diff options
Diffstat (limited to 'llvm/lib/Target/X86')
-rw-r--r-- | llvm/lib/Target/X86/CMakeLists.txt | 2 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86.h | 6 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86CodeEmitter.cpp | 1502 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86ISelDAGToDAG.cpp | 1 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86InstrInfo.cpp | 1 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86JITInfo.cpp | 588 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86JITInfo.h | 79 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86Subtarget.cpp | 3 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86Subtarget.h | 3 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86TargetMachine.cpp | 7 | ||||
-rw-r--r-- | llvm/lib/Target/X86/X86TargetMachine.h | 6 |
11 files changed, 2195 insertions, 3 deletions
diff --git a/llvm/lib/Target/X86/CMakeLists.txt b/llvm/lib/Target/X86/CMakeLists.txt index b6fff7460e0..a09767e1eaf 100644 --- a/llvm/lib/Target/X86/CMakeLists.txt +++ b/llvm/lib/Target/X86/CMakeLists.txt @@ -15,12 +15,14 @@ add_public_tablegen_target(X86CommonTableGen) set(sources X86AsmPrinter.cpp X86AtomicExpandPass.cpp + X86CodeEmitter.cpp X86FastISel.cpp X86FloatingPoint.cpp X86FrameLowering.cpp X86ISelDAGToDAG.cpp X86ISelLowering.cpp X86InstrInfo.cpp + X86JITInfo.cpp X86MCInstLower.cpp X86MachineFunctionInfo.cpp X86PadShortFunction.cpp diff --git a/llvm/lib/Target/X86/X86.h b/llvm/lib/Target/X86/X86.h index 20258197252..d5522ed95eb 100644 --- a/llvm/lib/Target/X86/X86.h +++ b/llvm/lib/Target/X86/X86.h @@ -21,6 +21,7 @@ namespace llvm { class FunctionPass; class ImmutablePass; +class JITCodeEmitter; class X86TargetMachine; /// createX86AtomicExpandPass - This pass expands atomic operations that cannot @@ -53,6 +54,11 @@ FunctionPass *createX86FloatingPointStackifierPass(); /// AVX and SSE. FunctionPass *createX86IssueVZeroUpperPass(); +/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code +/// to the specified MCE object. +FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM, + JITCodeEmitter &JCE); + /// createX86EmitCodeToMemory - Returns a pass that converts a register /// allocated function into raw machine code in a dynamically /// allocated chunk of memory. diff --git a/llvm/lib/Target/X86/X86CodeEmitter.cpp b/llvm/lib/Target/X86/X86CodeEmitter.cpp new file mode 100644 index 00000000000..9c68a9ce9ca --- /dev/null +++ b/llvm/lib/Target/X86/X86CodeEmitter.cpp @@ -0,0 +1,1502 @@ +//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the pass that transforms the X86 machine instructions into +// relocatable machine code. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86JITInfo.h" +#include "X86Relocations.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/PassManager.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +#define DEBUG_TYPE "x86-emitter" + +STATISTIC(NumEmitted, "Number of machine instructions emitted"); + +namespace { + template<class CodeEmitter> + class Emitter : public MachineFunctionPass { + const X86InstrInfo *II; + const DataLayout *TD; + X86TargetMachine &TM; + CodeEmitter &MCE; + MachineModuleInfo *MMI; + intptr_t PICBaseOffset; + bool Is64BitMode; + bool IsPIC; + public: + static char ID; + explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) + : MachineFunctionPass(ID), II(nullptr), TD(nullptr), TM(tm), + MCE(mce), PICBaseOffset(0), Is64BitMode(false), + IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + + bool runOnMachineFunction(MachineFunction &MF) override; + + const char *getPassName() const override { + return "X86 Machine Code Emitter"; + } + + void emitOpcodePrefix(uint64_t TSFlags, int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const; + + void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const; + + void emitSegmentOverridePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI) const; + + void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc); + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + AU.addRequired<MachineModuleInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); + void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, + intptr_t Disp = 0, intptr_t PCAdj = 0, + bool Indirect = false); + void emitExternalSymbolAddress(const char *ES, unsigned Reloc); + void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0, + intptr_t PCAdj = 0); + void emitJumpTableAddress(unsigned JTI, unsigned Reloc, + intptr_t PCAdj = 0); + + void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, + intptr_t Adj = 0, bool IsPCRel = true); + + void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); + void emitRegModRMByte(unsigned RegOpcodeField); + void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); + void emitConstant(uint64_t Val, unsigned Size); + + void emitMemModRMByte(const MachineInstr &MI, + unsigned Op, unsigned RegOpcodeField, + intptr_t PCAdj = 0); + + unsigned getX86RegNum(unsigned RegNo) const { + const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); + return TRI->getEncodingValue(RegNo) & 0x7; + } + + unsigned char getVEXRegisterEncoding(const MachineInstr &MI, + unsigned OpNum) const; + }; + +template<class CodeEmitter> + char Emitter<CodeEmitter>::ID = 0; +} // end anonymous namespace. + +/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code +/// to the specified JITCodeEmitter object. +FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, + JITCodeEmitter &JCE) { + return new Emitter<JITCodeEmitter>(TM, JCE); +} + +template<class CodeEmitter> +bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { + MMI = &getAnalysis<MachineModuleInfo>(); + MCE.setModuleInfo(MMI); + + II = TM.getSubtargetImpl()->getInstrInfo(); + TD = TM.getSubtargetImpl()->getDataLayout(); + Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); + IsPIC = TM.getRelocationModel() == Reloc::PIC_; + + do { + DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n"); + MCE.startFunction(MF); + for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); + MBB != E; ++MBB) { + MCE.StartMachineBasicBlock(MBB); + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); + I != E; ++I) { + const MCInstrDesc &Desc = I->getDesc(); + emitInstruction(*I, &Desc); + // MOVPC32r is basically a call plus a pop instruction. + if (Desc.getOpcode() == X86::MOVPC32r) + emitInstruction(*I, &II->get(X86::POP32r)); + ++NumEmitted; // Keep track of the # of mi's emitted + } + } + } while (MCE.finishFunction(MF)); + + return false; +} + +/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 +/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand +/// size, and 3) use of X86-64 extended registers. +static unsigned determineREX(const MachineInstr &MI) { + unsigned REX = 0; + const MCInstrDesc &Desc = MI.getDesc(); + + // Pseudo instructions do not need REX prefix byte. + if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo) + return 0; + if (Desc.TSFlags & X86II::REX_W) + REX |= 1 << 3; + + unsigned NumOps = Desc.getNumOperands(); + if (NumOps) { + bool isTwoAddr = NumOps > 1 && + Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; + + // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. + unsigned i = isTwoAddr ? 1 : 0; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + unsigned Reg = MO.getReg(); + if (X86II::isX86_64NonExtLowByteReg(Reg)) + REX |= 0x40; + } + } + + switch (Desc.TSFlags & X86II::FormMask) { + case X86II::MRMSrcReg: { + if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 2; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << 0; + } + break; + } + case X86II::MRMSrcMem: { + if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 2; + unsigned Bit = 0; + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + case X86II::MRMXm: + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRMDestMem: { + unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); + i = isTwoAddr ? 1 : 0; + if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e))) + REX |= 1 << 2; + unsigned Bit = 0; + for (; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + default: { + if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 0; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << 2; + } + break; + } + } + } + return REX; +} + + +/// emitPCRelativeBlockAddress - This method keeps track of the information +/// necessary to resolve the address of this block later and emits a dummy +/// value. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { + // Remember where this reference was and where it is to so we can + // deal with it later. + MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), + X86::reloc_pcrel_word, MBB)); + MCE.emitWordLE(0); +} + +/// emitGlobalAddress - Emit the specified address to the code stream assuming +/// this is part of a "take the address of a global" instruction. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV, + unsigned Reloc, + intptr_t Disp /* = 0 */, + intptr_t PCAdj /* = 0 */, + bool Indirect /* = false */) { + intptr_t RelocCST = Disp; + if (Reloc == X86::reloc_picrel_word) + RelocCST = PICBaseOffset; + else if (Reloc == X86::reloc_pcrel_word) + RelocCST = PCAdj; + MachineRelocation MR = Indirect + ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, + const_cast<GlobalValue *>(GV), + RelocCST, false) + : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, + const_cast<GlobalValue *>(GV), RelocCST, false); + MCE.addRelocation(MR); + // The relocated value will be added to the displacement + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(Disp); + else + MCE.emitWordLE((int32_t)Disp); +} + +/// emitExternalSymbolAddress - Arrange for the address of an external symbol to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, + unsigned Reloc) { + intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; + + // X86 never needs stubs because instruction selection will always pick + // an instruction sequence that is large enough to hold any address + // to a symbol. + // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall) + bool NeedStub = false; + MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), + Reloc, ES, RelocCST, + 0, NeedStub)); + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(0); + else + MCE.emitWordLE(0); +} + +/// emitConstPoolAddress - Arrange for the address of an constant pool +/// to be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc, + intptr_t Disp /* = 0 */, + intptr_t PCAdj /* = 0 */) { + intptr_t RelocCST = 0; + if (Reloc == X86::reloc_picrel_word) + RelocCST = PICBaseOffset; + else if (Reloc == X86::reloc_pcrel_word) + RelocCST = PCAdj; + MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), + Reloc, CPI, RelocCST)); + // The relocated value will be added to the displacement + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(Disp); + else + MCE.emitWordLE((int32_t)Disp); +} + +/// emitJumpTableAddress - Arrange for the address of a jump table to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc, + intptr_t PCAdj /* = 0 */) { + intptr_t RelocCST = 0; + if (Reloc == X86::reloc_picrel_word) + RelocCST = PICBaseOffset; + else if (Reloc == X86::reloc_pcrel_word) + RelocCST = PCAdj; + MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), + Reloc, JTI, RelocCST)); + // The relocated value will be added to the displacement + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(0); + else + MCE.emitWordLE(0); +} + +inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, + unsigned RM) { + assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); + return RM | (RegOpcode << 3) | (Mod << 6); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg, + unsigned RegOpcodeFld){ + MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) { + MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, + unsigned Index, + unsigned Base) { + // SIB byte is in the same format as the ModRMByte... + MCE.emitByte(ModRMByte(SS, Index, Base)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) { + // Output the constant in little endian byte order... + for (unsigned i = 0; i != Size; ++i) { + MCE.emitByte(Val & 255); + Val >>= 8; + } +} + +/// isDisp8 - Return true if this signed displacement fits in a 8-bit +/// sign-extended field. +static bool isDisp8(int Value) { + return Value == (signed char)Value; +} + +static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, + const TargetMachine &TM) { + // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer + // mechanism as 32-bit mode. + if (TM.getSubtarget<X86Subtarget>().is64Bit() && + !TM.getSubtarget<X86Subtarget>().isTargetDarwin()) + return false; + + // Return true if this is a reference to a stub containing the address of the + // global, not the global itself. + return isGlobalStubReference(GVOp.getTargetFlags()); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp, + int DispVal, + intptr_t Adj /* = 0 */, + bool IsPCRel /* = true */) { + // If this is a simple integer displacement that doesn't require a relocation, + // emit it now. + if (!RelocOp) { + emitConstant(DispVal, 4); + return; + } + + // Otherwise, this is something that requires a relocation. Emit it as such + // now. + unsigned RelocType = Is64BitMode ? + (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (RelocOp->isGlobal()) { + // In 64-bit static small code model, we could potentially emit absolute. + // But it's probably not beneficial. If the MCE supports using RIP directly + // do it, otherwise fallback to absolute (this is determined by IsPCRel). + // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative + // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute + bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); + emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), + Adj, Indirect); + } else if (RelocOp->isSymbol()) { + emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); + } else if (RelocOp->isCPI()) { + emitConstPoolAddress(RelocOp->getIndex(), RelocType, + RelocOp->getOffset(), Adj); + } else { + assert(RelocOp->isJTI() && "Unexpected machine operand!"); + emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI, + unsigned Op,unsigned RegOpcodeField, + intptr_t PCAdj) { + const MachineOperand &Op3 = MI.getOperand(Op+3); + int DispVal = 0; + const MachineOperand *DispForReloc = nullptr; + + // Figure out what sort of displacement we have to handle here. + if (Op3.isGlobal()) { + DispForReloc = &Op3; + } else if (Op3.isSymbol()) { + DispForReloc = &Op3; + } else if (Op3.isCPI()) { + if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { + DispForReloc = &Op3; + } else { + DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); + DispVal += Op3.getOffset(); + } + } else if (Op3.isJTI()) { + if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { + DispForReloc = &Op3; + } else { + DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); + } + } else { + DispVal = Op3.getImm(); + } + + const MachineOperand &Base = MI.getOperand(Op); + const MachineOperand &Scale = MI.getOperand(Op+1); + const MachineOperand &IndexReg = MI.getOperand(Op+2); + + unsigned BaseReg = Base.getReg(); + + // Handle %rip relative addressing. + if (BaseReg == X86::RIP || + (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode + assert(IndexReg.getReg() == 0 && Is64BitMode && + "Invalid rip-relative address"); + MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, true); + return; + } + + // Indicate that the displacement will use an pcrel or absolute reference + // by default. MCEs able to resolve addresses on-the-fly use pcrel by default + // while others, unless explicit asked to use RIP, use absolute references. + bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; + + // Is a SIB byte needed? + // If no BaseReg, issue a RIP relative instruction only if the MCE can + // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table + // 2-7) and absolute references. + unsigned BaseRegNo = -1U; + if (BaseReg != 0 && BaseReg != X86::RIP) + BaseRegNo = getX86RegNum(BaseReg); + + if (// The SIB byte must be used if there is an index register. + IndexReg.getReg() == 0 && + // The SIB byte must be used if the base is ESP/RSP/R12, all of which + // encode to an R/M value of 4, which indicates that a SIB byte is + // present. + BaseRegNo != N86::ESP && + // If there is no base register and we're in 64-bit mode, we need a SIB + // byte to emit an addr that is just 'disp32' (the non-RIP relative form). + (!Is64BitMode || BaseReg != 0)) { + if (BaseReg == 0 || // [disp32] in X86-32 mode + BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode + MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, true); + return; + } + + // If the base is not EBP/ESP and there is no displacement, use simple + // indirect register encoding, this handles addresses like [EAX]. The + // encoding for [EBP] with no displacement means [disp32] so we handle it + // by emitting a displacement of 0 below. + if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { + MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); + return; + } + + // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. + if (!DispForReloc && isDisp8(DispVal)) { + MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); + emitConstant(DispVal, 1); + return; + } + + // Otherwise, emit the most general non-SIB encoding: [REG+disp32] + MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); + return; + } + + // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. + assert(IndexReg.getReg() != X86::ESP && + IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); + + bool ForceDisp32 = false; + bool ForceDisp8 = false; + if (BaseReg == 0) { + // If there is no base register, we emit the special case SIB byte with + // MOD=0, BASE=4, to JUST get the index, scale, and displacement. + MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); + ForceDisp32 = true; + } else if (DispForReloc) { + // Emit the normal disp32 encoding. + MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); + ForceDisp32 = true; + } else if (DispVal == 0 && BaseRegNo != N86::EBP) { + // Emit no displacement ModR/M byte + MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); + } else if (isDisp8(DispVal)) { + // Emit the disp8 encoding... + MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); + ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP + } else { + // Emit the normal disp32 encoding... + MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); + } + + // Calculate what the SS field value should be... + static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; + unsigned SS = SSTable[Scale.getImm()]; + + if (BaseReg == 0) { + // Handle the SIB byte for the case where there is no base, see Intel + // Manual 2A, table 2-7. The displacement has already been output. + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = getX86RegNum(IndexReg.getReg()); + else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) + IndexRegNo = 4; + emitSIBByte(SS, IndexRegNo, 5); + } else { + unsigned BaseRegNo = getX86RegNum(BaseReg); + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = getX86RegNum(IndexReg.getReg()); + else + IndexRegNo = 4; // For example [ESP+1*<noreg>+4] + emitSIBByte(SS, IndexRegNo, BaseRegNo); + } + + // Do we need to output a displacement? + if (ForceDisp8) { + emitConstant(DispVal, 1); + } else if (DispVal != 0 || ForceDisp32) { + emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); + } +} + +static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II, + unsigned Opcode) { + const MCInstrDesc *Desc = &II->get(Opcode); + MI.setDesc(*Desc); + return Desc; +} + +/// Is16BitMemOperand - Return true if the specified instruction has +/// a 16-bit memory operand. Op specifies the operand # of the memoperand. +static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) { + const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} + +/// Is32BitMemOperand - Return true if the specified instruction has +/// a 32-bit memory operand. Op specifies the operand # of the memoperand. +static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) { + const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} + +/// Is64BitMemOperand - Return true if the specified instruction has +/// a 64-bit memory operand. Op specifies the operand # of the memoperand. +#ifndef NDEBUG +static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) { + const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} +#endif + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const { + // Emit the operand size opcode prefix as needed. + if (((TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift) == X86II::OpSize16) + MCE.emitByte(0x66); + + switch (Desc->TSFlags & X86II::OpPrefixMask) { + case X86II::PD: // 66 + MCE.emitByte(0x66); + break; + case X86II::XS: // F3 + MCE.emitByte(0xF3); + break; + case X86II::XD: // F2 + MCE.emitByte(0xF2); + break; + } + + // Handle REX prefix. + if (Is64BitMode) { + if (unsigned REX = determineREX(MI)) + MCE.emitByte(0x40 | REX); + } + + // 0x0F escape code must be emitted just before the opcode. + switch (Desc->TSFlags & X86II::OpMapMask) { + case X86II::TB: // Two-byte opcode map + case X86II::T8: // 0F 38 + case X86II::TA: // 0F 3A + MCE.emitByte(0x0F); + break; + } + + switch (Desc->TSFlags & X86II::OpMapMask) { + case X86II::T8: // 0F 38 + MCE.emitByte(0x38); + break; + case X86II::TA: // 0F 3A + MCE.emitByte(0x3A); + break; + } +} + +// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range +// 0-7 and the difference between the 2 groups is given by the REX prefix. +// In the VEX prefix, registers are seen sequencially from 0-15 and encoded +// in 1's complement form, example: +// +// ModRM field => XMM9 => 1 +// VEX.VVVV => XMM9 => ~9 +// +// See table 4-35 of Intel AVX Programming Reference for details. +template<class CodeEmitter> +unsigned char +Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI, + unsigned OpNum) const { + unsigned SrcReg = MI.getOperand(OpNum).getReg(); + unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg()); + if (X86II::isX86_64ExtendedReg(SrcReg)) + SrcRegNum |= 8; + + // The registers represented through VEX_VVVV should + // be encoded in 1's complement form. + return (~SrcRegNum) & 0xf; +} + +/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI) const { + if (MemOperand < 0) + return; // No memory operand + + // Check for explicit segment override on memory operand. + switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { + default: llvm_unreachable("Unknown segment register!"); + case 0: break; + case X86::CS: MCE.emitByte(0x2E); break; + case X86::SS: MCE.emitByte(0x36); break; + case X86::DS: MCE.emitByte(0x3E); break; + case X86::ES: MCE.emitByte(0x26); break; + case X86::FS: MCE.emitByte(0x64); break; + case X86::GS: MCE.emitByte(0x65); break; + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const { + unsigned char Encoding = (TSFlags & X86II::EncodingMask) >> + X86II::EncodingShift; + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; + bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; + + // VEX_R: opcode externsion equivalent to REX.R in + // 1's complement (inverted) form + // + // 1: Same as REX_R=0 (must be 1 in 32-bit mode) + // 0: Same as REX_R=1 (64 bit mode only) + // + unsigned char VEX_R = 0x1; + + // VEX_X: equivalent to REX.X, only used when a + // register is used for index in SIB Byte. + // + // 1: Same as REX.X=0 (must be 1 in 32-bit mode) + // 0: Same as REX.X=1 (64-bit mode only) + unsigned char VEX_X = 0x1; + + // VEX_B: + // + // 1: Same as REX_B=0 (ignored in 32-bit mode) + // 0: Same as REX_B=1 (64 bit mode only) + // + unsigned char VEX_B = 0x1; + + // VEX_W: opcode specific (use like REX.W, or used for + // opcode extension, or ignored, depending on the opcode byte) + unsigned char VEX_W = 0; + + // VEX_5M (VEX m-mmmmm field): + // + // 0b00000: Reserved for future use + // 0b00001: implied 0F leading opcode + // 0b00010: implied 0F 38 leading opcode bytes + // 0b00011: implied 0F 3A leading opcode bytes + // 0b00100-0b11111: Reserved for future use + // 0b01000: XOP map select - 08h instructions with imm byte + // 0b01001: XOP map select - 09h instructions with no imm byte + // 0b01010: XOP map select - 0Ah instructions with imm dword + unsigned char VEX_5M = 0; + + // VEX_4V (VEX vvvv field): a register specifier + // (in 1's complement form) or 1111 if unused. + unsigned char VEX_4V = 0xf; + + // VEX_L (Vector Length): + // + // 0: scalar or 128-bit vector + // 1: 256-bit vector + // + unsigned char VEX_L = 0; + + // VEX_PP: opcode extension providing equivalent + // functionality of a SIMD prefix + // + // 0b00: None + // 0b01: 66 + // 0b10: F3 + // 0b11: F2 + // + unsigned char VEX_PP = 0; + + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) + VEX_W = 1; + + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) + VEX_L = 1; + + switch (TSFlags & X86II::OpPrefixMask) { + default: break; // VEX_PP already correct + case X86II::PD: VEX_PP = 0x1; break; // 66 + case X86II::XS: VEX_PP = 0x2; break; // F3 + case X86II::XD: VEX_PP = 0x3; break; // F2 + } + + switch (TSFlags & X86II::OpMapMask) { + default: llvm_unreachable("Invalid prefix!"); + case X86II::TB: VEX_5M = 0x1; break; // 0F + case X86II::T8: VEX_5M = 0x2; break; // 0F 38 + case X86II::TA: VEX_5M = 0x3; break; // 0F 3A + case X86II::XOP8: VEX_5M = 0x8; break; + case X86II::XOP9: VEX_5M = 0x9; break; + case X86II::XOPA: VEX_5M = 0xA; break; + } + + // Classify VEX_B, VEX_4V, VEX_R, VEX_X + unsigned NumOps = Desc->getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0) + ++CurOp; + else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) { + assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1); + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + } + + switch (TSFlags & X86II::FormMask) { + default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!"); + case X86II::RawFrm: + break; + case X86II::MRMDestMem: { + // MRMDestMem instructions forms: + // MemAddr, src1(ModR/M) + // MemAddr, src1(VEX_4V), src2(ModR/M) + // MemAddr, src1(ModR/M), imm8 + // + if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + + CurOp = X86::AddrNumOperands; + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + const MachineOperand &MO = MI.getOperand(CurOp); + if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) + VEX_R = 0x0; + break; + } + case X86II::MRMSrcMem: + // MRMSrcMem instructions forms: + // src1(ModR/M), MemAddr + // src1(ModR/M), src2(VEX_4V), MemAddr + // src1(ModR/M), MemAddr, imm8 + // src1(ModR/M), MemAddr, src2(VEX_I8IMM) + // + // FMA4: + // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + CurOp++; + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + CurOp++; + } + + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + + if (HasVEX_4VOp3) + VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands); + break; + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: { + // MRM[0-9]m instructions forms: + // MemAddr + // src1(VEX_4V), MemAddr + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + break; + } + case X86II::MRMSrcReg: + // MRMSrcReg instructions forms: + // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M), src1(ModR/M) + // dst(ModR/M), src1(ModR/M), imm8 + // + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + CurOp++; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + CurOp++; + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + CurOp++; + if (HasVEX_4VOp3) + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + break; + case X86II::MRMDestReg: + // MRMDestReg instructions forms: + // dst(ModR/M), src(ModR/M) + // dst(ModR/M), src(ModR/M), imm8 + // dst(ModR/M), src1(VEX_4V), src2(ModR/M) + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + CurOp++; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + break; + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + // MRM0r-MRM7r instructions forms: + // dst(VEX_4V), src(ModR/M), imm8 + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + CurOp++; + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + break; + } + + // Emit segment override opcode prefix as needed. + emitSegmentOverridePrefix(TSFlags, MemOperand, MI); + + // VEX opcode prefix can have 2 or 3 bytes + // + // 3 bytes: + // +-----+ +--------------+ +-------------------+ + // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | + // +-----+ +--------------+ +-------------------+ + // 2 bytes: + // +-----+ +-------------------+ + // | C5h | | R | vvvv | L | pp | + // +-----+ +-------------------+ + // + // XOP uses a similar prefix: + // +-----+ +--------------+ +-------------------+ + // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | + // +-----+ +--------------+ +-------------------+ + unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); + + // Can this use the 2 byte VEX prefix? + if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { + MCE.emitByte(0xC5); + MCE.emitByte(LastByte | (VEX_R << 7)); + return; + } + + // 3 byte VEX prefix + MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4); + MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M); + MCE.emitByte(LastByte | (VEX_W << 7)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI, + const MCInstrDesc *Desc) { + DEBUG(dbgs() << MI); + + // If this is a pseudo instruction, lower it. + switch (Desc->getOpcode()) { + case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break; + case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break; + case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break; + case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break; + case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break; + case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break; + case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break; + case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break; + case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break; + case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break; + case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break; + case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break; + case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break; + case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break; + case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break; + case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break; + case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break; + } + + + MCE.processDebugLoc(MI.getDebugLoc(), true); + + unsigned Opcode = Desc->Opcode; + + // If this is a two-address instruction, skip one of the register operands. + unsigned NumOps = Desc->getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0) + ++CurOp; + else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) { + assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1); + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + } + + uint64_t TSFlags = Desc->TSFlags; + + // Encoding type for this instruction. + unsigned char Encoding = (TSFlags & X86II::EncodingMask) >> + X86II::EncodingShift; + + // It uses the VEX.VVVV field? + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; + bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; + const unsigned MemOp4_I8IMMOperand = 2; + + // Determine where the memory operand starts, if present. + int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode); + if (MemoryOperand != -1) MemoryOperand += CurOp; + + // Emit the lock opcode prefix as needed. + if (Desc->TSFlags & X86II::LOCK) + MCE.emitByte(0xF0); + + // Emit segment override opcode prefix as needed. + emitSegmentOverridePrefix(TSFlags, MemoryOperand, MI); + + // Emit the repeat opcode prefix as needed. + if (Desc->TSFlags & X86II::REP) + MCE.emitByte(0xF3); + + // Emit the address size opcode prefix as needed. + bool need_address_override; + if (TSFlags & X86II::AdSize) { + need_address_override = true; + } else if (MemoryOperand < 0) { + need_address_override = false; + } else if (Is64BitMode) { + assert(!Is16BitMemOperand(MI, MemoryOperand)); + need_address_override = Is32BitMemOperand(MI, MemoryOperand); + } else { + assert(!Is64BitMemOperand(MI, MemoryOperand)); + need_address_override = Is16BitMemOperand(MI, MemoryOperand); + } + + if (need_address_override) + MCE.emitByte(0x67); + + if (Encoding == 0) + emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc); + else + emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc); + + unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); + switch (TSFlags & X86II::FormMask) { + default: + llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); + case X86II::Pseudo: + // Remember the current PC offset, this is the PIC relocation + // base address. + switch (Opcode) { + default: + llvm_unreachable("pseudo instructions should be removed before code" + " emission"); + // Do nothing for Int_MemBarrier - it's just a comment. Add a debug + // to make it slightly easier to see. + case X86::Int_MemBarrier: + DEBUG(dbgs() << "#MEMBARRIER\n"); + break; + + case TargetOpcode::INLINEASM: + // We allow inline assembler nodes with empty bodies - they can + // implicitly define registers, which is ok for JIT. + if (MI.getOperand(0).getSymbolName()[0]) { + DebugLoc DL = MI.getDebugLoc(); + DL.print(MI.getParent()->getParent()->getFunction()->getContext(), + llvm::errs()); + report_fatal_error("JIT does not support inline asm!"); + } + break; + case TargetOpcode::DBG_VALUE: + case TargetOpcode::CFI_INSTRUCTION: + break; + case TargetOpcode::GC_LABEL: + case TargetOpcode::EH_LABEL: + MCE.emitLabel(MI.getOperand(0).getMCSymbol()); + break; + + case TargetOpcode::IMPLICIT_DEF: + case TargetOpcode::KILL: + break; + + case X86::SEH_PushReg: + case X86::SEH_SaveReg: + case X86::SEH_SaveXMM: + case X86::SEH_StackAlloc: + case X86::SEH_SetFrame: + case X86::SEH_PushFrame: + case X86::SEH_EndPrologue: + case X86::SEH_Epilogue: + break; + + case X86::MOVPC32r: { + // This emits the "call" portion of this pseudo instruction. + MCE.emitByte(BaseOpcode); + emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); + // Remember PIC base. + PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); + X86JITInfo *JTI = TM.getSubtargetImpl()->getJITInfo(); + JTI->setPICBase(MCE.getCurrentPCValue()); + break; + } + } + CurOp = NumOps; + break; + case X86II::RawFrm: { + MCE.emitByte(BaseOpcode); + + if (CurOp == NumOps) + break; + + const MachineOperand &MO = MI.getOperand(CurOp++); + + DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); + DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n"); + DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n"); + DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n"); + DEBUG(dbgs() << "isImm " << MO.isImm() << "\n"); + + if (MO.isMBB()) { + emitPCRelativeBlockAddress(MO.getMBB()); + break; + } + + if (MO.isGlobal()) { + emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, + MO.getOffset(), 0); + break; + } + + if (MO.isSymbol()) { + emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); + break; + } + + // FIXME: Only used by hackish MCCodeEmitter, remove when dead. + if (MO.isJTI()) { + emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); + break; + } + + assert(MO.isImm() && "Unknown RawFrm operand!"); + if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { + // Fix up immediate operand for pc relative calls. + intptr_t Imm = (intptr_t)MO.getImm(); + Imm = Imm - MCE.getCurrentPCValue() - 4; + emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags)); + } else + emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); + break; + } + + case X86II::AddRegFrm: { + MCE.emitByte(BaseOpcode + + getX86RegNum(MI.getOperand(CurOp++).getReg())); + + if (CurOp == NumOps) + break; + + const MachineOperand &MO1 = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO1.isImm()) { + emitConstant(MO1.getImm(), Size); + break; + } + + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (Opcode == X86::MOV32ri64) + rt = X86::reloc_absolute_word; // FIXME: add X86II flag? + // This should not occur on Darwin for relocatable objects. + if (Opcode == X86::MOV64ri) + rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? + if (MO1.isGlobal()) { + bool Indirect = gvNeedsNonLazyPtr(MO1, TM); + emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, + Indirect); + } else if (MO1.isSymbol()) + emitExternalSymbolAddress(MO1.getSymbolName(), rt); + else if (MO1.isCPI()) + emitConstPoolAddress(MO1.getIndex(), rt); + else if (MO1.isJTI()) + emitJumpTableAddress(MO1.getIndex(), rt); + break; + } + + case X86II::MRMDestReg: { + MCE.emitByte(BaseOpcode); + + unsigned SrcRegNum = CurOp+1; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + SrcRegNum++; + + emitRegModRMByte(MI.getOperand(CurOp).getReg(), + getX86RegNum(MI.getOperand(SrcRegNum).getReg())); + CurOp = SrcRegNum + 1; + break; + } + case X86II::MRMDestMem: { + MCE.emitByte(BaseOpcode); + + unsigned SrcRegNum = CurOp + X86::AddrNumOperands; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + SrcRegNum++; + emitMemModRMByte(MI, CurOp, + getX86RegNum(MI.getOperand(SrcRegNum).getReg())); + CurOp = SrcRegNum + 1; + break; + } + + case X86II::MRMSrcReg: { + MCE.emitByte(BaseOpcode); + + unsigned SrcRegNum = CurOp+1; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + ++SrcRegNum; + + if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM) + ++SrcRegNum; + + emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(), + getX86RegNum(MI.getOperand(CurOp).getReg())); + // 2 operands skipped with HasMemOp4, compensate accordingly + CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1; + if (HasVEX_4VOp3) + ++CurOp; + break; + } + case X86II::MRMSrcMem: { + int AddrOperands = X86::AddrNumOperands; + unsigned FirstMemOp = CurOp+1; + if (HasVEX_4V) { + ++AddrOperands; + ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). + } + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + ++FirstMemOp; + + MCE.emitByte(BaseOpcode); + + intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? + X86II::getSizeOfImm(Desc->TSFlags) : 0; + emitMemModRMByte(MI, FirstMemOp, + getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj); + CurOp += AddrOperands + 1; + if (HasVEX_4VOp3) + ++CurOp; + break; + } + + case X86II::MRMXr: + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: { + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + ++CurOp; + MCE.emitByte(BaseOpcode); + uint64_t Form = (Desc->TSFlags & X86II::FormMask); + emitRegModRMByte(MI.getOperand(CurOp++).getReg(), + (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r); + + if (CurOp == NumOps) + break; + + const MachineOperand &MO1 = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO1.isImm()) { + emitConstant(MO1.getImm(), Size); + break; + } + + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (Opcode == X86::MOV64ri32) + rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? + if (MO1.isGlobal()) { + bool Indirect = gvNeedsNonLazyPtr(MO1, TM); + emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, + Indirect); + } else if (MO1.isSymbol()) + emitExternalSymbolAddress(MO1.getSymbolName(), rt); + else if (MO1.isCPI()) + emitConstPoolAddress(MO1.getIndex(), rt); + else if (MO1.isJTI()) + emitJumpTableAddress(MO1.getIndex(), rt); + break; + } + + case X86II::MRMXm: + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: { + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + ++CurOp; + intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ? + (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? + X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; + + MCE.emitByte(BaseOpcode); + uint64_t Form = (Desc->TSFlags & X86II::FormMask); + emitMemModRMByte(MI, CurOp, (Form==X86II::MRMXm) ? 0 : Form - X86II::MRM0m, + PCAdj); + CurOp += X86::AddrNumOperands; + + if (CurOp == NumOps) + break; + + const MachineOperand &MO = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO.isImm()) { + emitConstant(MO.getImm(), Size); + break; + } + + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (Opcode == X86::MOV64mi32) + rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? + if (MO.isGlobal()) { + bool Indirect = gvNeedsNonLazyPtr(MO, TM); + emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, + Indirect); + } else if (MO.isSymbol()) + emitExternalSymbolAddress(MO.getSymbolName(), rt); + else if (MO.isCPI()) + emitConstPoolAddress(MO.getIndex(), rt); + else if (MO.isJTI()) + emitJumpTableAddress(MO.getIndex(), rt); + break; + } + + case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: + case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8: + case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: + case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: + case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: + case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: + case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: + case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: + case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: + case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: + case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: + case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: + case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1: + case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4: + case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7: + case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA: + case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD: + case X86II::MRM_FE: case X86II::MRM_FF: + MCE.emitByte(BaseOpcode); + + unsigned char MRM; + switch (TSFlags & X86II::FormMask) { + default: llvm_unreachable("Invalid Form"); + case X86II::MRM_C0: MRM = 0xC0; break; + case X86II::MRM_C1: MRM = 0xC1; break; + case X86II::MRM_C2: MRM = 0xC2; break; + case X86II::MRM_C3: MRM = 0xC3; break; + case X86II::MRM_C4: MRM = 0xC4; break; + case X86II::MRM_C8: MRM = 0xC8; break; + case X86II::MRM_C9: MRM = 0xC9; break; + case X86II::MRM_CA: MRM = 0xCA; break; + case X86II::MRM_CB: MRM = 0xCB; break; + case X86II::MRM_CF: MRM = 0xCF; break; + case X86II::MRM_D0: MRM = 0xD0; break; + case X86II::MRM_D1: MRM = 0xD1; break; + case X86II::MRM_D4: MRM = 0xD4; break; + case X86II::MRM_D5: MRM = 0xD5; break; + case X86II::MRM_D6: MRM = 0xD6; break; + case X86II::MRM_D7: MRM = 0xD7; break; + case X86II::MRM_D8: MRM = 0xD8; break; + case X86II::MRM_D9: MRM = 0xD9; break; + case X86II::MRM_DA: MRM = 0xDA; break; + case X86II::MRM_DB: MRM = 0xDB; break; + case X86II::MRM_DC: MRM = 0xDC; break; + case X86II::MRM_DD: MRM = 0xDD; break; + case X86II::MRM_DE: MRM = 0xDE; break; + case X86II::MRM_DF: MRM = 0xDF; break; + case X86II::MRM_E0: MRM = 0xE0; break; + case X86II::MRM_E1: MRM = 0xE1; break; + case X86II::MRM_E2: MRM = 0xE2; break; + case X86II::MRM_E3: MRM = 0xE3; break; + case X86II::MRM_E4: MRM = 0xE4; break; + case X86II::MRM_E5: MRM = 0xE5; break; + case X86II::MRM_E8: MRM = 0xE8; break; + case X86II::MRM_E9: MRM = 0xE9; break; + case X86II::MRM_EA: MRM = 0xEA; break; + case X86II::MRM_EB: MRM = 0xEB; break; + case X86II::MRM_EC: MRM = 0xEC; break; + case X86II::MRM_ED: MRM = 0xED; break; + case X86II::MRM_EE: MRM = 0xEE; break; + case X86II::MRM_F0: MRM = 0xF0; break; + case X86II::MRM_F1: MRM = 0xF1; break; + case X86II::MRM_F2: MRM = 0xF2; break; + case X86II::MRM_F3: MRM = 0xF3; break; + case X86II::MRM_F4: MRM = 0xF4; break; + case X86II::MRM_F5: MRM = 0xF5; break; + case X86II::MRM_F6: MRM = 0xF6; break; + case