diff options
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp | 1130 | 
1 files changed, 1130 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp new file mode 100644 index 00000000000..da5465988a8 --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp @@ -0,0 +1,1130 @@ +//===- InstCombineCalls.cpp -----------------------------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitCall and visitInvoke functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Analysis/MemoryBuiltins.h" +using namespace llvm; + +/// getPromotedType - Return the specified type promoted as it would be to pass +/// though a va_arg area. +static const Type *getPromotedType(const Type *Ty) { +  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { +    if (ITy->getBitWidth() < 32) +      return Type::getInt32Ty(Ty->getContext()); +  } +  return Ty; +} + +/// EnforceKnownAlignment - If the specified pointer points to an object that +/// we control, modify the object's alignment to PrefAlign. This isn't +/// often possible though. If alignment is important, a more reliable approach +/// is to simply align all global variables and allocation instructions to +/// their preferred alignment from the beginning. +/// +static unsigned EnforceKnownAlignment(Value *V, +                                      unsigned Align, unsigned PrefAlign) { + +  User *U = dyn_cast<User>(V); +  if (!U) return Align; + +  switch (Operator::getOpcode(U)) { +  default: break; +  case Instruction::BitCast: +    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); +  case Instruction::GetElementPtr: { +    // If all indexes are zero, it is just the alignment of the base pointer. +    bool AllZeroOperands = true; +    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) +      if (!isa<Constant>(*i) || +          !cast<Constant>(*i)->isNullValue()) { +        AllZeroOperands = false; +        break; +      } + +    if (AllZeroOperands) { +      // Treat this like a bitcast. +      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); +    } +    break; +  } +  } + +  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { +    // If there is a large requested alignment and we can, bump up the alignment +    // of the global. +    if (!GV->isDeclaration()) { +      if (GV->getAlignment() >= PrefAlign) +        Align = GV->getAlignment(); +      else { +        GV->setAlignment(PrefAlign); +        Align = PrefAlign; +      } +    } +  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { +    // If there is a requested alignment and if this is an alloca, round up. +    if (AI->getAlignment() >= PrefAlign) +      Align = AI->getAlignment(); +    else { +      AI->setAlignment(PrefAlign); +      Align = PrefAlign; +    } +  } + +  return Align; +} + +/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that +/// we can determine, return it, otherwise return 0.  If PrefAlign is specified, +/// and it is more than the alignment of the ultimate object, see if we can +/// increase the alignment of the ultimate object, making this check succeed. +unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, +                                                  unsigned PrefAlign) { +  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : +                      sizeof(PrefAlign) * CHAR_BIT; +  APInt Mask = APInt::getAllOnesValue(BitWidth); +  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); +  ComputeMaskedBits(V, Mask, KnownZero, KnownOne); +  unsigned TrailZ = KnownZero.countTrailingOnes(); +  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); + +  if (PrefAlign > Align) +    Align = EnforceKnownAlignment(V, Align, PrefAlign); +   +    // We don't need to make any adjustment. +  return Align; +} + +Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { +  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); +  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); +  unsigned MinAlign = std::min(DstAlign, SrcAlign); +  unsigned CopyAlign = MI->getAlignment(); + +  if (CopyAlign < MinAlign) { +    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),  +                                             MinAlign, false)); +    return MI; +  } +   +  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with +  // load/store. +  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3)); +  if (MemOpLength == 0) return 0; +   +  // Source and destination pointer types are always "i8*" for intrinsic.  See +  // if the size is something we can handle with a single primitive load/store. +  // A single load+store correctly handles overlapping memory in the memmove +  // case. +  unsigned Size = MemOpLength->getZExtValue(); +  if (Size == 0) return MI;  // Delete this mem transfer. +   +  if (Size > 8 || (Size&(Size-1))) +    return 0;  // If not 1/2/4/8 bytes, exit. +   +  // Use an integer load+store unless we can find something better. +  Type *NewPtrTy = +            PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3)); +   +  // Memcpy forces the use of i8* for the source and destination.  That means +  // that if you're using memcpy to move one double around, you'll get a cast +  // from double* to i8*.  We'd much rather use a double load+store rather than +  // an i64 load+store, here because this improves the odds that the source or +  // dest address will be promotable.  