - } - } - } - } - return true; -} - -static bool checkDependencies(Loop *L, std::vector<BasicBlock *> &ForeBlocks, - std::vector<BasicBlock *> &SubLoopBlocks, - std::vector<BasicBlock *> &AftBlocks, - DependenceInfo &DI) { - // Get all loads/store pairs for each blocks - SmallVector<Value *, 4> ForeMemInstr; - SmallVector<Value *, 4> SubLoopMemInstr; - SmallVector<Value *, 4> AftMemInstr; - if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) || - !getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) || - !getLoadsAndStores(AftBlocks, AftMemInstr)) - return false; - - // Check for dependencies between any blocks that may change order - unsigned LoopDepth = L->getLoopDepth(); - return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false, - DI) && - checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) && - checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false, - DI) && - checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true, - DI); -} - -bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, - DependenceInfo &DI) { - /* We currently handle outer loops like this: - | - ForeFirst <----\ } - Blocks | } ForeBlocks - ForeLast | } - | | - SubLoopFirst <\ | } - Blocks | | } SubLoopBlocks - SubLoopLast -/ | } - | | - AftFirst | } - Blocks | } AftBlocks - AftLast ------/ } - | - - There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks - and AftBlocks, providing that there is one edge from Fores to SubLoops, - one edge from SubLoops to Afts and a single outer loop exit (from Afts). - In practice we currently limit Aft blocks to a single block, and limit - things further in the profitablility checks of the unroll and jam pass. - - Because of the way we rearrange basic blocks, we also require that - the Fore blocks on all unrolled iterations are safe to move before the - SubLoop blocks of all iterations. So we require that the phi node looping - operands of ForeHeader can be moved to at least the end of ForeEnd, so that - we can arrange cloned Fore Blocks before the subloop and match up Phi's - correctly. - - i.e. The old order of blocks used to be F1 S1 S1 S1 A1 F2 S2 S2 S2 A2. - It needs to be safe to tranform this to F1 F2 S1 S2 S1 S2 S1 S2 A1 A2. - - There are then a number of checks along the lines of no calls, no - exceptions, inner loop IV is consistent, etc. - */ - - if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1) - return false; - Loop *SubLoop = L->getSubLoops()[0]; - if (!SubLoop->isLoopSimplifyForm()) - return false; - - BasicBlock *PreHeader = L->getLoopPreheader(); - BasicBlock *Header = L->getHeader(); - BasicBlock *Latch = L->getLoopLatch(); - BasicBlock *Exit = L->getExitingBlock(); - BasicBlock *SubLoopHeader = SubLoop->getHeader(); - BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); - BasicBlock *SubLoopExit = SubLoop->getExitingBlock(); - - if (Latch != Exit) - return false; - if (SubLoopLatch != SubLoopExit) - return false; - - if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) - return false; - - // Split blocks into Fore/SubLoop/Aft based on dominators - std::vector<BasicBlock *> SubLoopBlocks; - std::vector<BasicBlock *> ForeBlocks; - std::vector<BasicBlock *> AftBlocks; - if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, - AftBlocks, &DT)) - return false; - - // Aft blocks may need to move instructions to fore blocks, which - // becomes more difficult if there are multiple (potentially conditionally - // executed) blocks. For now we just exclude loops with multiple aft blocks. - if (AftBlocks.size() != 1) - return false; - - // Check outer loop IV is easily calcable - const SCEV *BECountSC = SE.getExitCount(L, Latch); - if (isa<SCEVCouldNotCompute>(BECountSC) || - !BECountSC->getType()->isIntegerTy()) - return false; - // Add 1 since the backedge count doesn't include the first loop iteration. - const SCEV *TripCountSC = - SE.getAddExpr(BECountSC, SE.getConstant(BECountSC->getType(), 1)); - if (isa<SCEVCouldNotCompute>(TripCountSC)) - return false; - BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); - const DataLayout &DL = Header->getModule()->getDataLayout(); - SCEVExpander Expander(SE, DL, "loop-unroll"); - if (Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) - return false; - - // Check inner loop IV is consistent between all iterations - const SCEV *SubLoopBECountSC = SE.getExitCount(SubLoop, SubLoopLatch); - if (isa<SCEVCouldNotCompute>(SubLoopBECountSC) || - !SubLoopBECountSC->getType()->isIntegerTy()) - return false; - ScalarEvolution::LoopDisposition LD = - SE.getLoopDisposition(SubLoopBECountSC, L); - if (LD != ScalarEvolution::LoopInvariant) - return false; - - // Check the loop safety info for exceptions. - LoopSafetyInfo LSI; - computeLoopSafetyInfo(&LSI, L); - if (LSI.MayThrow) - return false; - - // We've ruled out the easy stuff, and need to check that there - // are no interdependencies which may prevent us from moving - // the: - // ForeBlocks before Subloop and AftBlocks. - // Subloop before AftBlocks. - // ForeBlock phi operands before the subloop - - // Make sure we can move all instructions we need to before the subloop - SmallVector<Instruction *, 8> Worklist; - SmallPtrSet<Instruction *, 8> Visited; - for (auto &Phi : Header->phis()) { - Value *V = Phi.getIncomingValueForBlock(Latch); - if (Instruction *I = dyn_cast<Instruction>(V)) - Worklist.push_back(I); - } - while (!Worklist.empty()) { - Instruction *I = Worklist.back(); - Worklist.pop_back(); - if (Visited.insert(I).second) { - if (SubLoop->contains(I->getParent())) - return false; - if (containsBB(AftBlocks, I->getParent())) { - // If we hit a phi node in afts we know we are done (probably LCSSA) - if (isa<PHINode>(I)) - return false; - if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) - return false; - for (auto &U : I->operands()) - if (Instruction *II = dyn_cast<Instruction>(U)) - Worklist.push_back(II); - } - } - } - - // Check for memory dependencies which prohibit the unrolling - // we are doing. Because of the way we are unrolling Fore/Sub/Aft - // blocks, we need to check there are no dependencies between - // Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. - if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) - return false; - - return true; -} |