summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/X86')
-rw-r--r--llvm/lib/Target/X86/CMakeLists.txt2
-rw-r--r--llvm/lib/Target/X86/X86.h6
-rw-r--r--llvm/lib/Target/X86/X86CodeEmitter.cpp1502
-rw-r--r--llvm/lib/Target/X86/X86ISelDAGToDAG.cpp1
-rw-r--r--llvm/lib/Target/X86/X86InstrInfo.cpp1
-rw-r--r--llvm/lib/Target/X86/X86JITInfo.cpp588
-rw-r--r--llvm/lib/Target/X86/X86JITInfo.h79
-rw-r--r--llvm/lib/Target/X86/X86Subtarget.cpp3
-rw-r--r--llvm/lib/Target/X86/X86Subtarget.h3
-rw-r--r--llvm/lib/Target/X86/X86TargetMachine.cpp7
-rw-r--r--llvm/lib/Target/X86/X86TargetMachine.h6
11 files changed, 3 insertions, 2195 deletions
diff --git a/llvm/lib/Target/X86/CMakeLists.txt b/llvm/lib/Target/X86/CMakeLists.txt
index a09767e1eaf..b6fff7460e0 100644
--- a/llvm/lib/Target/X86/CMakeLists.txt
+++ b/llvm/lib/Target/X86/CMakeLists.txt
@@ -15,14 +15,12 @@ add_public_tablegen_target(X86CommonTableGen)
set(sources
X86AsmPrinter.cpp
X86AtomicExpandPass.cpp
- X86CodeEmitter.cpp
X86FastISel.cpp
X86FloatingPoint.cpp
X86FrameLowering.cpp
X86ISelDAGToDAG.cpp
X86ISelLowering.cpp
X86InstrInfo.cpp
- X86JITInfo.cpp
X86MCInstLower.cpp
X86MachineFunctionInfo.cpp
X86PadShortFunction.cpp
diff --git a/llvm/lib/Target/X86/X86.h b/llvm/lib/Target/X86/X86.h
index d5522ed95eb..20258197252 100644
--- a/llvm/lib/Target/X86/X86.h
+++ b/llvm/lib/Target/X86/X86.h
@@ -21,7 +21,6 @@ namespace llvm {
class FunctionPass;
class ImmutablePass;
-class JITCodeEmitter;
class X86TargetMachine;
/// createX86AtomicExpandPass - This pass expands atomic operations that cannot
@@ -54,11 +53,6 @@ FunctionPass *createX86FloatingPointStackifierPass();
/// AVX and SSE.
FunctionPass *createX86IssueVZeroUpperPass();
-/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
-/// to the specified MCE object.
-FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
- JITCodeEmitter &JCE);
-
/// createX86EmitCodeToMemory - Returns a pass that converts a register
/// allocated function into raw machine code in a dynamically
/// allocated chunk of memory.
diff --git a/llvm/lib/Target/X86/X86CodeEmitter.cpp b/llvm/lib/Target/X86/X86CodeEmitter.cpp
deleted file mode 100644
index 9c68a9ce9ca..00000000000
--- a/llvm/lib/Target/X86/X86CodeEmitter.cpp
+++ /dev/null
@@ -1,1502 +0,0 @@
-//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the pass that transforms the X86 machine instructions into
-// relocatable machine code.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86JITInfo.h"
-#include "X86Relocations.h"
-#include "X86Subtarget.h"
-#include "X86TargetMachine.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/MC/MCCodeEmitter.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/MC/MCInst.h"
-#include "llvm/PassManager.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetOptions.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "x86-emitter"
-
-STATISTIC(NumEmitted, "Number of machine instructions emitted");
-
-namespace {
- template<class CodeEmitter>
- class Emitter : public MachineFunctionPass {
- const X86InstrInfo *II;
- const DataLayout *TD;
- X86TargetMachine &TM;
- CodeEmitter &MCE;
- MachineModuleInfo *MMI;
- intptr_t PICBaseOffset;
- bool Is64BitMode;
- bool IsPIC;
- public:
- static char ID;
- explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
- : MachineFunctionPass(ID), II(nullptr), TD(nullptr), TM(tm),
- MCE(mce), PICBaseOffset(0), Is64BitMode(false),
- IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
-
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- const char *getPassName() const override {
- return "X86 Machine Code Emitter";
- }
-
- void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const;
-
- void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const;
-
- void emitSegmentOverridePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI) const;
-
- void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<MachineModuleInfo>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
-
- private:
- void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
- void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
- intptr_t Disp = 0, intptr_t PCAdj = 0,
- bool Indirect = false);
- void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
- void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
- intptr_t PCAdj = 0);
- void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
- intptr_t PCAdj = 0);
-
- void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
- intptr_t Adj = 0, bool IsPCRel = true);
-
- void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
- void emitRegModRMByte(unsigned RegOpcodeField);
- void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
- void emitConstant(uint64_t Val, unsigned Size);
-
- void emitMemModRMByte(const MachineInstr &MI,
- unsigned Op, unsigned RegOpcodeField,
- intptr_t PCAdj = 0);
-
- unsigned getX86RegNum(unsigned RegNo) const {
- const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
- return TRI->getEncodingValue(RegNo) & 0x7;
- }
-
- unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
- unsigned OpNum) const;
- };
-
-template<class CodeEmitter>
- char Emitter<CodeEmitter>::ID = 0;
-} // end anonymous namespace.
-
-/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
-/// to the specified JITCodeEmitter object.
-FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
- JITCodeEmitter &JCE) {
- return new Emitter<JITCodeEmitter>(TM, JCE);
-}
-
-template<class CodeEmitter>
-bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
- MMI = &getAnalysis<MachineModuleInfo>();
- MCE.setModuleInfo(MMI);
-
- II = TM.getSubtargetImpl()->getInstrInfo();
- TD = TM.getSubtargetImpl()->getDataLayout();
- Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
- IsPIC = TM.getRelocationModel() == Reloc::PIC_;
-
- do {
- DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
- MCE.startFunction(MF);
- for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
- MBB != E; ++MBB) {
- MCE.StartMachineBasicBlock(MBB);
- for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
- I != E; ++I) {
- const MCInstrDesc &Desc = I->getDesc();
- emitInstruction(*I, &Desc);
- // MOVPC32r is basically a call plus a pop instruction.
- if (Desc.getOpcode() == X86::MOVPC32r)
- emitInstruction(*I, &II->get(X86::POP32r));
- ++NumEmitted; // Keep track of the # of mi's emitted
- }
- }
- } while (MCE.finishFunction(MF));
-
- return false;
-}
-
-/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
-/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
-/// size, and 3) use of X86-64 extended registers.
-static unsigned determineREX(const MachineInstr &MI) {
- unsigned REX = 0;
- const MCInstrDesc &Desc = MI.getDesc();
-
- // Pseudo instructions do not need REX prefix byte.
- if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
- return 0;
- if (Desc.TSFlags & X86II::REX_W)
- REX |= 1 << 3;
-
- unsigned NumOps = Desc.getNumOperands();
- if (NumOps) {
- bool isTwoAddr = NumOps > 1 &&
- Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
-
- // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
- unsigned i = isTwoAddr ? 1 : 0;
- for (unsigned e = NumOps; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (MO.isReg()) {
- unsigned Reg = MO.getReg();
- if (X86II::isX86_64NonExtLowByteReg(Reg))
- REX |= 0x40;
- }
- }
-
- switch (Desc.TSFlags & X86II::FormMask) {
- case X86II::MRMSrcReg: {
- if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
- REX |= 1 << 2;
- i = isTwoAddr ? 2 : 1;
- for (unsigned e = NumOps; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << 0;
- }
- break;
- }
- case X86II::MRMSrcMem: {
- if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
- REX |= 1 << 2;
- unsigned Bit = 0;
- i = isTwoAddr ? 2 : 1;
- for (; i != NumOps; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << Bit;
- Bit++;
- }
- }
- break;
- }
- case X86II::MRMXm:
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m:
- case X86II::MRMDestMem: {
- unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
- i = isTwoAddr ? 1 : 0;
- if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
- REX |= 1 << 2;
- unsigned Bit = 0;
- for (; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (MO.isReg()) {
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << Bit;
- Bit++;
- }
- }
- break;
- }
- default: {
- if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
- REX |= 1 << 0;
- i = isTwoAddr ? 2 : 1;
- for (unsigned e = NumOps; i != e; ++i) {
- const MachineOperand& MO = MI.getOperand(i);
- if (X86InstrInfo::isX86_64ExtendedReg(MO))
- REX |= 1 << 2;
- }
- break;
- }
- }
- }
- return REX;
-}
-
-
-/// emitPCRelativeBlockAddress - This method keeps track of the information
-/// necessary to resolve the address of this block later and emits a dummy
-/// value.