See if we can find a better type than the +  // integer datatype. +  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts(); +  if (StrippedDest != MI->getOperand(1)) { +    const Type *SrcETy = cast<PointerType>(StrippedDest->getType()) +                                    ->getElementType(); +    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { +      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip +      // down through these levels if so. +      while (!SrcETy->isSingleValueType()) { +        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) { +          if (STy->getNumElements() == 1) +            SrcETy = STy->getElementType(0); +          else +            break; +        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { +          if (ATy->getNumElements() == 1) +            SrcETy = ATy->getElementType(); +          else +            break; +        } else +          break; +      } +       +      if (SrcETy->isSingleValueType()) +        NewPtrTy = PointerType::getUnqual(SrcETy); +    } +  } +   +   +  // If the memcpy/memmove provides better alignment info than we can +  // infer, use it. +  SrcAlign = std::max(SrcAlign, CopyAlign); +  DstAlign = std::max(DstAlign, CopyAlign); +   +  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy); +  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy); +  Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign); +  InsertNewInstBefore(L, *MI); +  InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI); + +  // Set the size of the copy to 0, it will be deleted on the next iteration. +  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); +  return MI; +} + +Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { +  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); +  if (MI->getAlignment() < Alignment) { +    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), +                                             Alignment, false)); +    return MI; +  } +   +  // Extract the length and alignment and fill if they are constant. +  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); +  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); +  if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(MI->getContext())) +    return 0; +  uint64_t Len = LenC->getZExtValue(); +  Alignment = MI->getAlignment(); +   +  // If the length is zero, this is a no-op +  if (Len == 0) return MI; // memset(d,c,0,a) -> noop +   +  // memset(s,c,n) -> store s, c (for n=1,2,4,8) +  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { +    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8. +     +    Value *Dest = MI->getDest(); +    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy)); + +    // Alignment 0 is identity for alignment 1 for memset, but not store. +    if (Alignment == 0) Alignment = 1; +     +    // Extract the fill value and store. +    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; +    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), +                                      Dest, false, Alignment), *MI); +     +    // Set the size of the copy to 0, it will be deleted on the next iteration. +    MI->setLength(Constant::getNullValue(LenC->getType())); +    return MI; +  } + +  return 0; +} + + +/// visitCallInst - CallInst simplification.  This mostly only handles folding  +/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do +/// the heavy lifting. +/// +Instruction *InstCombiner::visitCallInst(CallInst &CI) { +  if (isFreeCall(&CI)) +    return visitFree(CI); + +  // If the caller function is nounwind, mark the call as nounwind, even if the +  // callee isn't. +  if (CI.getParent()->getParent()->doesNotThrow() && +      !CI.doesNotThrow()) { +    CI.setDoesNotThrow(); +    return &CI; +  } +   +  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); +  if (!II) return visitCallSite(&CI); +   +  // Intrinsics cannot occur in an invoke, so handle them here instead of in +  // visitCallSite. +  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { +    bool Changed = false; + +    // memmove/cpy/set of zero bytes is a noop. +    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { +      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); + +      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) +        if (CI->getZExtValue() == 1) { +          // Replace the instruction with just byte operations.  We would +          // transform other cases to loads/stores, but we don't know if +          // alignment is sufficient. +        } +    } + +    // If we have a memmove and the source operation is a constant global, +    // then the source and dest pointers can't alias, so we can change this +    // into a call to memcpy. +    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { +      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) +        if (GVSrc->isConstant()) { +          Module *M = CI.getParent()->getParent()->getParent(); +          Intrinsic::ID MemCpyID = Intrinsic::memcpy; +          const Type *Tys[1]; +          Tys[0] = CI.getOperand(3)->getType(); +          CI.setOperand(0,  +                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 1)); +          Changed = true; +        } +    } + +    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { +      // memmove(x,x,size) -> noop. +      if (MTI->getSource() == MTI->getDest()) +        return EraseInstFromFunction(CI); +    } + +    // If we can determine a pointer alignment that is bigger than currently +    // set, update the alignment. +    if (isa<MemTransferInst>(MI)) { +      if (Instruction *I = SimplifyMemTransfer(MI)) +        return I; +    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { +      if (Instruction *I = SimplifyMemSet(MSI)) +        return I; +    } +           +    if (Changed) return II; +  } +   +  switch (II->getIntrinsicID()) { +  default: break; +  case Intrinsic::bswap: +    // bswap(bswap(x)) -> x +    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1))) +      if (Operand->getIntrinsicID() == Intrinsic::bswap) +        return ReplaceInstUsesWith(CI, Operand->getOperand(1)); +       +    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) +    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) { +      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0))) +        if (Operand->getIntrinsicID() == Intrinsic::bswap) { +          unsigned C = Operand->getType()->getPrimitiveSizeInBits() - +                       TI->getType()->getPrimitiveSizeInBits(); +          Value *CV = ConstantInt::get(Operand->getType(), C); +          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV); +          return new TruncInst(V, TI->getType()); +        } +    } +       +    break; +  case Intrinsic::powi: +    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) { +      // powi(x, 0) -> 1.0 +      if (Power->isZero()) +        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); +      // powi(x, 1) -> x +      if (Power->isOne()) +        return ReplaceInstUsesWith(CI, II->getOperand(1)); +      // powi(x, -1) -> 1/x +      if (Power->isAllOnesValue()) +        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), +                                          II->getOperand(1)); +    } +    break; +  case Intrinsic::cttz: { +    // If all bits below the first known one are known zero, +    // this value is constant. +    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); +    uint32_t BitWidth = IT->getBitWidth(); +    APInt KnownZero(BitWidth, 0); +    APInt KnownOne(BitWidth, 0); +    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth), +                      KnownZero, KnownOne); +    unsigned TrailingZeros = KnownOne.countTrailingZeros(); +    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros)); +    if ((Mask & KnownZero) == Mask) +      return ReplaceInstUsesWith(CI, ConstantInt::get(IT, +                                 APInt(BitWidth, TrailingZeros))); +     +    } +    break; +  case Intrinsic::ctlz: { +    // If all bits above the first known one are known zero, +    // this value is constant. +    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); +    uint32_t BitWidth = IT->getBitWidth(); +    APInt KnownZero(BitWidth, 0); +    APInt KnownOne(BitWidth, 0); +    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth), +                      KnownZero, KnownOne); +    unsigned LeadingZeros = KnownOne.countLeadingZeros(); +    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros)); +    if ((Mask & KnownZero) == Mask) +      return ReplaceInstUsesWith(CI, ConstantInt::get(IT, +                                 APInt(BitWidth, LeadingZeros))); +     +    } +    break; +  case Intrinsic::uadd_with_overflow: { +    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); +    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); +    uint32_t BitWidth = IT->getBitWidth(); +    APInt Mask = APInt::getSignBit(BitWidth); +    APInt LHSKnownZero(BitWidth, 0); +    APInt LHSKnownOne(BitWidth, 0); +    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); +    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1]; +    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1]; + +    if (LHSKnownNegative || LHSKnownPositive) { +      APInt RHSKnownZero(BitWidth, 0); +      APInt RHSKnownOne(BitWidth, 0); +      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); +      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1]; +      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1]; +      if (LHSKnownNegative && RHSKnownNegative) { +        // The sign bit is set in both cases: this MUST overflow. +        // Create a simple add instruction, and insert it into the struct. +        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI); +        Worklist.Add(Add); +        Constant *V[] = { +          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext()) +        }; +        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); +        return InsertValueInst::Create(Struct, Add, 0); +      } +       +      if (LHSKnownPositive && RHSKnownPositive) { +        // The sign bit is clear in both cases: this CANNOT overflow. +        // Create a simple add instruction, and insert it into the struct. +        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI); +        Worklist.Add(Add); +        Constant *V[] = { +          UndefValue::get(LHS->getType()), +          ConstantInt::getFalse(II->getContext()) +        }; +        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); +        return InsertValueInst::Create(Struct, Add, 0); +      } +    } +  } +  // FALL THROUGH uadd into sadd +  case Intrinsic::sadd_with_overflow: +    // Canonicalize constants into the RHS. +    if (isa<Constant>(II->getOperand(1)) && +        !isa<Constant>(II->getOperand(2))) { +      Value *LHS = II->getOperand(1); +      II->setOperand(1, II->getOperand(2)); +      II->setOperand(2, LHS); +      return II; +    } + +    // X + undef -> undef +    if (isa<UndefValue>(II->getOperand(2))) +      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); +       +    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { +      // X + 0 -> {X, false} +      if (RHS->isZero()) { +        