X86II::MRM_F7: MRM = 0xF7; break; + case X86II::MRM_F8: MRM = 0xF8; break; + case X86II::MRM_F9: MRM = 0xF9; break; + case X86II::MRM_FA: MRM = 0xFA; break; + case X86II::MRM_FB: MRM = 0xFB; break; + case X86II::MRM_FC: MRM = 0xFC; break; + case X86II::MRM_FD: MRM = 0xFD; break; + case X86II::MRM_FE: MRM = 0xFE; break; + case X86II::MRM_FF: MRM = 0xFF; break; + } + MCE.emitByte(MRM); + break; + } + + while (CurOp != NumOps && NumOps - CurOp <= 2) { + // The last source register of a 4 operand instruction in AVX is encoded + // in bits[7:4] of a immediate byte. + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { + const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand + : CurOp); + ++CurOp; + unsigned RegNum = getX86RegNum(MO.getReg()) << 4; + if (X86II::isX86_64ExtendedReg(MO.getReg())) + RegNum |= 1 << 7; + // If there is an additional 5th operand it must be an immediate, which + // is encoded in bits[3:0] + if (CurOp != NumOps) { + const MachineOperand &MIMM = MI.getOperand(CurOp++); + if (MIMM.isImm()) { + unsigned Val = MIMM.getImm(); + assert(Val < 16 && "Immediate operand value out of range"); + RegNum |= Val; + } + } + emitConstant(RegNum, 1); + } else { + emitConstant(MI.getOperand(CurOp++).getImm(), + X86II::getSizeOfImm(Desc->TSFlags)); + } + } + + if (!MI.isVariadic() && CurOp != NumOps) { +#ifndef NDEBUG + dbgs() << "Cannot encode all operands of: " << MI << "\n"; +#endif + llvm_unreachable(nullptr); + } + + MCE.processDebugLoc(MI.getDebugLoc(), false); +} diff --git a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp index 7c973c2e55d..1f53b7cd791 100644 --- a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp +++ b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp @@ -24,7 +24,6 @@ #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" -#include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Type.h" diff --git a/llvm/lib/Target/X86/X86InstrInfo.cpp b/llvm/lib/Target/X86/X86InstrInfo.cpp index f14179603eb..0d46f706906 100644 --- a/llvm/lib/Target/X86/X86InstrInfo.cpp +++ b/llvm/lib/Target/X86/X86InstrInfo.cpp @@ -26,7 +26,6 @@ #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" diff --git a/llvm/lib/Target/X86/X86JITInfo.cpp b/llvm/lib/Target/X86/X86JITInfo.cpp new file mode 100644 index 00000000000..a082c4f8b0e --- /dev/null +++ b/llvm/lib/Target/X86/X86JITInfo.cpp @@ -0,0 +1,588 @@ +//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the JIT interfaces for the X86 target. +// +//===----------------------------------------------------------------------===// + +#include "X86JITInfo.h" +#include "X86Relocations.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Valgrind.h" +#include <cstdlib> +#include <cstring> +using namespace llvm; + +#define DEBUG_TYPE "jit" + +// Determine the platform we're running on +#if defined (__x86_64__) || defined (_M_AMD64) || defined (_M_X64) +# define X86_64_JIT +#elif defined(__i386__) || defined(i386) || defined(_M_IX86) +# define X86_32_JIT +#endif + +void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) { + unsigned char *OldByte = (unsigned char *)Old; + *OldByte++ = 0xE9; // Emit JMP opcode. + unsigned *OldWord = (unsigned *)OldByte; + unsigned NewAddr = (intptr_t)New; + unsigned OldAddr = (intptr_t)OldWord; + *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. + + // X86 doesn't need to invalidate the processor cache, so just invalidate + // Valgrind's cache directly. + sys::ValgrindDiscardTranslations(Old, 5); +} + + +/// JITCompilerFunction - This contains the address of the JIT function used to +/// compile a function lazily. +static TargetJITInfo::JITCompilerFn JITCompilerFunction; + +// Get the ASMPREFIX for the current host. This is often '_'. +#ifndef __USER_LABEL_PREFIX__ +#define __USER_LABEL_PREFIX__ +#endif +#define GETASMPREFIX2(X) #X +#define GETASMPREFIX(X) GETASMPREFIX2(X) +#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) + +// For ELF targets, use a .size and .type directive, to let tools +// know the extent of functions defined in assembler. +#if defined(__ELF__) +# define SIZE(sym) ".size " #sym ", . - " #sym "\n" +# define TYPE_FUNCTION(sym) ".type " #sym ", @function\n" +#else +# define SIZE(sym) +# define TYPE_FUNCTION(sym) +#endif + +// Provide a convenient way for disabling usage of CFI directives. +// This is needed for old/broken assemblers (for example, gas on +// Darwin is pretty old and doesn't support these directives) +#if defined(__APPLE__) +# define CFI(x) +#else +// FIXME: Disable this until we really want to use it. Also, we will +// need to add some workarounds for compilers, which support +// only subset of these directives. +# define CFI(x) +#endif + +// Provide a wrapper for LLVMX86CompilationCallback2 that saves non-traditional +// callee saved registers, for the fastcc calling convention. +extern "C" { +#if defined(X86_64_JIT) +# ifndef _MSC_VER + // No need to save EAX/EDX for X86-64. + void X86CompilationCallback(void); + asm( + ".text\n" + ".align 8\n" + ".globl " ASMPREFIX "X86CompilationCallback\n" + TYPE_FUNCTION(X86CompilationCallback) + ASMPREFIX "X86CompilationCallback:\n" + CFI(".cfi_startproc\n") + // Save RBP + "pushq %rbp\n" + CFI(".cfi_def_cfa_offset 16\n") + CFI(".cfi_offset %rbp, -16\n") + // Save RSP + "movq %rsp, %rbp\n" + CFI(".cfi_def_cfa_register %rbp\n") + // Save all int arg registers + "pushq %rdi\n" + CFI(".cfi_rel_offset %rdi, 0\n") + "pushq %rsi\n" + CFI(".cfi_rel_offset %rsi, 8\n") + "pushq %rdx\n" + CFI(".cfi_rel_offset %rdx, 16\n") + "pushq %rcx\n" + CFI(".cfi_rel_offset %rcx, 24\n") + "pushq %r8\n" + CFI(".cfi_rel_offset %r8, 32\n") + "pushq %r9\n" + CFI(".cfi_rel_offset %r9, 40\n") + // Align stack on 16-byte boundary. ESP might not be properly aligned + // (8 byte) if this is called from an indirect stub. + "andq $-16, %rsp\n" + // Save all XMM arg registers + "subq $128, %rsp\n" + "movaps %xmm0, (%rsp)\n" + "movaps %xmm1, 16(%rsp)\n" + "movaps %xmm2, 32(%rsp)\n" + "movaps %xmm3, 48(%rsp)\n" + "movaps %xmm4, 64(%rsp)\n" + "movaps %xmm5, 80(%rsp)\n" + "movaps %xmm6, 96(%rsp)\n" + "movaps %xmm7, 112(%rsp)\n" + // JIT callee +#if defined(_WIN64) || defined(__CYGWIN__) + "subq $32, %rsp\n" + "movq %rbp, %rcx\n" // Pass prev frame and return address + "movq 8(%rbp), %rdx\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" + "addq $32, %rsp\n" +#else + "movq %rbp, %rdi\n" // Pass prev frame and return address + "movq 8(%rbp), %rsi\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" +#endif + // Restore all XMM arg registers + "movaps 112(%rsp), %xmm7\n" + "movaps 96(%rsp), %xmm6\n" + "movaps 80(%rsp), %xmm5\n" + "movaps 64(%rsp), %xmm4\n" + "movaps 48(%rsp), %xmm3\n" + "movaps 32(%rsp), %xmm2\n" + "movaps 16(%rsp), %xmm1\n" + "movaps (%rsp), %xmm0\n" + // Restore RSP + "movq %rbp, %rsp\n" + CFI(".cfi_def_cfa_register %rsp\n") + // Restore all int arg registers + "subq $48, %rsp\n" + CFI(".cfi_adjust_cfa_offset 48\n") + "popq %r9\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %r9\n") + "popq %r8\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %r8\n") + "popq %rcx\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %rcx\n") + "popq %rdx\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %rdx\n") + "popq %rsi\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %rsi\n") + "popq %rdi\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %rdi\n") + // Restore RBP + "popq %rbp\n" + CFI(".cfi_adjust_cfa_offset -8\n") + CFI(".cfi_restore %rbp\n") + "ret\n" + CFI(".cfi_endproc\n") + SIZE(X86CompilationCallback) + ); +# else + // No inline assembler support on this platform. The routine is in external + // file. + void X86CompilationCallback(); + +# endif +#elif defined (X86_32_JIT) +# ifndef _MSC_VER + void X86CompilationCallback(void); + asm( + ".text\n" + ".align 8\n" + ".globl " ASMPREFIX "X86CompilationCallback\n" + TYPE_FUNCTION(X86CompilationCallback) + ASMPREFIX "X86CompilationCallback:\n" + CFI(".cfi_startproc\n") + "pushl %ebp\n" + CFI(".cfi_def_cfa_offset 8\n") + CFI(".cfi_offset %ebp, -8\n") + "movl %esp, %ebp\n" // Standard prologue + CFI(".cfi_def_cfa_register %ebp\n") + "pushl %eax\n" + CFI(".cfi_rel_offset %eax, 0\n") + "pushl %edx\n" // Save EAX/EDX/ECX + CFI(".cfi_rel_offset %edx, 4\n") + "pushl %ecx\n" + CFI(".cfi_rel_offset %ecx, 8\n") +# if defined(__APPLE__) + "andl $-16, %esp\n" // Align ESP on 16-byte boundary +# endif + "subl $16, %esp\n" + "movl 4(%ebp), %eax\n" // Pass prev frame and return address + "movl %eax, 4(%esp)\n" + "movl %ebp, (%esp)\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" + "movl %ebp, %esp\n" // Restore ESP + CFI(".cfi_def_cfa_register %esp\n") + "subl $12, %esp\n" + CFI(".cfi_adjust_cfa_offset 12\n") + "popl %ecx\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %ecx\n") + "popl %edx\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %edx\n") + "popl %eax\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %eax\n") + "popl %ebp\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %ebp\n") + "ret\n" + CFI(".cfi_endproc\n") + SIZE(X86CompilationCallback) + ); + + // Same as X86CompilationCallback but also saves XMM argument registers. + void X86CompilationCallback_SSE(void); + asm( + ".text\n" + ".align 8\n" + ".globl " ASMPREFIX "X86CompilationCallback_SSE\n" + TYPE_FUNCTION(X86CompilationCallback_SSE) + ASMPREFIX "X86CompilationCallback_SSE:\n" + CFI(".cfi_startproc\n") + "pushl %ebp\n" + CFI(".cfi_def_cfa_offset 8\n") + CFI(".cfi_offset %ebp, -8\n") + "movl %esp, %ebp\n" // Standard prologue + CFI(".cfi_def_cfa_register %ebp\n") + "pushl %eax\n" + CFI(".cfi_rel_offset %eax, 0\n") + "pushl %edx\n" // Save EAX/EDX/ECX + CFI(".cfi_rel_offset %edx, 4\n") + "pushl %ecx\n" + CFI(".cfi_rel_offset %ecx, 8\n") + "andl $-16, %esp\n" // Align ESP on 16-byte boundary + // Save all XMM arg registers + "subl $64, %esp\n" + // FIXME: provide frame move information for xmm registers. + // This can be tricky, because CFA register is ebp (unaligned) + // and we need to produce offsets relative to it. + "movaps %xmm0, (%esp)\n" + "movaps %xmm1, 16(%esp)\n" + "movaps %xmm2, 32(%esp)\n" + "movaps %xmm3, 48(%esp)\n" + "subl $16, %esp\n" + "movl 4(%ebp), %eax\n" // Pass prev frame and return address + "movl %eax, 4(%esp)\n" + "movl %ebp, (%esp)\n" + "call " ASMPREFIX "LLVMX86CompilationCallback2\n" + "addl $16, %esp\n" + "movaps 48(%esp), %xmm3\n" + CFI(".cfi_restore %xmm3\n") + "movaps 32(%esp), %xmm2\n" + CFI(".cfi_restore %xmm2\n") + "movaps 16(%esp), %xmm1\n" + CFI(".cfi_restore %xmm1\n") + "movaps (%esp), %xmm0\n" + CFI(".cfi_restore %xmm0\n") + "movl %ebp, %esp\n" // Restore ESP + CFI(".cfi_def_cfa_register esp\n") + "subl $12, %esp\n" + CFI(".cfi_adjust_cfa_offset 12\n") + "popl %ecx\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %ecx\n") + "popl %edx\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %edx\n") + "popl %eax\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %eax\n") + "popl %ebp\n" + CFI(".cfi_adjust_cfa_offset -4\n") + CFI(".cfi_restore %ebp\n") + "ret\n" + CFI(".cfi_endproc\n") + SIZE(X86CompilationCallback_SSE) + ); +# else + void LLVMX86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr); + + _declspec(naked) void X86CompilationCallback(void) { + __asm { + push ebp + mov ebp, esp + push eax + push edx + push ecx + and esp, -16 + sub esp, 16 + mov eax, dword ptr [ebp+4] + mov dword ptr [esp+4], eax + mov dword ptr [esp], ebp + call LLVMX86CompilationCallback2 + mov esp, ebp + sub esp, 12 + pop ecx + pop edx + pop eax + pop ebp + ret + } + } + +# endif // _MSC_VER + +#else // Not an i386 host + void X86CompilationCallback() { + llvm_unreachable("Cannot call X86CompilationCallback() on a non-x86 arch!"); + } +#endif +} + +/// This is the target-specific function invoked by the +/// function stub when we did not know the real target of a call. This function +/// must locate the start of the stub or call site and pass it into the JIT +/// compiler function. +extern "C" { +LLVM_ATTRIBUTE_USED // Referenced from inline asm. +LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr, + intptr_t RetAddr) { + intptr_t *RetAddrLoc = &StackPtr[1]; + // We are reading raw stack data here. Tell MemorySanitizer that it is + // sufficiently initialized. + __msan_unpoison(RetAddrLoc, sizeof(*RetAddrLoc)); + assert(*RetAddrLoc == RetAddr && + "Could not find return address on the stack!"); + + // It's a stub if there is an interrupt marker after the call. + bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE; + + // The call instruction should have pushed the return value onto the stack... +#if defined (X86_64_JIT) + RetAddr--; // Backtrack to the reference itself... +#else + RetAddr -= 4; // Backtrack to the reference itself... +#endif + +#if 0 + DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr + << " ESP=" << (void*)StackPtr + << ": Resolving call to function: " + << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); +#endif + + // Sanity check to make sure this really is a call instruction. +#if defined (X86_64_JIT) + assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!"); + assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!"); +#else + assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); +#endif + + intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr); + + // Rewrite the call target... so that we don't end up here every time we + // execute the call. +#if defined (X86_64_JIT) + assert(isStub && + "X86-64 doesn't support rewriting non-stub lazy compilation calls:" + " the call instruction varies too much."); +#else + *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4); +#endif + + if (isStub) { + // If this is a stub, rewrite the call into an unconditional branch + // instruction so that two return addresses are not pushed onto the stack + // when the requested function finally gets called. This also makes the + // 0xCE byte (interrupt) dead, so the marker doesn't effect anything. +#if defined (X86_64_JIT) + // If the target address is within 32-bit range of the stub, use a + // PC-relative branch instead of loading the actual address. (This is + // considerably shorter than the 64-bit immediate load already there.) + // We assume here intptr_t is 64 bits. + intptr_t diff = NewVal-RetAddr+7; + if (diff >= -2147483648LL && diff <= 2147483647LL) { + *(unsigned char*)(RetAddr-0xc) = 0xE9; + *(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff; + } else { + *(intptr_t *)(RetAddr - 0xa) = NewVal; + ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6)); + } + sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd); +#else + ((unsigned char*)RetAddr)[-1] = 0xE9; + sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5); +#endif + } + + // Change the return address to reexecute the call instruction... +#if defined (X86_64_JIT) + *RetAddrLoc -= 0xd; +#else + *RetAddrLoc -= 5; +#endif +} +} + +TargetJITInfo::LazyResolverFn +X86JITInfo::getLazyResolverFunction(JITCompilerFn F) { + TsanIgnoreWritesBegin(); + JITCompilerFunction = F; + TsanIgnoreWritesEnd(); + +#if defined (X86_32_JIT) && !defined (_MSC_VER) +#if defined(__SSE__) + // SSE Callback should be called for SSE-enabled LLVM. + return X86CompilationCallback_SSE; +#else + if (useSSE) + return X86CompilationCallback_SSE; +#endif +#endif + + return X86CompilationCallback; +} + +X86JITInfo::X86JITInfo(bool UseSSE) { + useSSE = UseSSE; + useGOT = 0; + TLSOffset = nullptr; +} + +void *X86JITInfo::emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr, + JITCodeEmitter &JCE) { +#if defined (X86_64_JIT) + const unsigned Alignment = 8; + uint8_t Buffer[8]; + uint8_t *Cur = Buffer; + MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(intptr_t)ptr); + MachineCodeEmitter::emitWordLEInto(Cur, (unsigned)(((intptr_t)ptr) >> 32)); +#else + const unsigned Alignment = 4; + uint8_t Buffer[4]; + uint8_t *Cur = Buffer; + MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)ptr); +#endif + return JCE.allocIndirectGV(GV, Buffer, sizeof(Buffer), Alignment); +} + +TargetJITInfo::StubLayout X86JITInfo::getStubLayout() { + // The 64-bit stub contains: + // movabs r10 <- 8-byte-target-address # 10 bytes + // call|jmp *r10 # 3 bytes + // The 32-bit stub contains a 5-byte call|jmp. + // If the stub is a call to the compilation callback, an extra byte is added + // to mark it as a stub. + StubLayout Result = {14, 4}; + return Result; +} + +void *X86JITInfo::emitFunctionStub(const Function* F, void *Target, + JITCodeEmitter &JCE) { + // Note, we cast to intptr_t here to silence a -pedantic warning that + // complains about casting a function pointer to a normal pointer. +#if defined (X86_32_JIT) && !defined (_MSC_VER) + bool NotCC = (Target != (void*)(intptr_t)X86CompilationCallback && + Target != (void*)(intptr_t)X86CompilationCallback_SSE); +#else + bool NotCC = Target != (void*)(intptr_t)X86CompilationCallback; +#endif + JCE.emitAlignment(4); + void *Result = (void*)JCE.getCurrentPCValue(); + if (NotCC) { +#if defined (X86_64_JIT) + JCE.emitByte(0x49); // REX prefix + JCE.emitByte(0xB8+2); // movabsq r10 + JCE.emitWordLE((unsigned)(intptr_t)Target); + JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32)); + JCE.emitByte(0x41); // REX prefix + JCE.emitByte(0xFF); // jmpq *r10 + JCE.emitByte(2 | (4 << 3) | (3 << 6)); +#else + JCE.emitByte(0xE9); + JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4); +#endif + return Result; + } + +#if defined (X86_64_JIT) + JCE.emitByte(0x49); // REX prefix + JCE.emitByte(0xB8+2); // movabsq r10 + JCE.emitWordLE((unsigned)(intptr_t)Target); + JCE.emitWordLE((unsigned)(((intptr_t)Target) >> 32)); + JCE.emitByte(0x41); // REX prefix + JCE.emitByte(0xFF); // callq *r10 + JCE.emitByte(2 | (2 << 3) | (3 << 6)); +#else + JCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... + + JCE.emitWordLE((intptr_t)Target-JCE.getCurrentPCValue()-4); +#endif + + // This used to use 0xCD, but that value is used by JITMemoryManager to + // initialize the buffer with garbage, which means it may follow a + // noreturn function call, confusing LLVMX86CompilationCallback2. PR 4929. + JCE.emitByte(0xCE); // Interrupt - Just a marker identifying the stub! + return Result; +} + +/// getPICJumpTableEntry - Returns the value of the jumptable entry for the +/// specific basic block. +uintptr_t X86JITInfo::getPICJumpTableEntry(uintptr_t BB, uintptr_t Entry) { +#if defined(X86_64_JIT) + return BB - Entry; +#else + return BB - PICBase; +#endif +} + +template<typename T> static void addUnaligned(void *Pos, T Delta) { + T Value; + std::memcpy(reinterpret_cast<char*>(&Value), reinterpret_cast<char*>(Pos), + sizeof(T)); + Value += Delta; + std::memcpy(reinterpret_cast<char*>(Pos), reinterpret_cast<char*>(&Value), + sizeof(T)); +} + +/// relocate - Before the JIT can run a block of code that has been emitted, +/// it must rewrite the code to contain the actual addresses of any +/// referenced global symbols. +void X86JITInfo::relocate(void *Function, MachineRelocation *MR, + unsigned NumRelocs, unsigned char* GOTBase) { + for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { + void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); + intptr_t ResultPtr = (intptr_t)MR->getResultPointer(); + switch ((X86::RelocationType)MR->getRelocationType()) { + case X86::reloc_pcrel_word: { + // PC relative relocation, add the relocated value to the value already in + // memory, after we adjust it for where the PC is. + ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal(); + addUnaligned<unsigned>(RelocPos, ResultPtr); + break; + } + case X86::reloc_picrel_word: { + // PIC base relative relocation, add the relocated value to the value + // already in memory, after we adjust it for where the PIC base is. + ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal()); + addUnaligned<unsigned>(RelocPos, ResultPtr); + break; + } + case X86::reloc_absolute_word: + case X86::reloc_absolute_word_sext: + // Absolute relocation, just add the relocated value to the value already + // in memory. + addUnaligned<unsigned>(RelocPos, ResultPtr); + break; + case X86::reloc_absolute_dword: + addUnaligned<intptr_t>(RelocPos, ResultPtr); + break; + } + } +} + +char* X86JITInfo::allocateThreadLocalMemory(size_t size) { +#if defined(X86_32_JIT) && !defined(__APPLE__) && !defined(_MSC_VER) + TLSOffset -= size; + return TLSOffset; +#else + llvm_unreachable("Cannot allocate thread local storage on this arch!"); +#endif +} diff --git a/llvm/lib/Target/X86/X86JITInfo.h b/llvm/lib/Target/X86/X86JITInfo.h new file mode 100644 index 00000000000..564343ffa3f --- /dev/null +++ b/llvm/lib/Target/X86/X86JITInfo.h @@ -0,0 +1,79 @@ +//===-- X86JITInfo.h - X86 implementation of the JIT interface --*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the X86 implementation of the TargetJITInfo class. +// +//===----------------------------------------------------------------------===// + +#ifndef X86JITINFO_H +#define X86JITINFO_H + +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/IR/Function.h" +#include "llvm/Target/TargetJITInfo.h" + +namespace llvm { + class X86Subtarget; + + class X86JITInfo : public TargetJITInfo { + uintptr_t PICBase; + char *TLSOffset; + bool useSSE; + public: + explicit X86JITInfo(bool UseSSE); + + /// replaceMachineCodeForFunction - Make it so that calling the function + /// whose machine code is at OLD turns into a call to NEW, perhaps by + /// overwriting OLD with a branch to NEW. This is used for self-modifying + /// code. + /// + void replaceMachineCodeForFunction(void *Old, void *New) override; + + /// emitGlobalValueIndirectSym - Use the specified JITCodeEmitter object + /// to emit an indirect symbol which contains the address of the specified + /// ptr. + void *emitGlobalValueIndirectSym(const GlobalValue* GV, void *ptr, + JITCodeEmitter &JCE) override; + + // getStubLayout - Returns the size and alignment of the largest call stub + // on X86. + StubLayout getStubLayout() override; + + /// emitFunctionStub - Use the specified JITCodeEmitter object to emit a + /// small native function that simply calls the function at the specified + /// address. + void *emitFunctionStub(const Function* F, void *Target, + JITCodeEmitter &JCE) override; + + /// getPICJumpTableEntry - Returns the value of the jumptable entry for the + /// specific basic block. + uintptr_t getPICJumpTableEntry(uintptr_t BB, uintptr_t JTBase) override; + + /// getLazyResolverFunction - Expose the lazy resolver to the JIT. + LazyResolverFn getLazyResolverFunction(JITCompilerFn) override; + + /// relocate - Before the JIT can run a block of code that has been emitted, + /// it must rewrite the code to contain the actual addresses of any + /// referenced global symbols. + void relocate(void *Function, MachineRelocation *MR, + unsigned NumRelocs, unsigned char* GOTBase) override; + + /// allocateThreadLocalMemory - Each target has its own way of + /// handling thread local variables. This method returns a value only + /// meaningful to the target. + char* allocateThreadLocalMemory(size_t size) override; + + /// setPICBase / getPICBase - Getter / setter of PICBase, used to compute + /// PIC jumptable entry. + void setPICBase(uintptr_t Base) { PICBase = Base; } + uintptr_t getPICBase() const { return PICBase; } + }; +} + +#endif diff --git a/llvm/lib/Target/X86/X86Subtarget.cpp b/llvm/lib/Target/X86/X86Subtarget.cpp index 3d13c4b59c0..c4caf06c936 100644 --- a/llvm/lib/Target/X86/X86Subtarget.cpp +++ b/llvm/lib/Target/X86/X86Subtarget.cpp @@ -356,7 +356,8 @@ X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU, DL(computeDataLayout(*this)), TSInfo(DL), InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM), FrameLowering(TargetFrameLowering::StackGrowsDown, getStackAlignment(), - is64Bit() ? -8 : -4) {} + is64Bit() ? -8 : -4), + JITInfo(hasSSE1()) {} bool X86Subtarget::enableEarlyIfConversion() const { return hasCMov() && X86EarlyIfConv; diff --git a/llvm/lib/Target/X86/X86Subtarget.h b/llvm/lib/Target/X86/X86Subtarget.h index 45dc0b8ebe2..75e8ae5dc2b 100644 --- a/llvm/lib/Target/X86/X86Subtarget.h +++ b/llvm/lib/Target/X86/X86Subtarget.h @@ -17,6 +17,7 @@ #include "X86FrameLowering.h" #include "X86ISelLowering.h" #include "X86InstrInfo.h" +#include "X86JITInfo.h" #include "X86SelectionDAGInfo.h" #include "llvm/ADT/Triple.h" #include "llvm/IR/CallingConv.h" @@ -242,6 +243,7 @@ private: X86InstrInfo InstrInfo; X86TargetLowering TLInfo; X86FrameLowering FrameLowering; + X86JITInfo JITInfo; public: /// This constructor initializes the data members to match that @@ -265,6 +267,7 @@ public: const X86RegisterInfo *getRegisterInfo() const override { return &getInstrInfo()->getRegisterInfo(); } + X86JITInfo *getJITInfo() override { return &JITInfo; } /// getStackAlignment - Returns the minimum alignment known to hold of the /// stack frame on entry to the function and which must be maintained by every diff --git a/llvm/lib/Target/X86/X86TargetMachine.cpp b/llvm/lib/Target/X86/X86TargetMachine.cpp index 0b1909f95c2..f12140f1f16 100644 --- a/llvm/lib/Target/X86/X86TargetMachine.cpp +++ b/llvm/lib/Target/X86/X86TargetMachine.cpp @@ -177,3 +177,10 @@ bool X86PassConfig::addPreEmitPass() { return ShouldPrint; } + +bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM, + JITCodeEmitter &JCE) { + PM.add(createX86JITCodeEmitterPass(*this, JCE)); + + return false; +} diff --git a/llvm/lib/Target/X86/X86TargetMachine.h b/llvm/lib/Target/X86/X86TargetMachine.h index 9de118a205e..633c5710315 100644 --- a/llvm/lib/Target/X86/X86TargetMachine.h +++ b/llvm/lib/Target/X86/X86TargetMachine.h @@ -33,11 +33,17 @@ public: CodeGenOpt::Level OL); const X86Subtarget *getSubtargetImpl() const override { return &Subtarget; } + X86Subtarget *getSubtargetImpl() { + return static_cast<X86Subtarget *>(TargetMachine::getSubtargetImpl()); + } + /// \brief Register X86 analysis passes with a pass manager. void addAnalysisPasses(PassManagerBase &PM) override; // Set up the pass pipeline. TargetPassConfig *createPassConfig(PassManagerBase &PM) override; + + bool addCodeEmitter(PassManagerBase &PM, JITCodeEmitter &JCE) override; }; } // End llvm namespace |