-///
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
- // Remember where this reference was and where it is to so we can
- // deal with it later.
- MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
- X86::reloc_pcrel_word, MBB));
- MCE.emitWordLE(0);
-}
-
-/// emitGlobalAddress - Emit the specified address to the code stream assuming
-/// this is part of a "take the address of a global" instruction.
-///
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
- unsigned Reloc,
- intptr_t Disp /* = 0 */,
- intptr_t PCAdj /* = 0 */,
- bool Indirect /* = false */) {
- intptr_t RelocCST = Disp;
- if (Reloc == X86::reloc_picrel_word)
- RelocCST = PICBaseOffset;
- else if (Reloc == X86::reloc_pcrel_word)
- RelocCST = PCAdj;
- MachineRelocation MR = Indirect
- ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV),
- RelocCST, false)
- : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
- const_cast<GlobalValue *>(GV), RelocCST, false);
- MCE.addRelocation(MR);
- // The relocated value will be added to the displacement
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(Disp);
- else
- MCE.emitWordLE((int32_t)Disp);
-}
-
-/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
-/// be emitted to the current location in the function, and allow it to be PC
-/// relative.
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
- unsigned Reloc) {
- intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
-
- // X86 never needs stubs because instruction selection will always pick
- // an instruction sequence that is large enough to hold any address
- // to a symbol.
- // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
- bool NeedStub = false;
- MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
- Reloc, ES, RelocCST,
- 0, NeedStub));
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(0);
- else
- MCE.emitWordLE(0);
-}
-
-/// emitConstPoolAddress - Arrange for the address of an constant pool
-/// to be emitted to the current location in the function, and allow it to be PC
-/// relative.
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
- intptr_t Disp /* = 0 */,
- intptr_t PCAdj /* = 0 */) {
- intptr_t RelocCST = 0;
- if (Reloc == X86::reloc_picrel_word)
- RelocCST = PICBaseOffset;
- else if (Reloc == X86::reloc_pcrel_word)
- RelocCST = PCAdj;
- MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
- Reloc, CPI, RelocCST));
- // The relocated value will be added to the displacement
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(Disp);
- else
- MCE.emitWordLE((int32_t)Disp);
-}
-
-/// emitJumpTableAddress - Arrange for the address of a jump table to
-/// be emitted to the current location in the function, and allow it to be PC
-/// relative.
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
- intptr_t PCAdj /* = 0 */) {
- intptr_t RelocCST = 0;
- if (Reloc == X86::reloc_picrel_word)
- RelocCST = PICBaseOffset;
- else if (Reloc == X86::reloc_pcrel_word)
- RelocCST = PCAdj;
- MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
- Reloc, JTI, RelocCST));
- // The relocated value will be added to the displacement
- if (Reloc == X86::reloc_absolute_dword)
- MCE.emitDWordLE(0);
- else
- MCE.emitWordLE(0);
-}
-
-inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
- unsigned RM) {
- assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
- return RM | (RegOpcode << 3) | (Mod << 6);
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
- unsigned RegOpcodeFld){
- MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
- MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
- unsigned Index,
- unsigned Base) {
- // SIB byte is in the same format as the ModRMByte...
- MCE.emitByte(ModRMByte(SS, Index, Base));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
- // Output the constant in little endian byte order...
- for (unsigned i = 0; i != Size; ++i) {
- MCE.emitByte(Val & 255);
- Val >>= 8;
- }
-}
-
-/// isDisp8 - Return true if this signed displacement fits in a 8-bit
-/// sign-extended field.
-static bool isDisp8(int Value) {
- return Value == (signed char)Value;
-}
-
-static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
- const TargetMachine &TM) {
- // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
- // mechanism as 32-bit mode.
- if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
- !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
- return false;
-
- // Return true if this is a reference to a stub containing the address of the
- // global, not the global itself.
- return isGlobalStubReference(GVOp.getTargetFlags());
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
- int DispVal,
- intptr_t Adj /* = 0 */,
- bool IsPCRel /* = true */) {
- // If this is a simple integer displacement that doesn't require a relocation,
- // emit it now.
- if (!RelocOp) {
- emitConstant(DispVal, 4);
- return;
- }
-
- // Otherwise, this is something that requires a relocation. Emit it as such
- // now.
- unsigned RelocType = Is64BitMode ?
- (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (RelocOp->isGlobal()) {
- // In 64-bit static small code model, we could potentially emit absolute.
- // But it's probably not beneficial. If the MCE supports using RIP directly
- // do it, otherwise fallback to absolute (this is determined by IsPCRel).
- // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
- // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
- bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
- emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
- Adj, Indirect);
- } else if (RelocOp->isSymbol()) {
- emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
- } else if (RelocOp->isCPI()) {
- emitConstPoolAddress(RelocOp->getIndex(), RelocType,
- RelocOp->getOffset(), Adj);
- } else {
- assert(RelocOp->isJTI() && "Unexpected machine operand!");
- emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
- }
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
- unsigned Op,unsigned RegOpcodeField,
- intptr_t PCAdj) {
- const MachineOperand &Op3 = MI.getOperand(Op+3);
- int DispVal = 0;
- const MachineOperand *DispForReloc = nullptr;
-
- // Figure out what sort of displacement we have to handle here.
- if (Op3.isGlobal()) {
- DispForReloc = &Op3;
- } else if (Op3.isSymbol()) {
- DispForReloc = &Op3;
- } else if (Op3.isCPI()) {
- if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
- DispForReloc = &Op3;
- } else {
- DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
- DispVal += Op3.getOffset();
- }
- } else if (Op3.isJTI()) {
- if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
- DispForReloc = &Op3;
- } else {
- DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
- }
- } else {
- DispVal = Op3.getImm();
- }
-
- const MachineOperand &Base = MI.getOperand(Op);
- const MachineOperand &Scale = MI.getOperand(Op+1);
- const MachineOperand &IndexReg = MI.getOperand(Op+2);
-
- unsigned BaseReg = Base.getReg();
-
- // Handle %rip relative addressing.
- if (BaseReg == X86::RIP ||
- (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
- assert(IndexReg.getReg() == 0 && Is64BitMode &&
- "Invalid rip-relative address");
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
- emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
- return;
- }
-
- // Indicate that the displacement will use an pcrel or absolute reference
- // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
- // while others, unless explicit asked to use RIP, use absolute references.
- bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
-
- // Is a SIB byte needed?
- // If no BaseReg, issue a RIP relative instruction only if the MCE can
- // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
- // 2-7) and absolute references.
- unsigned BaseRegNo = -1U;
- if (BaseReg != 0 && BaseReg != X86::RIP)
- BaseRegNo = getX86RegNum(BaseReg);
-
- if (// The SIB byte must be used if there is an index register.
- IndexReg.getReg() == 0 &&
- // The SIB byte must be used if the base is ESP/RSP/R12, all of which
- // encode to an R/M value of 4, which indicates that a SIB byte is
- // present.
- BaseRegNo != N86::ESP &&
- // If there is no base register and we're in 64-bit mode, we need a SIB
- // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
- (!Is64BitMode || BaseReg != 0)) {
- if (BaseReg == 0 || // [disp32] in X86-32 mode
- BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
- emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
- return;
- }
-
- // If the base is not EBP/ESP and there is no displacement, use simple
- // indirect register encoding, this handles addresses like [EAX]. The
- // encoding for [EBP] with no displacement means [disp32] so we handle it
- // by emitting a displacement of 0 below.
- if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
- MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
- return;
- }
-
- // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
- if (!DispForReloc && isDisp8(DispVal)) {
- MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
- emitConstant(DispVal, 1);
- return;
- }
-
- // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
- MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
- emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
- return;
- }
-
- // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
- assert(IndexReg.getReg() != X86::ESP &&
- IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
-
- bool ForceDisp32 = false;
- bool ForceDisp8 = false;
- if (BaseReg == 0) {
- // If there is no base register, we emit the special case SIB byte with
- // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
- ForceDisp32 = true;
- } else if (DispForReloc) {
- // Emit the normal disp32 encoding.
- MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
- ForceDisp32 = true;
- } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
- // Emit no displacement ModR/M byte
- MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
- } else if (isDisp8(DispVal)) {
- // Emit the disp8 encoding...
- MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
- ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
- } else {
- // Emit the normal disp32 encoding...
- MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
- }
-
- // Calculate what the SS field value should be...
- static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
- unsigned SS = SSTable[Scale.getImm()];
-
- if (BaseReg == 0) {
- // Handle the SIB byte for the case where there is no base, see Intel
- // Manual 2A, table 2-7. The displacement has already been output.