Constant *V[] = { +          UndefValue::get(II->getOperand(0)->getType()), +          ConstantInt::getFalse(II->getContext()) +        }; +        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); +        return InsertValueInst::Create(Struct, II->getOperand(1), 0); +      } +    } +    break; +  case Intrinsic::usub_with_overflow: +  case Intrinsic::ssub_with_overflow: +    // undef - X -> undef +    // X - undef -> undef +    if (isa<UndefValue>(II->getOperand(1)) || +        isa<UndefValue>(II->getOperand(2))) +      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); +       +    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { +      // X - 0 -> {X, false} +      if (RHS->isZero()) { +        Constant *V[] = { +          UndefValue::get(II->getOperand(1)->getType()), +          ConstantInt::getFalse(II->getContext()) +        }; +        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); +        return InsertValueInst::Create(Struct, II->getOperand(1), 0); +      } +    } +    break; +  case Intrinsic::umul_with_overflow: +  case Intrinsic::smul_with_overflow: +    // Canonicalize constants into the RHS. +    if (isa<Constant>(II->getOperand(1)) && +        !isa<Constant>(II->getOperand(2))) { +      Value *LHS = II->getOperand(1); +      II->setOperand(1, II->getOperand(2)); +      II->setOperand(2, LHS); +      return II; +    } + +    // X * undef -> undef +    if (isa<UndefValue>(II->getOperand(2))) +      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); +       +    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) { +      // X*0 -> {0, false} +      if (RHSI->isZero()) +        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType())); +       +      // X * 1 -> {X, false} +      if (RHSI->equalsInt(1)) { +        Constant *V[] = { +          UndefValue::get(II->getOperand(1)->getType()), +          ConstantInt::getFalse(II->getContext()) +        }; +        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); +        return InsertValueInst::Create(Struct, II->getOperand(1), 0); +      } +    } +    break; +  case Intrinsic::ppc_altivec_lvx: +  case Intrinsic::ppc_altivec_lvxl: +  case Intrinsic::x86_sse_loadu_ps: +  case Intrinsic::x86_sse2_loadu_pd: +  case Intrinsic::x86_sse2_loadu_dq: +    // Turn PPC lvx     -> load if the pointer is known aligned. +    // Turn X86 loadups -> load if the pointer is known aligned. +    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { +      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), +                                         PointerType::getUnqual(II->getType())); +      return new LoadInst(Ptr); +    } +    break; +  case Intrinsic::ppc_altivec_stvx: +  case Intrinsic::ppc_altivec_stvxl: +    // Turn stvx -> store if the pointer is known aligned. +    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { +      const Type *OpPtrTy =  +        PointerType::getUnqual(II->getOperand(1)->getType()); +      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy); +      return new StoreInst(II->getOperand(1), Ptr); +    } +    break; +  case Intrinsic::x86_sse_storeu_ps: +  case Intrinsic::x86_sse2_storeu_pd: +  case Intrinsic::x86_sse2_storeu_dq: +    // Turn X86 storeu -> store if the pointer is known aligned. +    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { +      const Type *OpPtrTy =  +        PointerType::getUnqual(II->getOperand(2)->getType()); +      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy); +      return new StoreInst(II->getOperand(2), Ptr); +    } +    break; +     +  case Intrinsic::x86_sse_cvttss2si: { +    // These intrinsics only demands the 0th element of its input vector.  If +    // we can simplify the input based on that, do so now. +    unsigned VWidth = +      cast<VectorType>(II->getOperand(1)->getType())->getNumElements(); +    APInt DemandedElts(VWidth, 1); +    APInt UndefElts(VWidth, 0); +    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, +                                              UndefElts)) { +      II->setOperand(1, V); +      return II; +    } +    break; +  } +     +  case Intrinsic::ppc_altivec_vperm: +    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. +    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) { +      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); +       +      // Check that all of the elements are integer constants or undefs. +      bool AllEltsOk = true; +      for (unsigned i = 0; i != 16; ++i) { +        if (!isa<ConstantInt>(Mask->getOperand(i)) &&  +            !isa<UndefValue>(Mask->getOperand(i))) { +          AllEltsOk = false; +          break; +        } +      } +       +      if (AllEltsOk) { +        // Cast the input vectors to byte vectors. +        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType()); +        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType()); +        Value *Result = UndefValue::get(Op0->getType()); +         +        // Only extract each element once. +        Value *ExtractedElts[32]; +        memset(ExtractedElts, 0, sizeof(ExtractedElts)); +         +        for (unsigned i = 0; i != 16; ++i) { +          if (isa<UndefValue>(Mask->getOperand(i))) +            continue; +          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); +          Idx &= 31;  // Match the hardware behavior. +           +          if (ExtractedElts[Idx] == 0) { +            ExtractedElts[Idx] =  +              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,  +                  ConstantInt::get(Type::getInt32Ty(II->getContext()), +                                   Idx&15, false), "tmp"); +          } +         +          // Insert this value into the result vector. +          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], +                         ConstantInt::get(Type::getInt32Ty(II->getContext()), +                                          i, false), "tmp"); +        } +        return CastInst::Create(Instruction::BitCast, Result, CI.getType()); +      } +    } +    break; + +  case Intrinsic::stackrestore: { +    // If the save is right next to the restore, remove the restore.  