- unsigned IndexRegNo;
- if (IndexReg.getReg())
- IndexRegNo = getX86RegNum(IndexReg.getReg());
- else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
- IndexRegNo = 4;
- emitSIBByte(SS, IndexRegNo, 5);
- } else {
- unsigned BaseRegNo = getX86RegNum(BaseReg);
- unsigned IndexRegNo;
- if (IndexReg.getReg())
- IndexRegNo = getX86RegNum(IndexReg.getReg());
- else
- IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
- emitSIBByte(SS, IndexRegNo, BaseRegNo);
- }
-
- // Do we need to output a displacement?
- if (ForceDisp8) {
- emitConstant(DispVal, 1);
- } else if (DispVal != 0 || ForceDisp32) {
- emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
- }
-}
-
-static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
- unsigned Opcode) {
- const MCInstrDesc *Desc = &II->get(Opcode);
- MI.setDesc(*Desc);
- return Desc;
-}
-
-/// Is16BitMemOperand - Return true if the specified instruction has
-/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
-static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
- const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-
-/// Is32BitMemOperand - Return true if the specified instruction has
-/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
-static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
- const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-
-/// Is64BitMemOperand - Return true if the specified instruction has
-/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
-#ifndef NDEBUG
-static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
- const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
- const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
-
- if ((BaseReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
- (IndexReg.getReg() != 0 &&
- X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
- return true;
- return false;
-}
-#endif
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const {
- // Emit the operand size opcode prefix as needed.
- if (((TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift) == X86II::OpSize16)
- MCE.emitByte(0x66);
-
- switch (Desc->TSFlags & X86II::OpPrefixMask) {
- case X86II::PD: // 66
- MCE.emitByte(0x66);
- break;
- case X86II::XS: // F3
- MCE.emitByte(0xF3);
- break;
- case X86II::XD: // F2
- MCE.emitByte(0xF2);
- break;
- }
-
- // Handle REX prefix.
- if (Is64BitMode) {
- if (unsigned REX = determineREX(MI))
- MCE.emitByte(0x40 | REX);
- }
-
- // 0x0F escape code must be emitted just before the opcode.
- switch (Desc->TSFlags & X86II::OpMapMask) {
- case X86II::TB: // Two-byte opcode map
- case X86II::T8: // 0F 38
- case X86II::TA: // 0F 3A
- MCE.emitByte(0x0F);
- break;
- }
-
- switch (Desc->TSFlags & X86II::OpMapMask) {
- case X86II::T8: // 0F 38
- MCE.emitByte(0x38);
- break;
- case X86II::TA: // 0F 3A
- MCE.emitByte(0x3A);
- break;
- }
-}
-
-// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
-// 0-7 and the difference between the 2 groups is given by the REX prefix.
-// In the VEX prefix, registers are seen sequencially from 0-15 and encoded
-// in 1's complement form, example:
-//
-// ModRM field => XMM9 => 1
-// VEX.VVVV => XMM9 => ~9
-//
-// See table 4-35 of Intel AVX Programming Reference for details.
-template<class CodeEmitter>
-unsigned char
-Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
- unsigned OpNum) const {
- unsigned SrcReg = MI.getOperand(OpNum).getReg();
- unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
- if (X86II::isX86_64ExtendedReg(SrcReg))
- SrcRegNum |= 8;
-
- // The registers represented through VEX_VVVV should
- // be encoded in 1's complement form.
- return (~SrcRegNum) & 0xf;
-}
-
-/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI) const {
- if (MemOperand < 0)
- return; // No memory operand
-
- // Check for explicit segment override on memory operand.
- switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
- default: llvm_unreachable("Unknown segment register!");
- case 0: break;
- case X86::CS: MCE.emitByte(0x2E); break;
- case X86::SS: MCE.emitByte(0x36); break;
- case X86::DS: MCE.emitByte(0x3E); break;
- case X86::ES: MCE.emitByte(0x26); break;
- case X86::FS: MCE.emitByte(0x64); break;
- case X86::GS: MCE.emitByte(0x65); break;
- }
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
- int MemOperand,
- const MachineInstr &MI,
- const MCInstrDesc *Desc) const {
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
-
- // VEX_R: opcode externsion equivalent to REX.R in
- // 1's complement (inverted) form
- //
- // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
- // 0: Same as REX_R=1 (64 bit mode only)
- //
- unsigned char VEX_R = 0x1;
-
- // VEX_X: equivalent to REX.X, only used when a
- // register is used for index in SIB Byte.
- //
- // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
- // 0: Same as REX.X=1 (64-bit mode only)
- unsigned char VEX_X = 0x1;
-
- // VEX_B:
- //
- // 1: Same as REX_B=0 (ignored in 32-bit mode)
- // 0: Same as REX_B=1 (64 bit mode only)
- //
- unsigned char VEX_B = 0x1;
-
- // VEX_W: opcode specific (use like REX.W, or used for
- // opcode extension, or ignored, depending on the opcode byte)
- unsigned char VEX_W = 0;
-
- // VEX_5M (VEX m-mmmmm field):
- //
- // 0b00000: Reserved for future use
- // 0b00001: implied 0F leading opcode
- // 0b00010: implied 0F 38 leading opcode bytes
- // 0b00011: implied 0F 3A leading opcode bytes
- // 0b00100-0b11111: Reserved for future use
- // 0b01000: XOP map select - 08h instructions with imm byte
- // 0b01001: XOP map select - 09h instructions with no imm byte
- // 0b01010: XOP map select - 0Ah instructions with imm dword
- unsigned char VEX_5M = 0;
-
- // VEX_4V (VEX vvvv field): a register specifier
- // (in 1's complement form) or 1111 if unused.
- unsigned char VEX_4V = 0xf;
-
- // VEX_L (Vector Length):
- //
- // 0: scalar or 128-bit vector
- // 1: 256-bit vector
- //
- unsigned char VEX_L = 0;
-
- // VEX_PP: opcode extension providing equivalent
- // functionality of a SIMD prefix
- //
- // 0b00: None
- // 0b01: 66
- // 0b10: F3
- // 0b11: F2
- //
- unsigned char VEX_PP = 0;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
- VEX_W = 1;
-
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
- VEX_L = 1;
-
- switch (TSFlags & X86II::OpPrefixMask) {
- default: break; // VEX_PP already correct
- case X86II::PD: VEX_PP = 0x1; break; // 66
- case X86II::XS: VEX_PP = 0x2; break; // F3
- case X86II::XD: VEX_PP = 0x3; break; // F2
- }
-
- switch (TSFlags & X86II::OpMapMask) {
- default: llvm_unreachable("Invalid prefix!");
- case X86II::TB: VEX_5M = 0x1; break; // 0F
- case X86II::T8: VEX_5M = 0x2; break; // 0F 38
- case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
- case X86II::XOP8: VEX_5M = 0x8; break;
- case X86II::XOP9: VEX_5M = 0x9; break;
- case X86II::XOPA: VEX_5M = 0xA; break;
- }
-
- // Classify VEX_B, VEX_4V, VEX_R, VEX_X
- unsigned NumOps = Desc->getNumOperands();
- unsigned CurOp = 0;
- if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
- ++CurOp;
- else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
- assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
- // Special case for GATHER with 2 TIED_TO operands
- // Skip the first 2 operands: dst, mask_wb
- CurOp += 2;
- }
-
- switch (TSFlags & X86II::FormMask) {
- default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
- case X86II::RawFrm:
- break;
- case X86II::MRMDestMem: {
- // MRMDestMem instructions forms:
- // MemAddr, src1(ModR/M)
- // MemAddr, src1(VEX_4V), src2(ModR/M)
- // MemAddr, src1(ModR/M), imm8
- //
- if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
- VEX_B = 0x0;
- if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
- VEX_X = 0x0;
-
- CurOp = X86::AddrNumOperands;
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- const MachineOperand &MO = MI.getOperand(CurOp);
- if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
- VEX_R = 0x0;
- break;
- }
- case X86II::MRMSrcMem:
- // MRMSrcMem instructions forms:
- // src1(ModR/M), MemAddr
- // src1(ModR/M), src2(VEX_4V), MemAddr
- // src1(ModR/M), MemAddr, imm8
- // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
- //
- // FMA4:
- // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
- // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- CurOp++;
-
- if (HasVEX_4V) {
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- CurOp++;
- }
-
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
- VEX_B = 0x0;
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
- VEX_X = 0x0;
-
- if (HasVEX_4VOp3)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
- break;
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m: {
- // MRM[0-9]m instructions forms:
- // MemAddr
- // src1(VEX_4V), MemAddr
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
- VEX_B = 0x0;
- if (X86II::isX86_64ExtendedReg(
- MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
- VEX_X = 0x0;
- break;
- }
- case X86II::MRMSrcReg:
- // MRMSrcReg instructions forms:
- // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
- // dst(ModR/M), src1(ModR/M)
- // dst(ModR/M), src1(ModR/M), imm8
- //
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- CurOp++;
-
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- if (HasMemOp4) // Skip second register source (encoded in I8IMM)
- CurOp++;
-
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0x0;
- CurOp++;
- if (HasVEX_4VOp3)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- break;
- case X86II::MRMDestReg:
- // MRMDestReg instructions forms:
- // dst(ModR/M), src(ModR/M)
- // dst(ModR/M), src(ModR/M), imm8
- // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0x0;
- CurOp++;
-
- if (HasVEX_4V)
- VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
-
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_R = 0x0;
- break;
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r:
- // MRM0r-MRM7r instructions forms:
- // dst(VEX_4V), src(ModR/M), imm8
- VEX_4V = getVEXRegisterEncoding(MI, CurOp);
- CurOp++;
-
- if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
- VEX_B = 0x0;
- break;
- }
-
- // Emit segment override opcode prefix as needed.
- emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
-
- // VEX opcode prefix can have 2 or 3 bytes
- //
- // 3 bytes:
- // +-----+ +--------------+ +-------------------+
- // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
- // +-----+ +--------------+ +-------------------+
- // 2 bytes:
- // +-----+ +-------------------+
- // | C5h | | R | vvvv | L | pp |
- // +-----+ +-------------------+
- //
- // XOP uses a similar prefix:
- // +-----+ +--------------+ +-------------------+
- // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
- // +-----+ +--------------+ +-------------------+
- unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
-
- // Can this use the 2 byte VEX prefix?
- if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
- MCE.emitByte(0xC5);
- MCE.emitByte(LastByte | (VEX_R << 7));
- return;
- }
-
- // 3 byte VEX prefix
- MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4);
- MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
- MCE.emitByte(LastByte | (VEX_W << 7));
-}
-
-template<class CodeEmitter>
-void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
- const MCInstrDesc *Desc) {
- DEBUG(dbgs() << MI);
-
- // If this is a pseudo instruction, lower it.
- switch (Desc->getOpcode()) {
- case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
- case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
- case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
- case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
- case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
- case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
- case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
- case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
- case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
- case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
- case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
- case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
- case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
- case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
- case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
- case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
- case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
- }
-
-
- MCE.processDebugLoc(MI.getDebugLoc(), true);
-
- unsigned Opcode = Desc->Opcode;
-
- // If this is a two-address instruction, skip one of the register operands.
- unsigned NumOps = Desc->getNumOperands();
- unsigned CurOp = 0;
- if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
- ++CurOp;
- else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
- assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
- // Special case for GATHER with 2 TIED_TO operands
- // Skip the first 2 operands: dst, mask_wb
- CurOp += 2;
- }
-
- uint64_t TSFlags = Desc->TSFlags;
-
- // Encoding type for this instruction.
- unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
- X86II::EncodingShift;
-
- // It uses the VEX.VVVV field?
- bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
- bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
- bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
- const unsigned MemOp4_I8IMMOperand = 2;
-
- // Determine where the memory operand starts, if present.
- int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
- if (MemoryOperand != -1) MemoryOperand += CurOp;
-
- // Emit the lock opcode prefix as needed.
- if (Desc->TSFlags & X86II::LOCK)
- MCE.emitByte(0xF0);
-
- // Emit segment override opcode prefix as needed.
- emitSegmentOverridePrefix(TSFlags, MemoryOperand, MI);
-
- // Emit the repeat opcode prefix as needed.
- if (Desc->TSFlags & X86II::REP)
- MCE.emitByte(0xF3);
-
- // Emit the address size opcode prefix as needed.
- bool need_address_override;
- if (TSFlags & X86II::AdSize) {
- need_address_override = true;
- } else if (MemoryOperand < 0) {
- need_address_override = false;
- } else if (Is64BitMode) {
- assert(!Is16BitMemOperand(MI, MemoryOperand));
- need_address_override = Is32BitMemOperand(MI, MemoryOperand);
- } else {
- assert(!Is64BitMemOperand(MI, MemoryOperand));
- need_address_override = Is16BitMemOperand(MI, MemoryOperand);
- }
-
- if (need_address_override)
- MCE.emitByte(0x67);
-
- if (Encoding == 0)
- emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
- else
- emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
-
- unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
- switch (TSFlags & X86II::FormMask) {
- default:
- llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
- case X86II::Pseudo:
- // Remember the current PC offset, this is the PIC relocation
- // base address.
- switch (Opcode) {
- default:
- llvm_unreachable("pseudo instructions should be removed before code"
- " emission");
- // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
- // to make it slightly easier to see.
- case X86::Int_MemBarrier:
- DEBUG(dbgs() << "#MEMBARRIER\n");
- break;
-
- case TargetOpcode::INLINEASM:
- // We allow inline assembler nodes with empty bodies - they can
- // implicitly define registers, which is ok for JIT.
- if (MI.getOperand(0).getSymbolName()[0]) {
- DebugLoc DL = MI.getDebugLoc();
- DL.print(MI.getParent()->getParent()->getFunction()->getContext(),
- llvm::errs());
- report_fatal_error("JIT does not support inline asm!");
- }
- break;
- case TargetOpcode::DBG_VALUE:
- case TargetOpcode::CFI_INSTRUCTION:
- break;
- case TargetOpcode::GC_LABEL:
- case TargetOpcode::EH_LABEL:
- MCE.emitLabel(MI.getOperand(0).getMCSymbol());
- break;
-
- case TargetOpcode::IMPLICIT_DEF:
- case TargetOpcode::KILL:
- break;
-
- case X86::SEH_PushReg:
- case X86::SEH_SaveReg:
- case X86::SEH_SaveXMM:
- case X86::SEH_StackAlloc:
- case X86::SEH_SetFrame:
- case X86::SEH_PushFrame:
- case X86::SEH_EndPrologue:
- case X86::SEH_Epilogue:
- break;
-
- case X86::MOVPC32r: {
- // This emits the "call" portion of this pseudo instruction.
- MCE.emitByte(BaseOpcode);
- emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
- // Remember PIC base.
- PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
- X86JITInfo *JTI = TM.getSubtargetImpl()->getJITInfo();
- JTI->setPICBase(MCE.getCurrentPCValue());
- break;
- }
- }
- CurOp = NumOps;
- break;
- case X86II::RawFrm: {
- MCE.emitByte(BaseOpcode);
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO = MI.getOperand(CurOp++);
-
- DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
- DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
- DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
- DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
- DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
-
- if (MO.isMBB()) {
- emitPCRelativeBlockAddress(MO.getMBB());
- break;
- }
-
- if (MO.isGlobal()) {
- emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
- MO.getOffset(), 0);
- break;
- }
-
- if (MO.isSymbol()) {
- emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
- break;
- }
-
- // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
- if (MO.isJTI()) {
- emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
- break;
- }
-
- assert(MO.isImm() && "Unknown RawFrm operand!");
- if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
- // Fix up immediate operand for pc relative calls.
- intptr_t Imm = (intptr_t)MO.getImm();
- Imm = Imm - MCE.getCurrentPCValue() - 4;
- emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
- } else
- emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
- break;
- }
-
- case X86II::AddRegFrm: {
- MCE.emitByte(BaseOpcode +
- getX86RegNum(MI.getOperand(CurOp++).getReg()));
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
- if (MO1.isImm()) {
- emitConstant(MO1.getImm(), Size);
- break;
- }
-
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV32ri64)
- rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
- // This should not occur on Darwin for relocatable objects.
- if (Opcode == X86::MOV64ri)
- rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
- if (MO1.isGlobal()) {
- bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- Indirect);
- } else if (MO1.isSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isCPI())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJTI())
- emitJumpTableAddress(MO1.getIndex(), rt);
- break;
- }
-
- case X86II::MRMDestReg: {
- MCE.emitByte(BaseOpcode);
-
- unsigned SrcRegNum = CurOp+1;
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- SrcRegNum++;
-
- emitRegModRMByte(MI.getOperand(CurOp).getReg(),
- getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
- CurOp = SrcRegNum + 1;
- break;
- }
- case X86II::MRMDestMem: {
- MCE.emitByte(BaseOpcode);
-
- unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- SrcRegNum++;
- emitMemModRMByte(MI, CurOp,
- getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
- CurOp = SrcRegNum + 1;
- break;
- }
-
- case X86II::MRMSrcReg: {
- MCE.emitByte(BaseOpcode);
-
- unsigned SrcRegNum = CurOp+1;
- if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
- ++SrcRegNum;
-
- if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
- ++SrcRegNum;
-
- emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
- getX86RegNum(MI.getOperand(CurOp).getReg()));
- // 2 operands skipped with HasMemOp4, compensate accordingly
- CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
- if (HasVEX_4VOp3)
- ++CurOp;
- break;
- }
- case X86II::MRMSrcMem: {
- int AddrOperands = X86::AddrNumOperands;
- unsigned FirstMemOp = CurOp+1;
- if (HasVEX_4V) {
- ++AddrOperands;
- ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
- }
- if (HasMemOp4) // Skip second register source (encoded in I8IMM)
- ++FirstMemOp;
-
- MCE.emitByte(BaseOpcode);
-
- intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
- X86II::getSizeOfImm(Desc->TSFlags) : 0;
- emitMemModRMByte(MI, FirstMemOp,
- getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
- CurOp += AddrOperands + 1;
- if (HasVEX_4VOp3)
- ++CurOp;
- break;
- }
-
- case X86II::MRMXr:
- case X86II::MRM0r: case X86II::MRM1r:
- case X86II::MRM2r: case X86II::MRM3r:
- case X86II::MRM4r: case X86II::MRM5r:
- case X86II::MRM6r: case X86II::MRM7r: {
- if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
- ++CurOp;
- MCE.emitByte(BaseOpcode);
- uint64_t Form = (Desc->TSFlags & X86II::FormMask);
- emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
- (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r);
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO1 = MI.getOperand(CurOp++);
- unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
- if (MO1.isImm()) {
- emitConstant(MO1.getImm(), Size);
- break;
- }
-
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64ri32)
- rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
- if (MO1.isGlobal()) {
- bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
- emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
- Indirect);
- } else if (MO1.isSymbol())
- emitExternalSymbolAddress(MO1.getSymbolName(), rt);
- else if (MO1.isCPI())
- emitConstPoolAddress(MO1.getIndex(), rt);
- else if (MO1.isJTI())
- emitJumpTableAddress(MO1.getIndex(), rt);
- break;
- }
-
- case X86II::MRMXm:
- case X86II::MRM0m: case X86II::MRM1m:
- case X86II::MRM2m: case X86II::MRM3m:
- case X86II::MRM4m: case X86II::MRM5m:
- case X86II::MRM6m: case X86II::MRM7m: {
- if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
- ++CurOp;
- intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
- (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
- X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
-
- MCE.emitByte(BaseOpcode);
- uint64_t Form = (Desc->TSFlags & X86II::FormMask);
- emitMemModRMByte(MI, CurOp, (Form==X86II::MRMXm) ? 0 : Form - X86II::MRM0m,
- PCAdj);
- CurOp += X86::AddrNumOperands;
-
- if (CurOp == NumOps)
- break;
-
- const MachineOperand &MO = MI.getOperand(CurOp++);
- unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
- if (MO.isImm()) {
- emitConstant(MO.getImm(), Size);
- break;
- }
-
- unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
- : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
- if (Opcode == X86::MOV64mi32)
- rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
- if (MO.isGlobal()) {
- bool Indirect = gvNeedsNonLazyPtr(MO, TM);
- emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
- Indirect);
- } else if (MO.isSymbol())
- emitExternalSymbolAddress(MO.getSymbolName(), rt);
- else if (MO.isCPI())
- emitConstPoolAddress(MO.getIndex(), rt);
- else if (MO.isJTI())
- emitJumpTableAddress(MO.getIndex(), rt);
- break;
- }
-
- case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
- case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
- case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
- case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
- case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
- case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
- case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
- case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
- case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
- case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
- case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
- case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
- case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
- case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
- case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
- case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
- case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
- case X86II::MRM_FE: case X86II::MRM_FF:
- MCE.emitByte(BaseOpcode);
-
- unsigned char MRM;
- switch (TSFlags & X86II::FormMask) {
- default: llvm_unreachable("Invalid Form");
- case X86II::MRM_C0: MRM = 0xC0; break;
- case X86II::MRM_C1: MRM = 0xC1; break;
- case X86II::MRM_C2: MRM = 0xC2; break;
- case X86II::MRM_C3: MRM = 0xC3; break;
- case X86II::MRM_C4: MRM = 0xC4; break;
- case X86II::MRM_C8: MRM = 0xC8; break;
- case X86II::MRM_C9: MRM = 0xC9; break;
- case X86II::MRM_CA: MRM = 0xCA; break;
- case X86II::MRM_CB: MRM = 0xCB; break;
- case X86II::MRM_CF: MRM = 0xCF; break;
- case X86II::MRM_D0: MRM = 0xD0; break;
- case X86II::MRM_D1: MRM = 0xD1; break;
- case X86II::MRM_D4: MRM = 0xD4; break;
- case X86II::MRM_D5: MRM = 0xD5; break;
- case X86II::MRM_D6: MRM = 0xD6; break;
- case X86II::MRM_D7: MRM = 0xD7; break;
- case X86II::MRM_D8: MRM = 0xD8; break;
- case X86II::MRM_D9: MRM = 0xD9; break;
- case X86II::MRM_DA: MRM = 0xDA; break;
- case X86II::MRM_DB: MRM = 0xDB; break;
- case X86II::MRM_DC: MRM = 0xDC; break;
- case X86II::MRM_DD: MRM = 0xDD; break;
- case X86II::MRM_DE: MRM = 0xDE; break;
- case X86II::MRM_DF: MRM = 0xDF; break;
- case X86II::MRM_E0: MRM = 0xE0; break;
- case X86II::MRM_E1: MRM = 0xE1; break;
- case X86II::MRM_E2: MRM = 0xE2; break;
- case X86II::MRM_E3: MRM = 0xE3; break;
- case X86II::MRM_E4: MRM = 0xE4; break;
- case X86II::MRM_E5: MRM = 0xE5; break;
- case X86II::MRM_E8: MRM = 0xE8; break;
- case X86II::MRM_E9: MRM = 0xE9; break;
- case X86II::MRM_EA: MRM = 0xEA; break;
- case X86II::MRM_EB: MRM = 0xEB; break;
- case X86II::MRM_EC: MRM = 0xEC; break;
- case X86II::MRM_ED: MRM = 0xED; break;
- case X86II::MRM_EE: MRM = 0xEE; break;
- case X86II::MRM_F0: MRM = 0xF0; break;
- case X86II::MRM_F1: MRM = 0xF1; break;
- case X86II::MRM_F2: MRM = 0xF2; break;
- case X86II::MRM_F3: MRM = 0xF3; break;
- case X86II::MRM_F4: MRM = 0xF4; break;
- case X86II::MRM_F5: MRM = 0xF5; break;
- case X86II::MRM_F6: MRM = 0xF6; break;
- case X86II::MRM_F7: MRM = 0xF7; break;
- case X86II::MRM_F8: MRM = 0xF8; break;
- case X86II::MRM_F9: MRM = 0xF9; break;
- case X86II::MRM_FA: MRM = 0xFA; break;
- case X86II::MRM_FB: MRM = 0xFB; break;
- case X86II::MRM_FC: MRM = 0xFC; break;
- case X86II::MRM_FD: MRM = 0xFD; break;
- case X86II::MRM_FE: MRM = 0xFE; break;
- case X86II::MRM_FF: MRM = 0xFF; break;
- }
- MCE.emitByte(MRM);
- break;
- }
-
- while (CurOp != NumOps && NumOps - CurOp <= 2) {
- // The last source register of a 4 operand instruction in AVX is encoded
- // in bits[7:4] of a immediate byte.
- if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
- const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
- : CurOp);
- ++CurOp;
- unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
- if (X86II::isX86_64ExtendedReg(MO.getReg()))
- RegNum |= 1 << 7;
- // If there is an additional 5th operand it must be an immediate, which
- // is encoded in bits[3:0]
- if (CurOp != NumOps) {
- const MachineOperand &MIMM = MI.getOperand(CurOp++);
- if (MIMM.isImm()) {
- unsigned Val = MIMM.getImm();
- assert(Val < 16 && "Immediate operand value out of range");
- RegNum |= Val;
- }
- }
- emitConstant(RegNum, 1);
- } else {
- emitConstant(MI.getOperand(CurOp++).getImm(),
- X86II::getSizeOfImm(Desc->TSFlags));
- }
- }
-
- if (!MI.isVariadic() && CurOp != NumOps) {
-#ifndef NDEBUG
- dbgs() << "Cannot encode all operands of: " << MI << "\n";
-#endif
- llvm_unreachable(nullptr);
- }
-
- MCE.processDebugLoc(MI.getDebugLoc(), false);
-}
diff --git a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
index 1f53b7cd791..7c973c2e55d 100644
--- a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
+++ b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -24,6 +24,7 @@
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
diff --git a/llvm/lib/Target/X86/X86InstrInfo.cpp b/llvm/lib/Target/X86/X86InstrInfo.cpp
index 0d46f706906..f14179603eb 100644
--- a/llvm/lib/Target/X86/X86InstrInfo.cpp
+++ b/llvm/lib/Target/X86/X86InstrInfo.cpp
@@ -26,6 +26,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCExpr.h"
diff --git a/llvm/lib/Target/X86/X86JITInfo.cpp b/llvm/lib/Target/X86/X86JITInfo.cpp
deleted file mode 100644
index a082c4f8b0e..00000000000
--- a/llvm/lib/Target/X86/X86JITInfo.cpp
+++ /dev/null
@@ -1,588 +0,0 @@
-//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the JIT interfaces for the X86 target.