This can +    // happen when variable allocas are DCE'd. +    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { +      if (SS->getIntrinsicID() == Intrinsic::stacksave) { +        BasicBlock::iterator BI = SS; +        if (&*++BI == II) +          return EraseInstFromFunction(CI); +      } +    } +     +    // Scan down this block to see if there is another stack restore in the +    // same block without an intervening call/alloca. +    BasicBlock::iterator BI = II; +    TerminatorInst *TI = II->getParent()->getTerminator(); +    bool CannotRemove = false; +    for (++BI; &*BI != TI; ++BI) { +      if (isa<AllocaInst>(BI) || isMalloc(BI)) { +        CannotRemove = true; +        break; +      } +      if (CallInst *BCI = dyn_cast<CallInst>(BI)) { +        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { +          // If there is a stackrestore below this one, remove this one. +          if (II->getIntrinsicID() == Intrinsic::stackrestore) +            return EraseInstFromFunction(CI); +          // Otherwise, ignore the intrinsic. +        } else { +          // If we found a non-intrinsic call, we can't remove the stack +          // restore. +          CannotRemove = true; +          break; +        } +      } +    } +     +    // If the stack restore is in a return/unwind block and if there are no +    // allocas or calls between the restore and the return, nuke the restore. +    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) +      return EraseInstFromFunction(CI); +    break; +  } +  } + +  return visitCallSite(II); +} + +// InvokeInst simplification +// +Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { +  return visitCallSite(&II); +} + +/// isSafeToEliminateVarargsCast - If this cast does not affect the value  +/// passed through the varargs area, we can eliminate the use of the cast. +static bool isSafeToEliminateVarargsCast(const CallSite CS, +                                         const CastInst * const CI, +                                         const TargetData * const TD, +                                         const int ix) { +  if (!CI->isLosslessCast()) +    return false; + +  // The size of ByVal arguments is derived from the type, so we +  // can't change to a type with a different size.  If the size were +  // passed explicitly we could avoid this check. +  if (!CS.paramHasAttr(ix, Attribute::ByVal)) +    return true; + +  const Type* SrcTy =  +            cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); +  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); +  if (!SrcTy->isSized() || !DstTy->isSized()) +    return false; +  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) +    return false; +  return true; +} + +// visitCallSite - Improvements for call and invoke instructions. +// +Instruction *InstCombiner::visitCallSite(CallSite CS) { +  bool Changed = false; + +  // If the callee is a constexpr cast of a function, attempt to move the cast +  // to the arguments of the call/invoke. +  if (transformConstExprCastCall(CS)) return 0; + +  Value *Callee = CS.getCalledValue(); + +  if (Function *CalleeF = dyn_cast<Function>(Callee)) +    if (CalleeF->getCallingConv() != CS.getCallingConv()) { +      Instruction *OldCall = CS.getInstruction(); +      // If the call and callee calling conventions don't match, this call must +      // be unreachable, as the call is undefined. +      new StoreInst(ConstantInt::getTrue(Callee->getContext()), +                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),  +                                  OldCall); +      // If OldCall dues not return void then replaceAllUsesWith undef. +      // This allows ValueHandlers and custom metadata to adjust itself. +      if (!OldCall->getType()->isVoidTy()) +        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); +      if (isa<CallInst>(OldCall))   // Not worth removing an invoke here. +        return EraseInstFromFunction(*OldCall); +      return 0; +    } + +  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { +    // This instruction is not reachable, just remove it.  