-//
-//===----------------------------------------------------------------------===//
-
-#include "X86JITInfo.h"
-#include "X86Relocations.h"
-#include "X86Subtarget.h"
-#include "X86TargetMachine.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/Valgrind.h"
-#include <cstdlib>
-#include <cstring>
-using namespace llvm;
-
-#define DEBUG_TYPE "jit"
-
-// Determine the platform we're running on
-#if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64)
-# define X86_64_JIT
-#elif defined(__i386__) || defined(i386) || defined(_M_IX86)
-# define X86_32_JIT
-#endif
-
-void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
- unsigned char *OldByte = (unsigned char *)Old;
- *OldByte++ = 0xE9; // Emit JMP opcode.
- unsigned *OldWord = (unsigned *)OldByte;
- unsigned NewAddr = (intptr_t)New;
- unsigned OldAddr = (intptr_t)OldWord;
- *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
-
- // X86 doesn't need to invalidate the processor cache, so just invalidate
- // Valgrind's cache directly.
- sys::ValgrindDiscardTranslations(Old, 5);
-}
-
-
-/// JITCompilerFunction - This contains the address of the JIT function used to
-/// compile a function lazily.
-static TargetJITInfo::JITCompilerFn JITCompilerFunction;
-
-// Get the ASMPREFIX for the current host. This is often '_'.
-#ifndef __USER_LABEL_PREFIX__
-#define __USER_LABEL_PREFIX__
-#endif
-#define GETASMPREFIX2(X) #X
-#define GETASMPREFIX(X) GETASMPREFIX2(X)
-#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
-
-// For ELF targets, use a .size and .type directive, to let tools
-// know the extent of functions defined in assembler.
-#if defined(__ELF__)
-# define SIZE(sym) ".size " #sym ", . - " #sym "\n"
-# define TYPE_FUNCTION(sym) ".type " #sym ", @function\n"
-#else
-# define SIZE(sym)
-# define TYPE_FUNCTION(sym)
-#endif
-
-// Provide a convenient way for disabling usage of CFI directives.
-// This is needed for old/broken assemblers (for example, gas on
-// Darwin is pretty old and doesn't support these directives)
-#if defined(__APPLE__)
-# define CFI(x)
-#else
-// FIXME: Disable this until we really want to use it. Also, we will
-// need to add some workarounds for compilers, which support
-// only subset of these directives.
-# define CFI(x)
-#endif
-
-// Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional
-// callee saved registers, for the fastcc calling convention.
-extern "C" {
-#if defined(X86_64_JIT)
-# ifndef _MSC_VER
- // No need to save EAX/EDX for X86-64.
- void X86CompilationCallback(void);
- asm(
- ".text\n"
- ".align 8\n"
- ".globl " ASMPREFIX "X86CompilationCallback\n"
- TYPE_FUNCTION(X86CompilationCallback)
- ASMPREFIX "X86CompilationCallback:\n"
- CFI(".cfi_startproc\n")
- // Save RBP
- "pushq %rbp\n"
- CFI(".cfi_def_cfa_offset 16\n")
- CFI(".cfi_offset %rbp, -16\n")
- // Save RSP
- "movq %rsp, %rbp\n"
- CFI(".cfi_def_cfa_register %rbp\n")
- // Save all int arg registers
- "pushq %rdi\n"
- CFI(".cfi_rel_offset %rdi, 0\n")
- "pushq %rsi\n"
- CFI(".cfi_rel_offset %rsi, 8\n")
- "pushq %rdx\n"
- CFI(".cfi_rel_offset %rdx, 16\n")
- "pushq %rcx\n"
- CFI(".cfi_rel_offset %rcx, 24\n")
- "pushq %r8\n"
- CFI(".cfi_rel_offset %r8, 32\n")
- "pushq %r9\n"
- CFI(".cfi_rel_offset %r9, 40\n")
- // Align stack on 16-byte boundary. ESP might not be properly aligned
- // (8 byte) if this is called from an indirect stub.
- "andq $-16, %rsp\n"
- // Save all XMM arg registers
- "subq $128, %rsp\n"
- "movaps %xmm0, (%rsp)\n"
- "movaps %xmm1, 16(%rsp)\n"
- "movaps %xmm2, 32(%rsp)\n"
- "movaps %xmm3, 48(%rsp)\n"
- "movaps %xmm4, 64(%rsp)\n"
- "movaps %xmm5, 80(%rsp)\n"
- "movaps %xmm6, 96(%rsp)\n"
- "movaps %xmm7, 112(%rsp)\n"
- // JIT callee
-#if defined(_WIN64) || defined(__CYGWIN__)
- "subq $32, %rsp\n"
- "movq %rbp, %rcx\n" // Pass prev frame and return address
- "movq 8(%rbp), %rdx\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
- "addq $32, %rsp\n"
-#else
- "movq %rbp, %rdi\n" // Pass prev frame and return address
- "movq 8(%rbp), %rsi\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
-#endif
- // Restore all XMM arg registers
- "movaps 112(%rsp), %xmm7\n"
- "movaps 96(%rsp), %xmm6\n"
- "movaps 80(%rsp), %xmm5\n"
- "movaps 64(%rsp), %xmm4\n"
- "movaps 48(%rsp), %xmm3\n"
- "movaps 32(%rsp), %xmm2\n"
- "movaps 16(%rsp), %xmm1\n"
- "movaps (%rsp), %xmm0\n"
- // Restore RSP
- "movq %rbp, %rsp\n"
- CFI(".cfi_def_cfa_register %rsp\n")
- // Restore all int arg registers
- "subq $48, %rsp\n"
- CFI(".cfi_adjust_cfa_offset 48\n")
- "popq %r9\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %r9\n")
- "popq %r8\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %r8\n")
- "popq %rcx\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rcx\n")
- "popq %rdx\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rdx\n")
- "popq %rsi\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rsi\n")
- "popq %rdi\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rdi\n")
- // Restore RBP
- "popq %rbp\n"
- CFI(".cfi_adjust_cfa_offset -8\n")
- CFI(".cfi_restore %rbp\n")
- "ret\n"
- CFI(".cfi_endproc\n")
- SIZE(X86CompilationCallback)
- );
-# else
- // No inline assembler support on this platform. The routine is in external
- // file.
- void X86CompilationCallback();
-
-# endif
-#elif defined (X86_32_JIT)
-# ifndef _MSC_VER
- void X86CompilationCallback(void);
- asm(
- ".text\n"
- ".align 8\n"
- ".globl " ASMPREFIX "X86CompilationCallback\n"
- TYPE_FUNCTION(X86CompilationCallback)
- ASMPREFIX "X86CompilationCallback:\n"
- CFI(".cfi_startproc\n")
- "pushl %ebp\n"
- CFI(".cfi_def_cfa_offset 8\n")
- CFI(".cfi_offset %ebp, -8\n")
- "movl %esp, %ebp\n" // Standard prologue
- CFI(".cfi_def_cfa_register %ebp\n")
- "pushl %eax\n"
- CFI(".cfi_rel_offset %eax, 0\n")
- "pushl %edx\n" // Save EAX/EDX/ECX
- CFI(".cfi_rel_offset %edx, 4\n")
- "pushl %ecx\n"
- CFI(".cfi_rel_offset %ecx, 8\n")
-# if defined(__APPLE__)
- "andl $-16, %esp\n" // Align ESP on 16-byte boundary
-# endif
- "subl $16, %esp\n"
- "movl 4(%ebp), %eax\n" // Pass prev frame and return address
- "movl %eax, 4(%esp)\n"
- "movl %ebp, (%esp)\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
- "movl %ebp, %esp\n" // Restore ESP
- CFI(".cfi_def_cfa_register %esp\n")
- "subl $12, %esp\n"
- CFI(".cfi_adjust_cfa_offset 12\n")
- "popl %ecx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ecx\n")
- "popl %edx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %edx\n")
- "popl %eax\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %eax\n")
- "popl %ebp\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ebp\n")
- "ret\n"
- CFI(".cfi_endproc\n")
- SIZE(X86CompilationCallback)
- );
-
- // Same as X86CompilationCallback but also saves XMM argument registers.