We insert a store to +    // undef so that we know that this code is not reachable, despite the fact +    // that we can't modify the CFG here. +    new StoreInst(ConstantInt::getTrue(Callee->getContext()), +               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), +                  CS.getInstruction()); + +    // If CS dues not return void then replaceAllUsesWith undef. +    // This allows ValueHandlers and custom metadata to adjust itself. +    if (!CS.getInstruction()->getType()->isVoidTy()) +      CS.getInstruction()-> +        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); + +    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { +      // Don't break the CFG, insert a dummy cond branch. +      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), +                         ConstantInt::getTrue(Callee->getContext()), II); +    } +    return EraseInstFromFunction(*CS.getInstruction()); +  } + +  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) +    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) +      if (In->getIntrinsicID() == Intrinsic::init_trampoline) +        return transformCallThroughTrampoline(CS); + +  const PointerType *PTy = cast<PointerType>(Callee->getType()); +  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); +  if (FTy->isVarArg()) { +    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); +    // See if we can optimize any arguments passed through the varargs area of +    // the call. +    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), +           E = CS.arg_end(); I != E; ++I, ++ix) { +      CastInst *CI = dyn_cast<CastInst>(*I); +      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { +        *I = CI->getOperand(0); +        Changed = true; +      } +    } +  } + +  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { +    // Inline asm calls cannot throw - mark them 'nounwind'. +    CS.setDoesNotThrow(); +    Changed = true; +  } + +  return Changed ? CS.getInstruction() : 0; +} + +// transformConstExprCastCall - If the callee is a constexpr cast of a function, +// attempt to move the cast to the arguments of the call/invoke. +// +bool InstCombiner::transformConstExprCastCall(CallSite CS) { +  if (!isa<ConstantExpr>(CS.getCalledValue())) return false; +  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); +  if (CE->getOpcode() != Instruction::BitCast ||  +      !isa<Function>(CE->getOperand(0))) +    return false; +  Function *Callee = cast<Function>(CE->getOperand(0)); +  Instruction *Caller = CS.getInstruction(); +  const AttrListPtr &CallerPAL = CS.getAttributes(); + +  // Okay, this is a cast from a function to a different type.  Unless doing so +  // would cause a type conversion of one of our arguments, change this call to +  // be a direct call with arguments casted to the appropriate types. +  // +  const FunctionType *FT = Callee->getFunctionType(); +  const Type *OldRetTy = Caller->getType(); +  const Type *NewRetTy = FT->getReturnType(); + +  if (isa<StructType>(NewRetTy)) +    return false; // TODO: Handle multiple return values. + +  // Check to see if we are changing the return type... +  if (OldRetTy != NewRetTy) { +    if (Callee->isDeclaration() && +        // Conversion is ok if changing from one pointer type to another or from +        // a pointer to an integer of the same size. +        !((isa<PointerType>(OldRetTy) || !TD || +           OldRetTy == TD->getIntPtrType(Caller->getContext())) && +          (isa<PointerType>(NewRetTy) || !TD || +           NewRetTy == TD->getIntPtrType(Caller->getContext())))) +      return false;   // Cannot transform this return value. + +    if (!Caller->use_empty() && +        // void -> non-void is handled specially +        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy)) +      return false;   // Cannot transform this return value. + +    if (!CallerPAL.isEmpty() && !Caller->use_empty()) { +      Attributes RAttrs = CallerPAL.getRetAttributes(); +      if (RAttrs & Attribute::typeIncompatible(NewRetTy)) +        return false;   // Attribute not compatible with transformed value. +    } + +    // If the callsite is an invoke instruction, and the return value is used by +    // a PHI node in a successor, we cannot change the return type of the call +    // because there is no place to put the cast instruction (without breaking +    // the critical edge).  Bail out in this case. +    if (!Caller->use_empty()) +      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) +        for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); +             UI != E; ++UI) +          if (PHINode *PN = dyn_cast<PHINode>(*UI)) +            if (PN->getParent() == II->getNormalDest() || +                PN->getParent() == II->getUnwindDest()) +              return false; +  } + +  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); +  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); + +  CallSite::arg_iterator AI = CS.arg_begin(); +  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { +    const Type *ParamTy = FT->getParamType(i); +    const Type *ActTy = (*AI)->getType(); + +    if (!CastInst::isCastable(ActTy, ParamTy)) +      return false;   // Cannot transform this parameter value. + +    if (CallerPAL.getParamAttributes(i + 1)  +        & Attribute::typeIncompatible(ParamTy)) +      return false;   // Attribute not compatible with transformed value. + +    // Converting from one pointer type to another or between a pointer and an +    // integer of the same size is safe even if we do not have a body. +    bool isConvertible = ActTy == ParamTy || +      (TD && ((isa<PointerType>(ParamTy) || +      ParamTy == TD->getIntPtrType(Caller->getContext())) && +              (isa<PointerType>(ActTy) || +              ActTy == TD->getIntPtrType(Caller->getContext())))); +    if (Callee->isDeclaration() && !isConvertible) return false; +  } + +  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && +      Callee->isDeclaration()) +    return false;   // Do not delete arguments unless we have a function body. + +  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && +      !CallerPAL.isEmpty()) +    // In this case we have more arguments than the new function type, but we +    // won't be dropping them.  