- void X86CompilationCallback_SSE(void);
- asm(
- ".text\n"
- ".align 8\n"
- ".globl " ASMPREFIX "X86CompilationCallback_SSE\n"
- TYPE_FUNCTION(X86CompilationCallback_SSE)
- ASMPREFIX "X86CompilationCallback_SSE:\n"
- CFI(".cfi_startproc\n")
- "pushl %ebp\n"
- CFI(".cfi_def_cfa_offset 8\n")
- CFI(".cfi_offset %ebp, -8\n")
- "movl %esp, %ebp\n" // Standard prologue
- CFI(".cfi_def_cfa_register %ebp\n")
- "pushl %eax\n"
- CFI(".cfi_rel_offset %eax, 0\n")
- "pushl %edx\n" // Save EAX/EDX/ECX
- CFI(".cfi_rel_offset %edx, 4\n")
- "pushl %ecx\n"
- CFI(".cfi_rel_offset %ecx, 8\n")
- "andl $-16, %esp\n" // Align ESP on 16-byte boundary
- // Save all XMM arg registers
- "subl $64, %esp\n"
- // FIXME: provide frame move information for xmm registers.
- // This can be tricky, because CFA register is ebp (unaligned)
- // and we need to produce offsets relative to it.
- "movaps %xmm0, (%esp)\n"
- "movaps %xmm1, 16(%esp)\n"
- "movaps %xmm2, 32(%esp)\n"
- "movaps %xmm3, 48(%esp)\n"
- "subl $16, %esp\n"
- "movl 4(%ebp), %eax\n" // Pass prev frame and return address
- "movl %eax, 4(%esp)\n"
- "movl %ebp, (%esp)\n"
- "call " ASMPREFIX "LLVMX86CompilationCallback2\n"
- "addl $16, %esp\n"
- "movaps 48(%esp), %xmm3\n"
- CFI(".cfi_restore %xmm3\n")
- "movaps 32(%esp), %xmm2\n"
- CFI(".cfi_restore %xmm2\n")
- "movaps 16(%esp), %xmm1\n"
- CFI(".cfi_restore %xmm1\n")
- "movaps (%esp), %xmm0\n"
- CFI(".cfi_restore %xmm0\n")
- "movl %ebp, %esp\n" // Restore ESP
- CFI(".cfi_def_cfa_register esp\n")
- "subl $12, %esp\n"
- CFI(".cfi_adjust_cfa_offset 12\n")
- "popl %ecx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ecx\n")
- "popl %edx\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %edx\n")
- "popl %eax\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %eax\n")
- "popl %ebp\n"
- CFI(".cfi_adjust_cfa_offset -4\n")
- CFI(".cfi_restore %ebp\n")
- "ret\n"
- CFI(".cfi_endproc\n")
- SIZE(X86CompilationCallback_SSE)
- );
-# else
- void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr);
-
- _declspec(naked) void X86CompilationCallback(void) {
- __asm {
- push ebp
- mov ebp, esp
- push eax
- push edx
- push ecx
- and esp, -16
- sub esp, 16
- mov eax, dword ptr [ebp+4]
- mov dword ptr [esp+4], eax
- mov dword ptr [esp], ebp
- call LLVMX86CompilationCallback2
- mov esp, ebp
- sub esp, 12
- pop ecx
- pop edx
- pop eax
- pop ebp
- ret
- }
- }
-
-# endif // _MSC_VER
-
-#else // Not an i386 host
- void X86CompilationCallback() {
- llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!");
- }
-#endif
-}
-
-/// This is the target-specific function invoked by the
-/// function stub when we did not know the real target of a call. This function
-/// must locate the start of the stub or call site and pass it into the JIT
-/// compiler function.
-extern "C" {
-LLVM_ATTRIBUTE_USED // Referenced from inline asm.
-LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
- intptr_t RetAddr) {
- intptr_t *RetAddrLoc = &StackPtr[1];
- // We are reading raw stack data here. Tell MemorySanitizer that it is
- // sufficiently initialized.
- __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc));
- assert(*RetAddrLoc == RetAddr &&
- "Could not find return address on the stack!");
-
- // It's a stub if there is an interrupt marker after the call.
- bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE;
-
- // The call instruction should have pushed the return value onto the stack...
-#if defined (X86_64_JIT)
- RetAddr--; // Backtrack to the reference itself...
-#else
- RetAddr -= 4; // Backtrack to the reference itself...
-#endif
-
-#if 0
- DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr
- << " ESP=" << (void*)StackPtr
- << ": Resolving call to function: "
- << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
-#endif
-
- // Sanity check to make sure this really is a call instruction.
-#if defined (X86_64_JIT)
- assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!");
- assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!");
-#else
- assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
-#endif
-
- intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr);
-
- // Rewrite the call target... so that we don't end up here every time we
- // execute the call.
-#if defined (X86_64_JIT)
- assert(isStub &&
- "X86-64 doesn't support rewriting non-stub lazy compilation calls:"
- " the call instruction varies too much.");
-#else
- *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4);
-#endif
-
- if (isStub) {
- // If this is a stub, rewrite the call into an unconditional branch
- // instruction so that two return addresses are not pushed onto the stack
- // when the requested function finally gets called. This also makes the
- // 0xCE byte (interrupt) dead, so the marker doesn't effect anything.
-#if defined (X86_64_JIT)
- // If the target address is within 32-bit range of the stub, use a
- // PC-relative branch instead of loading the actual address. (This is
- // considerably shorter than the 64-bit immediate load already there.)
- // We assume here intptr_t is 64 bits.
- intptr_t diff = NewVal-RetAddr+7;
- if (diff >= -2147483648LL && diff <= 2147483647LL) {
- *(unsigned char*)(RetAddr-0xc) = 0xE9;
- *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff;
- } else {
- *(intptr_t *)(RetAddr - 0xa) = NewVal;
- ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6));
- }
- sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd);
-#else
- ((unsigned char*)RetAddr)[-1] = 0xE9;
- sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5);
-#endif
- }
-
- // Change the return address to reexecute the call instruction...
-#if defined (X86_64_JIT)
- *RetAddrLoc -= 0xd;
-#else
- *RetAddrLoc -= 5;
-#endif
-}
-}
-
-TargetJITInfo::LazyResolverFn
-X86JITInfo::getLazyResolverFunction(JITCompilerFn F) {
- TsanIgnoreWritesBegin();
- JITCompilerFunction = F;
- TsanIgnoreWritesEnd();
-
-#if defined (X86_32_JIT) && !defined (_MSC_VER)
-#if defined(__SSE__)
- // SSE Callback should be called for SSE-enabled LLVM.
- return X86CompilationCallback_SSE;
-#else
- if (useSSE)
- return X86CompilationCallback_SSE;
-#endif
-#endif
-
- return X86CompilationCallback;
-}
-
-X86JITInfo::X86JITInfo(bool UseSSE) {
- useSSE = UseSSE;
- useGOT = 0;
- TLSOffset = nullptr;
-}
-
-void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
- JITCodeEmitter &JCE) {
-#if defined (X86_64_JIT)
- const unsigned Alignment = 8;
- uint8_t Buffer[8];
- uint8_t *Cur = Buffer;
- MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr);
- MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32));
-#else
- const unsigned Alignment = 4;
- uint8_t Buffer[4];
- uint8_t *Cur = Buffer;
- MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr);
-#endif
- return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment);
-}
-
-TargetJITInfo::StubLayout X86JITInfo::getStubLayout() {
- // The 64-bit stub contains:
- // movabs r10 <- 8-byte-target-address # 10 bytes
- // call|jmp *r10 # 3 bytes
- // The 32-bit stub contains a 5-byte call|jmp.
- // If the stub is a call to the compilation callback, an extra byte is added
- // to mark it as a stub.
- StubLayout Result = {14, 4};
- return Result;
-}
-
-void *X86JITInfo::emitFunctionStub(const Function* F, void *Target,
- JITCodeEmitter &JCE) {
- // Note, we cast to intptr_t here to silence a -pedantic warning that
- // complains about casting a function pointer to a normal pointer.
-#if defined (X86_32_JIT) && !defined (_MSC_VER)
- bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback &&
- Target != (void*)(intptr_t)X86CompilationCallback_SSE);
-#else
- bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback;
-#endif
- JCE.emitAlignment(4);
- void *Result = (void*)JCE.getCurrentPCValue();
- if (NotCC) {
-#if defined (X86_64_JIT)
- JCE.emitByte(0x49); // REX prefix
- JCE.emitByte(0xB8+2); // movabsq r10
- JCE.emitWordLE((unsigned)(intptr_t)Target);
- JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
- JCE.emitByte(0x41); // REX prefix
- JCE.emitByte(0xFF); // jmpq *r10
- JCE.emitByte(2 | (4 << 3) | (3 << 6));
-#else
- JCE.emitByte(0xE9);
- JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
-#endif
- return Result;
- }
-
-#if defined (X86_64_JIT)
- JCE.emitByte(0x49); // REX prefix
- JCE.emitByte(0xB8+2); // movabsq r10
- JCE.emitWordLE((unsigned)(intptr_t)Target);
- JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32));
- JCE.emitByte(0x41); // REX prefix
- JCE.emitByte(0xFF); // callq *r10
- JCE.emitByte(2 | (2 << 3) | (3 << 6));
-#else
- JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination...