Check that these extra arguments have attributes +    // that are compatible with being a vararg call argument. +    for (unsigned i = CallerPAL.getNumSlots(); i; --i) { +      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) +        break; +      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; +      if (PAttrs & Attribute::VarArgsIncompatible) +        return false; +    } + +  // Okay, we decided that this is a safe thing to do: go ahead and start +  // inserting cast instructions as necessary... +  std::vector<Value*> Args; +  Args.reserve(NumActualArgs); +  SmallVector<AttributeWithIndex, 8> attrVec; +  attrVec.reserve(NumCommonArgs); + +  // Get any return attributes. +  Attributes RAttrs = CallerPAL.getRetAttributes(); + +  // If the return value is not being used, the type may not be compatible +  // with the existing attributes.  Wipe out any problematic attributes. +  RAttrs &= ~Attribute::typeIncompatible(NewRetTy); + +  // Add the new return attributes. +  if (RAttrs) +    attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); + +  AI = CS.arg_begin(); +  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { +    const Type *ParamTy = FT->getParamType(i); +    if ((*AI)->getType() == ParamTy) { +      Args.push_back(*AI); +    } else { +      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, +          false, ParamTy, false); +      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp")); +    } + +    // Add any parameter attributes. +    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) +      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); +  } + +  // If the function takes more arguments than the call was taking, add them +  // now. +  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) +    Args.push_back(Constant::getNullValue(FT->getParamType(i))); + +  // If we are removing arguments to the function, emit an obnoxious warning. +  if (FT->getNumParams() < NumActualArgs) { +    if (!FT->isVarArg()) { +      errs() << "WARNING: While resolving call to function '" +             << Callee->getName() << "' arguments were dropped!\n"; +    } else { +      // Add all of the arguments in their promoted form to the arg list. +      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { +        const Type *PTy = getPromotedType((*AI)->getType()); +        if (PTy != (*AI)->getType()) { +          // Must promote to pass through va_arg area! +          Instruction::CastOps opcode = +            CastInst::getCastOpcode(*AI, false, PTy, false); +          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp")); +        } else { +          Args.push_back(*AI); +        } + +        // Add any parameter attributes. +        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) +          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); +      } +    } +  } + +  if (Attributes FnAttrs =  CallerPAL.getFnAttributes()) +    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); + +  if (NewRetTy->isVoidTy()) +    Caller->setName("");   // Void type should not have a name. + +  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(), +                                                     attrVec.end()); + +  Instruction *NC; +  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { +    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), +                            Args.begin(), Args.end(), +                            Caller->getName(), Caller); +    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); +    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); +  } else { +    NC = CallInst::Create(Callee, Args.begin(), Args.end(), +                          Caller->getName(), Caller); +    CallInst *CI = cast<CallInst>(Caller); +    if (CI->isTailCall()) +      cast<CallInst>(NC)->setTailCall(); +    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); +    cast<CallInst>(NC)->setAttributes(NewCallerPAL); +  } + +  // Insert a cast of the return type as necessary. +  Value *NV = NC; +  if (OldRetTy != NV->getType() && !Caller->use_empty()) { +    if (!NV->getType()->isVoidTy()) { +      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,  +                                                            OldRetTy, false); +      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); + +      // If this is an invoke instruction, we should insert it after the first +      // non-phi, instruction in the normal successor block. +      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { +        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); +        InsertNewInstBefore(NC, *I); +      } else { +        // Otherwise, it's a call, just insert cast right after the call instr +        InsertNewInstBefore(NC, *Caller); +      } +      Worklist.AddUsersToWorkList(*Caller); +    } else { +      NV = UndefValue::get(Caller->getType()); +    } +  } + + +  if (!Caller->use_empty()) +    Caller->replaceAllUsesWith(NV); +   +  EraseInstFromFunction(*Caller); +  return true; +} + +// transformCallThroughTrampoline - Turn a call to a function created by the +// init_trampoline intrinsic into a direct call to the underlying function. +// +Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { +  Value *Callee = CS.getCalledValue(); +  const PointerType *PTy = cast<PointerType>(Callee->getType()); +  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); +  const AttrListPtr &Attrs = CS.getAttributes(); + +  // If the call already has the 'nest' attribute somewhere then give up - +  // otherwise 'nest' would occur twice after splicing in the chain. +  if (Attrs.hasAttrSomewhere(Attribute::Nest)) +    return 0; + +  IntrinsicInst *Tramp = +    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); + +  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts()); +  const PointerType *NestFPTy = cast<PointerType>(NestF->getType()); +  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); + +  const AttrListPtr &NestAttrs = NestF->getAttributes(); +  if (!NestAttrs.isEmpty()) { +    unsigned NestIdx = 1; +    const Type *NestTy = 0; +    Attributes NestAttr = Attribute::None; + +    // Look for a parameter marked with the 'nest' attribute. +    for (FunctionType::param_iterator I = NestFTy->param_begin(), +         E = NestFTy->param_end(); I != E; ++NestIdx, ++I) +      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { +        // Record the parameter type and any other attributes. +        NestTy = *I; +        NestAttr = NestAttrs.getParamAttributes(NestIdx); +        break; +      } + +    if (NestTy) { +      Instruction *Caller = CS.getInstruction(); +      std::vector<Value*> NewArgs; +      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); + +      SmallVector<AttributeWithIndex, 8> NewAttrs; +      NewAttrs.reserve(Attrs.getNumSlots() + 1); + +      // Insert the nest argument into the call argument list, which may +      // mean appending it.  Likewise for attributes. + +      // Add any result attributes. +      if (Attributes Attr = Attrs.getRetAttributes()) +        NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); + +      { +        unsigned Idx = 1; +        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); +        do { +          if (Idx == NestIdx) { +            // Add the chain argument and attributes. +            Value *NestVal = Tramp->getOperand(3); +            if (NestVal->getType() != NestTy) +              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); +            NewArgs.push_back(NestVal); +            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); +          } + +          if (I == E) +            break; + +          // Add the original argument and attributes. +          NewArgs.push_back(*I); +          if (Attributes Attr = Attrs.getParamAttributes(Idx)) +            NewAttrs.push_back +              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); + +          ++Idx, ++I; +        } while (1); +      } + +      // Add any function attributes. +      if (Attributes Attr = Attrs.getFnAttributes()) +        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); + +      // The trampoline may have been bitcast to a bogus type (FTy). +      // Handle this by synthesizing a new function type, equal to FTy +      // with the chain parameter inserted. + +      std::vector<const Type*> NewTypes; +      NewTypes.reserve(FTy->getNumParams()+1); + +      // Insert the chain's type into the list of parameter types, which may +      // mean appending it. +      { +        unsigned Idx = 1; +        FunctionType::param_iterator I = FTy->param_begin(), +          E = FTy->param_end(); + +        do { +          if (Idx == NestIdx) +            // Add the chain's type. +            NewTypes.push_back(NestTy); + +          if (I == E) +            break; + +          // Add the original type. +          NewTypes.push_back(*I); + +          ++Idx, ++I; +        } while (1); +      } + +      // Replace the trampoline call with a direct call.  Let the generic +      // code sort out any function type mismatches. +      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,  +                                                FTy->isVarArg()); +      Constant *NewCallee = +        NestF->getType() == PointerType::getUnqual(NewFTy) ? +        NestF : ConstantExpr::getBitCast(NestF,  +                                         PointerType::getUnqual(NewFTy)); +      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(), +                                                   NewAttrs.end()); + +      Instruction *NewCaller; +      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { +        NewCaller = InvokeInst::Create(NewCallee, +                                       II->getNormalDest(), II->getUnwindDest(), +                                       NewArgs.begin(), NewArgs.end(), +                                       Caller->getName(), Caller); +        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); +        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); +      } else { +        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), +                                     Caller->getName(), Caller); +        if (cast<CallInst>(Caller)->isTailCall()) +          cast<CallInst>(NewCaller)->setTailCall(); +        cast<CallInst>(NewCaller)-> +          setCallingConv(cast<CallInst>(Caller)->getCallingConv()); +        cast<CallInst>(NewCaller)->setAttributes(NewPAL); +      } +      if (!Caller->getType()->isVoidTy()) +        Caller->replaceAllUsesWith(NewCaller); +      Caller->eraseFromParent(); +      Worklist.Remove(Caller); +      return 0; +    } +  } + +  // Replace the trampoline call with a direct call.  Since there is no 'nest' +  // parameter, there is no need to adjust the argument list.  Let the generic +  // code sort out any function type mismatches. +  Constant *NewCallee = +    NestF->getType() == PTy ? NestF :  +                              ConstantExpr::getBitCast(NestF, PTy); +  CS.setCalledFunction(NewCallee); +  return CS.getInstruction(); +} + | 