-
- JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4);
-#endif
-
- // This used to use 0xCD, but that value is used by JITMemoryManager to
- // initialize the buffer with garbage, which means it may follow a
- // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929.
- JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub!
- return Result;
-}
-
-/// getPICJumpTableEntry - Returns the value of the jumptable entry for the
-/// specific basic block.
-uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) {
-#if defined(X86_64_JIT)
- return BB - Entry;
-#else
- return BB - PICBase;
-#endif
-}
-
-template<typename T> static void addUnaligned(void *Pos, T Delta) {
- T Value;
- std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos),
- sizeof(T));
- Value += Delta;
- std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value),
- sizeof(T));
-}
-
-/// relocate - Before the JIT can run a block of code that has been emitted,
-/// it must rewrite the code to contain the actual addresses of any
-/// referenced global symbols.
-void X86JITInfo::relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) {
- for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
- void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
- intptr_t ResultPtr = (intptr_t)MR->getResultPointer();
- switch ((X86::RelocationType)MR->getRelocationType()) {
- case X86::reloc_pcrel_word: {
- // PC relative relocation, add the relocated value to the value already in
- // memory, after we adjust it for where the PC is.
- ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal();
- addUnaligned<unsigned>(RelocPos, ResultPtr);
- break;
- }
- case X86::reloc_picrel_word: {
- // PIC base relative relocation, add the relocated value to the value
- // already in memory, after we adjust it for where the PIC base is.
- ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal());
- addUnaligned<unsigned>(RelocPos, ResultPtr);
- break;
- }
- case X86::reloc_absolute_word:
- case X86::reloc_absolute_word_sext:
- // Absolute relocation, just add the relocated value to the value already
- // in memory.
- addUnaligned<unsigned>(RelocPos, ResultPtr);
- break;
- case X86::reloc_absolute_dword:
- addUnaligned<intptr_t>(RelocPos, ResultPtr);
- break;
- }
- }
-}
-
-char* X86JITInfo::allocateThreadLocalMemory(size_t size) {
-#if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER)
- TLSOffset -= size;
- return TLSOffset;
-#else
- llvm_unreachable("Cannot allocate thread local storage on this arch!");
-#endif
-}
diff --git a/llvm/lib/Target/X86/X86JITInfo.h b/llvm/lib/Target/X86/X86JITInfo.h
deleted file mode 100644
index 564343ffa3f..00000000000
--- a/llvm/lib/Target/X86/X86JITInfo.h
+++ /dev/null
@@ -1,79 +0,0 @@
-//===-- X86JITInfo.h - X86 implementation of the JIT interface --*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the X86 implementation of the TargetJITInfo class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef X86JITINFO_H
-#define X86JITINFO_H
-
-#include "llvm/CodeGen/JITCodeEmitter.h"
-#include "llvm/IR/Function.h"
-#include "llvm/Target/TargetJITInfo.h"
-
-namespace llvm {
- class X86Subtarget;
-
- class X86JITInfo : public TargetJITInfo {
- uintptr_t PICBase;
- char *TLSOffset;
- bool useSSE;
- public:
- explicit X86JITInfo(bool UseSSE);
-
- /// replaceMachineCodeForFunction - Make it so that calling the function
- /// whose machine code is at OLD turns into a call to NEW, perhaps by
- /// overwriting OLD with a branch to NEW. This is used for self-modifying
- /// code.
- ///
- void replaceMachineCodeForFunction(void *Old, void *New) override;
-
- /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object
- /// to emit an indirect symbol which contains the address of the specified
- /// ptr.
- void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr,
- JITCodeEmitter &JCE) override;
-
- // getStubLayout - Returns the size and alignment of the largest call stub
- // on X86.
- StubLayout getStubLayout() override;
-
- /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a
- /// small native function that simply calls the function at the specified
- /// address.
- void *emitFunctionStub(const Function* F, void *Target,
- JITCodeEmitter &JCE) override;
-
- /// getPICJumpTableEntry - Returns the value of the jumptable entry for the
- /// specific basic block.
- uintptr_t getPICJumpTableEntry(uintptr_t BB, uintptr_t JTBase) override;
-
- /// getLazyResolverFunction - Expose the lazy resolver to the JIT.
- LazyResolverFn getLazyResolverFunction(JITCompilerFn) override;
-
- /// relocate - Before the JIT can run a block of code that has been emitted,
- /// it must rewrite the code to contain the actual addresses of any
- /// referenced global symbols.
- void relocate(void *Function, MachineRelocation *MR,
- unsigned NumRelocs, unsigned char* GOTBase) override;
-
- /// allocateThreadLocalMemory - Each target has its own way of
- /// handling thread local variables. This method returns a value only
- /// meaningful to the target.
- char* allocateThreadLocalMemory(size_t size) override;
-
- /// setPICBase / getPICBase - Getter / setter of PICBase, used to compute
- /// PIC jumptable entry.
- void setPICBase(uintptr_t Base) { PICBase = Base; }
- uintptr_t getPICBase() const { return PICBase; }
- };
-}
-
-#endif
diff --git a/llvm/lib/Target/X86/X86Subtarget.cpp b/llvm/lib/Target/X86/X86Subtarget.cpp
index c4caf06c936..3d13c4b59c0 100644
--- a/llvm/lib/Target/X86/X86Subtarget.cpp
+++ b/llvm/lib/Target/X86/X86Subtarget.cpp
@@ -356,8 +356,7 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
DL(computeDataLayout(*this)), TSInfo(DL),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM),
FrameLowering(TargetFrameLowering::StackGrowsDown, getStackAlignment(),
- is64Bit() ? -8 : -4),
- JITInfo(hasSSE1()) {}
+ is64Bit() ? -8 : -4) {}
bool X86Subtarget::enableEarlyIfConversion() const {
return hasCMov() && X86EarlyIfConv;
diff --git a/llvm/lib/Target/X86/X86Subtarget.h b/llvm/lib/Target/X86/X86Subtarget.h
index 75e8ae5dc2b..45dc0b8ebe2 100644
--- a/llvm/lib/Target/X86/X86Subtarget.h
+++ b/llvm/lib/Target/X86/X86Subtarget.h
@@ -17,7 +17,6 @@
#include "X86FrameLowering.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
-#include "X86JITInfo.h"
#include "X86SelectionDAGInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/CallingConv.h"
@@ -243,7 +242,6 @@ private:
X86InstrInfo InstrInfo;
X86TargetLowering TLInfo;
X86FrameLowering FrameLowering;
- X86JITInfo JITInfo;
public:
/// This constructor initializes the data members to match that
@@ -267,7 +265,6 @@ public:
const X86RegisterInfo *getRegisterInfo() const override {
return &getInstrInfo()->getRegisterInfo();
}
- X86JITInfo *getJITInfo() override { return &JITInfo; }
/// getStackAlignment - Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
diff --git a/llvm/lib/Target/X86/X86TargetMachine.cpp b/llvm/lib/Target/X86/X86TargetMachine.cpp
index f12140f1f16..0b1909f95c2 100644
--- a/llvm/lib/Target/X86/X86TargetMachine.cpp
+++ b/llvm/lib/Target/X86/X86TargetMachine.cpp
@@ -177,10 +177,3 @@ bool X86PassConfig::addPreEmitPass() {
return ShouldPrint;
}
-
-bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
- JITCodeEmitter &JCE) {
- PM.add(createX86JITCodeEmitterPass(*this, JCE));
-
- return false;
-}
diff --git a/llvm/lib/Target/X86/X86TargetMachine.h b/llvm/lib/Target/X86/X86TargetMachine.h
index 633c5710315..9de118a205e 100644
--- a/llvm/lib/Target/X86/X86TargetMachine.h
+++ b/llvm/lib/Target/X86/X86TargetMachine.h
@@ -33,17 +33,11 @@ public:
CodeGenOpt::Level OL);
const X86Subtarget *getSubtargetImpl() const override { return &Subtarget; }
- X86Subtarget *getSubtargetImpl() {
- return static_cast<X86Subtarget *>(TargetMachine::getSubtargetImpl());
- }
-
/// \brief Register X86 analysis passes with a pass manager.
void addAnalysisPasses(PassManagerBase &PM) override;
// Set up the pass pipeline.
TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
-
- bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override;
};
} // End llvm namespace
OpenPOWER on IntegriCloud